
Rupali V. Pashte, International Journal of Wireless Communications and Network Technologies, 3(4), June – July 2014, 66-72

66

A Data Aware Caching for Large scale Data Applications Using The Map-Reduce

Rupali V. Pashte1

Student ME Computer Engineering, SP’ IOKCOE, Pune, India
r.patil0983@gmail.com

ABSTRACT

The Big-data refers to the huge scale distributed data
processing applications that operate on unusually large
amounts of data. Google’s MapReduce and Apache’s
MapReduce, its open-source implementation, are the
defacto software systems for Large Scale data
applications. Study of the MapReduce framework is that
the framework generates a large amount of intermediate
data. Such existing information is thrown away after the
tasks finish, because MapReduce is not able to utilize
them. In this paper, we propose, a data-aware cache
framework for large data applications. In this paper, tasks
submit their intermediate results to the cache manager. A
job queries the cache manager before executing the actual
computing work. A novel cache description scheme and a
cache request and reply protocols are designed. We
implement Data aware caching by extending Hadoop.
Keywords: Big-data, Hadoop, JobTracker, MapReduce,
TaskTracker

1. INTRODUCTION

Google MapReduce is a programming model and a
software framework for Big -scale distributed Computing
on large amounts of data. Figure 1 illustrates the high-
level work flow of a MapReduce Task. Application
developers specify the computation in terms of a map and
a reduce function, and the underlying MapReduce Task
scheduling system automatically parallelizes the
computation across a cluster of machines. MapReduce
obtain popularity for its simple programming interface and
excellent Performance when implementing a large
spectrum of applications. Since most such applications
take a huge amount of input data, they are named as “Big-
data applications”.

Figure 1: The MapReduce programming model architecture.

 As shown in Figure 1, input data is first divided and then
given to workers in the map stage. Individual data items
are called records. The MapReduce system parses the
input splits to each worker and produces records. After the
map phase, intermediate results generated in the map
phase are shuffled and sorted by the MapReduce system
and are then given into the workers in the reduce phase.
Final results are computed by multiple reducers and
written back to the disk.
 Hadoop is an open-source implementation of the Google
MapReduce programming model. Hadoop consists of the
Hadoop Common, which provides access to the file
systems supported by Hadoop. Hadoop Distributed File
System (HDFS) provides distributed file storage and is
optimized for large unchangable blobs of data. A small
Hadoop cluster will include a single master and multiple
worker nodes called as slave. The master node runs
multiple processes, including a TaskTracker and a Name
Node. The TaskTracker is having control for managing
running jobs in the Hadoop cluster. Whereas the Name
Node manages the HDFS. The TaskTracker and the Name
Node are usually collocated on the same physical machine.
Other servers in the cluster run a Task Tracker and a Data
Node processes. A MapReduce job is divided into tasks.
Tasks are managed by the TaskTracker. The TaskTrackers
and the DataNode are collated on the same servers to
provide data locality in computation. MapReduce provides
a standardized framework for implementing large-scale
distributed computation, called as, the big-data
applications.
Still, there is a restriction of the system, i.e., the
inefficiency in incremental processing. Incremental
processing refers to the applications that incrementally
grow the input data and continuously apply computations
on the input in order to produce output. There are potential
duplicate computations and operations being performed in
this process. However, MapReduce does not have the any
technique to identify such duplicate computations and
accelerate job execution. Motivated by this observation, In
this paper we propose, a data-aware cache system for big-
data applications using the MapReduce framework, which
aims at extending the MapReduce framework and
provisioning a cache layer for efficiently identifying and
accessing cache items in a MapReduce job.

2. LITERATURE REVIEW

1. Large-scale Incremental Processing Using Distributed
Transactions and Notifications [3]
Daniel Peng et al. proposed, a system for incrementally
processing updates to a large data set, and deployed it to

ISSN 2319 - 6629

Volume 3, No.4, June – July 2014
International Journal of Wireless Communications and Networking Technologies

Available Online at http://warse.org/pdfs/2014/ijwcnt01342014.pdf

Rupali V. Pashte, International Journal of Wireless Communications and Network Technologies, 3(4), June – July 2014, 66-72

67

create the Google web search index. By replacing a batch-
based indexing system with an indexing system based on
incremental processing using Percolator, Auther process
the same number of documents per day.

2. Design and Evaluation of Network-Leviated Merge for
Hadoop Acceleration [7]
Weikuan Yu et al. proposed, Hadoop-A, an acceleration
framework that optimizes Hadoop with plugin components
for fast data movement, overcoming the existing
limitations. A novel network-levitated merge algorithm is
introduced to merge data without repetition and disk
access. In addition, a full pipeline is designed to overlap
the shuffle, merge and reduce phases. Our experimental
results show that Hadoop-A significantly speeds up data
movement in MapReduce and doubles the throughput of
Hadoop.

3. Improving Mapreduce Performance through Data
Placement in Heterogeneous Hadoop Cluster [5]
Jiong Xie et al. proposed that ignoring the data locality
issue in heterogeneous environments can noticeably
reduce the MapReduce performance. In this paper, author
addresses the problem of how to place data across nodes in
a way that each node has a balanced data processing load.
Given a data intensive application running on a Hadoop
MapReduce cluster, our data placement scheme adaptively
balances the amount of data stored in each node to achieve
improved data-processing performance. Experimental
results on two real data-intensive applications show that
our data placement strategy can always improve the
MapReduce performance by rebalancing data across nodes
before performing a data-intensive application in a
heterogeneous Hadoop cluster.
4. Improving MapReduce Performance in Heterogeneous
Network Environments and Resource Utilization [6]
 Zhenhua Guo et al. proposed, Benefit Aware Speculative
Execution which predicts the benefit of launching new
speculative tasks and greatly eliminates unnecessary runs
of speculative tasks. Finally, MapReduce is mainly
optimized for homogeneous environments and its
inefficiency in heterogeneous network environments has
been observed in their experiments. Authors investigate
network heterogeneity aware scheduling of both map and
reduce tasks. Overall, the goal is to enhance Hadoop to
cope with significant system heterogeneity and improve
resource utilization.

3. MOTIVATION

MapReduce provides a standardized framework for
implementing large-scale distributed computation, called
as, the big-data applications. However, there is a limitation
of the system, i.e., the inefficiency in incremental
processing. Incremental processing refers to the
applications that incrementally grow the input data and
continuously apply computations on the input in order to
generate output.
There are potential duplicate computations being
performed in this process. However, MapReduce does not
have the technique to identify such duplicate computations
and accelerate Task execution. Motivated by this
observation, in this paper we propose, a data-aware cache

system for big-data applications using the MapReduce
framework, which aims at extending the MapReduce
framework and provide a cache layer for efficiently
identifying and accessing cache items in a MapReduce
job.

4. NEED

4.1 Cache Description:
Data-aware caching requires each data object to be
indexed by its content. In the context of large scale data
applications, this means that the cache description scheme
needs to narrate the application framework and the data
contents. Although most big-data applications run on
standardized platforms, their individual tasks perform
completely different operations and generate different
intermediate results. The cache description scheme should
provide a customizable indexing that enables content of
their generated partial results. This is a nontrivial task. In
the context of Hadoop, It utilizes the sterilization
capability provided by the Java language to identify the
object that is used by the MapReduce system to process
the input data.

4.2 Cache request and reply protocol:
The size of the aggregated intermediate data can be very
large. When such data is requested by other worker nodes
or slave, determining how to transport this data becomes
very complex. Normally for processing, program are
moved to data node i.e. slave node to run the processing
locally. Although, this may not always be applicable since
the affinity of the worker nodes may not be easily
changed. To solve Data locality problem, the protocol
should be able to collate cache items with the worker
processes potentially that need the data, so that the
transmission delay and overhead are minimized. In this
paper, we present a novel cache description scheme. A
high-level description is presented in Figure. 2.

Figure 2: High-level description of the architecture of Data
aware caching.

This scheme identifies the source input from which a
cache item is acquired, and the operations applied on the
input, so that a cache item produced by the workers in the
map phase is indexed properly. In the reduce phase, we

Rupali V. Pashte, International Journal of Wireless Communications and Network Technologies, 3(4), June – July 2014, 66-72

68

devise a technique to take into consideration the partition
operations applied on the output in the map phase. We also
present a method for reducers to utilize the cached results
in the map phase to accelerate the execution of the
MapReduce job. We implement data aware caching in the
Hadoop project by extending the relevant components.
Our implementation follows a non-intrusive approach, so
it only requires minimum changes to the application code.

5. CACHE DESCRIPTION

5.1 Map phase cache description scheme
Cache refers to the intermediate data that is produced by
worker nodes/processes during the execution of a
MapReduce task. A piece of cached data is stored in a
Distributed File System (DFS). The content of a cache
item is described by the original data and the operations
applied. Formally, a cache item is described by a 2-tuple:
fOrigin, Operation. Origin is the name of a file in the DFS.
Operation is a linear list of available operations performed
on the Origin file. For example, in the word count
application, each mapper node/process emits a list of
fword, countg tuples that record the count of each word in
the file that the mapper processes. Data aware caching
stores this list to a file. This file becomes a cache item.
Given an original input data file, word list 01237850.txt,
the cache item is described by fword list 001237850.txt,
item countg. Here, item refers to white-space-separated
character strings. Note that the new line character is also
considered as one of the white spaces, so item precisely
captures the word in a text file and item count directly
corresponds to the word count operation performed on the
data file. The exact format of the cache description of
different applications varies according to their specific
semantic contexts. This could be designed and
implemented by application developers who are
responsible for implementing their MapReduce tasks. In
our prototype, I present several supported operations:

_ Item Count: This operation used to count of all
occurrences of each item in a text file. The items are
separated by a user defined separator.
 _ Sort: This operation sorts the records of the file. The
comparison operator is defined on two items and returns
the order of priority.
 _ Selection: This operation selects an item that meets a
given criterion. It could be an order in the list of items. A
special selection operation involves selecting the median
of a linear list of items.
 _ Transform: This operation transforms each item in the
input file into a different item format. The transformation
is described further by the other information in the
operation descriptions. This can only be specified by the
application developers.
_ Classification: This operation used to classifies the
items in the input file into multiple groups. This could be
an exact classification, where a deterministic classification
criterion is applied sequentially on each item, or an
approximate classification, where an iterative
classification process is applied and the iteration count
should be recorded.
Cache descriptions can be recursive. For example, in
sequential processing, a data file could be processed by

multiple worker processes. After that a cache item,
generated by the final process, could be from the
intermediate result files of previous worker nodes, so its
description will be stacked together to form a recursive
description. Whereas on other side, this recursive
description could be expanded to an iterative one by
directly appending the later operations to the older ones.
Still, this iterative description loses the context
information about the later operations, that is, if another
process is operating on a later cache item and is looking
for potential cache that could save its own operations. By
inspecting an iterative description, one cannot discern
between a later on cache item and a previous one because
the origin of the cache item is the one that was fed by the
application developers. This way, the worker processes
will be not able to identify the correct cache item, even if
the cache item is present in cache manager.

5.2 Reduce phase cache description scheme:
The input for the reduce phase is a list of key-value pairs,
where the value could be a list of values. Much like the
scheme used for the map phase cache description, the
original input and the applied operations are required. The
original input item is retrieved by storing the intermediate
results of the map phase in the DFS. The performed
operations are identified by unique IDs that are specified
by the user. The cached results, unlike those generated in
the Map phase, cannot be directly used as the final output.
This is because of an incremental processing, intermediate
results generated in the Map phase are mixed in the
shuffling phase, which causes a mismatch between the
original input of the cache items and the newly generated
input. A solution to this problem is apply a finer
description of the original input of the cache items in the
reduce stage. The description should include the original
data files generated in the Map stage. For example, two
data files, “file1.data” and “file2.data”, are shuffled to
produce two input files, “input1.data” and “input2.data”,
for two reducers. “input1.data” and “input2.data” should
include “file1.data” and “file2.data” as its shuffling
source. As a result, new intermediate data files of the Map
phase are generated during incremental processing; the
shuffling input will be identified in a similar way. The
reducers can identify new inputs from the shuffling
sources by shuffling the newly-generated intermediate
result from the Map phase to form the final results. For
example, assume that “input3.data” is newly generated
results from Map phase; the shuffling results “file1.data”
and “file2.data” include a new shuffling source,
“input3.data”. A reducer can identify the input “file1.data”
as the result of shuffling “input1.data”, “input2.data”, and
“input3.data”. The final results of shuffling the output of
“input1.data” and “input2.data” are obtained by querying
the cache manager. The added shuffling output of
“input3.data” is then added to get the new results. Given
the above description, the input given to the reducers is not
cached wholly. Only a some part of the input is same to
the input of the cache items. The remaining is from the
output of the incremental processing phase of the map
phase. If a reducer could combine the cached partial
results with the results obtained from the new inputs and
substantially reduce the overall computation time, reducers

Rupali V. Pashte, International Journal of Wireless Communications and Network Technologies, 3(4), June – July 2014, 66-72

69

should cache partial results. This property is examined by
the operations executed by the reducers.

6. HADOOP MAP-REDUCE

6.1 Apache Hadoop
Apache Hadoop is an open-source software framework
for storage and processing of large-scale data-sets on
clusters of commodity hardware.
'Map-Reduce' is a framework for processing parallelizable
problems across large datasets using a large number of
nodes, collectively referred to as a cluster or a grid .
Computational processing can occur on data stored either
in unstructured a file system or in a structured database.
Map-Reduce can take advantage of data locality,
processing it on or near the storage assets in order to
reduce the distance of transmitted.
"Map" step: Input is given to the master node, which
divides it into smaller sub-problems, and distributes them
to worker nodes. If required A worker node may again
further sub-divide it, leading to a multi-level tree structure.
The worker node processes the smaller sub-problem, and
gives the answer back to its master node.
"Reduce" step: The master node collects the answers of
all the sub-problems and combines them to form the
output which is the answer to the original problem it was
trying to solve.
Map Reduce allows for distributed processing of the map
and reduction operations, where mapping operation is
independent of the others, all maps can be performed in
parallel. Similarly, a set of 'reducers' can perform the
reduction phase, if and only if all outputs of the map
operation that share the same key with to the same reducer
at the same time. Larger dataset is used in Map Reduce,
commodity server handle peta byte of data in few hours. If
one mapper or reducer fails, then rescheduled is used to
assuming the input data is still available.

6.2 Task Tracker: the Map-Reduce engine
The Map-Reduce engine consists of one JobTracker, to
which client applications submit MapReduce jobs. The
JobTracker sends work request to number of TaskTracker
nodes in the cluster. To achieve data locality, works are
process near to worker node. A rack-aware file system is
used, the JobTracker maintain information about node
which contains the data, and which is nearby machines. If
the work cannot be performed on the actual node where
the data resides, priority is given to nodes in the same rack
in rack aware file system. This reduces network traffic on
the main backbone network. If a TaskTracker fails or
times out then that part of the Task is rescheduled. To
check the status TaskTracker, A heartbeat is sent from the
TaskTracker to the JobTracker every few minutes.

6.3 Map cache:
Apache Hadoop is an open-source implementation of
originally implemented by Google, is the MapReduce
distributed parallel processing algorithm. In Map phase
input is divided into multiple file splits which are then
processed by an equal number of Map worker processes,
who achieve a data-parallel processing procedure. As
depicted in Figure. 3, a file splited according to user given

rules. The intermediate results obtained by processing file
splits are then cached. Each file split is identified by the
original file name, offset, and size. This causes
complications in describing cache items. Further this
scheme is slightly modified to work for the general
situation, In which The original field of a cache item is
changed to a 3-tuple of ffile name, offset, size.

Figure 3: Map Phase A file in a DFS.

A file split cannot cross file boundaries in Hadoop
MapReduce, which simplifies the description scheme of
cache items. Map cache items can be aggregated by
grouping file splits. Original input file generate Multiple
cache items from the same original file in the DFS are
grouped under the path of the original file, i.e., file name,
offset, sizeg, .Using this approach it optimize the actual
storage of aggregated cache items .So Map cached item
could be put on a single data node in the HDFS cluster
which avoid costly queries to multiple data nodes.

6.4 Reduce cache
Cache description contains the file splits from the map
phase. The input given to the reducers is from the whole
input of the MapReduce job. Therefore, further simplify
the description by using the file name with a version
number to describe the original file to the reducers. The
version number of the input file is used to distinguish
incremental changes to input file. A straightforward
approach is to encode the size of the input file is included
with the file name. Since incremental changes, appending
new data at the end of the file, the size of the file is enough
to identify the changes made during different MapReduce
jobs. Note that even the entire output of the input files of a
MapReduce Task is used in the reduce phase, the file splits
can still be aggregated, i.e., by using the form of ffile
name, split, splitg. As shown in Figure. 4, file splits are
sorted and shuffled to produce the input for the reducers.
Basically this process is implicitly handled by the
MapReduce framework, the users specify a shuffling
method by supplying a partitioner, which is implemented
as a Java object in Hadoop.

Figure 4: Architecture of Reducer

Rupali V. Pashte, International Journal of Wireless Communications and Network Technologies, 3(4), June – July 2014, 66-72

70

7. PROTOCOL

7.1 Relationship between Task types and cache
organization
The partial results generated in the map and reduce phases
can be used in different scenarios. There are two types of
cache items: the map cache and the reduce cache. They
have different complexities under different scenarios.
Cache items in the map phase are easy to share because
the operations applied are well-formed. When processing
each file split, the cache manager reports the previous file
splitting scheme used in its cache item. The new
MapReduce Task needs to split the files according to the
same splitting scheme in order to utilize the cache items.
However, if the new MapReduce Taskuses different file
splitting scheme, the map results cannot be used directly,
unless the operations applied in the map phase are context
free. By context free, we mean that the operation only
generates results based on the input records, which does
not consider the file split scheme. This is generally true.
When considering cache sharing in the reduce phase, we
identify two general situations. The first is when the
reducer’s complete different jobs from the cached reduce
cache items of the previous MapReduce jobs, as shown in
Figure. 5. In this case, after the mappers submit the results
obtained from the cache items, the MapReduce framework
uses the practitioner provided by the new MapReduce
Taskto feed input to the reducers. The saved computation
is obtained by removing the processing in the Map phase.
Usually, new content is appended at the end of the input
files, which requires additional mappers to process.
However, this does not require additional processes other
than those introduced above.
The second situation is when the reducers can actually
take advantage of the previously-cached reducing cache
items as illustrated in Figure. 6. Using the description
scheme, the reducers determine how the output of the map
phase is shuffled. The cache manager automatically
identifies the best-matched cache item to feed each
reducer, which is the one with the maximum overlap in the
original input file in the Map phase.

Figure 5: Map with same map task and different reduce tasks

Figure 6: The situation where two MapReduce jobs have the
same map and reduce tasks.

7.2 Cache item submission
Mapper and reducer nodes/processes record cache items
into their local storage space. When these operations are
completed, the cache items are forwarded to the cache
manager, which acts like a broker in the publish/subscribe
paradigm. The cache manager records the description and
the file name of the cache item in the DFS. The cache item
should be put on the same machine as the worker process
that generates it. This requirement improves data locality.
The cache manager maintains a copy of the mapping
between the cache descriptions and the file names of the
cache items in its main memory to accommodate fastest
reply to queries. It also takes backup of the mapping file
into the disk periodically to avoid permanently losing data.
A worker node/process contacts the cache manager each
time before it begins processing an input data file. The
worker process sends the file name and the operations that
it plans to apply to the file to the cache manager. The
cache manager receives this message and compares it with
the stored mapping data. If there is a exact match to a
cache item, i.e., its origin is the same as the file name of
the request and its operations are the same as the proposed
operations that will be performed on the data file, then the
manager will send back a reply containing the tentative
description of the cache item to the worker process. The
worker process receives the tentative description and
fetches the cache item. For further processing, the worker
needs to send the file to the next-stage worker processes.
The mapper needs to inform the cache manager that it
already processed the input file splits for this job. The
cache manager then reports these results to the next phase
reducers. If the reducers do not utilize the cache service,
the output in the map phase could be directly shuffled to
form the input for the reducers. Otherwise, a more
complicated process is executed to obtain the required
cache items; this will be explained in next Section. If the
proposed operations are different from the cache items in
the manager’s records, there are situations where the
origin of the cache item is the same as the requested file,
and the operations of the cache item are a strict subset of
the proposed operations. The concept of a strict super set
refers to the fact that the item is obtained by applying
some additional operations on the subset item. For
example, an item count operation is a strict subset
operation of an item count followed by a selection
operation. This fact means that if we have a cache item for
the first operation, we could just add the selection

Rupali V. Pashte, International Journal of Wireless Communications and Network Technologies, 3(4), June – July 2014, 66-72

71

operation, which guarantees the correctness of the
operation. One of the benefits of Data aware caching is
that it automatically supports incremental processing.
Incremental processing means that we have an input that is
partially different or only has a small amount of additional
data. To perform a previous operation on this new input
data is troublesome in conventional MapReduce, because
MapReduce does not provide the tools for readily
expressing such incremental operations. Usually the
operation needs to be performed again on the new input
data, or the application developers need to manually cache
the stored intermediate data and pick them up in the
incremental processing. In Data aware caching, this
process is standardized and formalized. Application
developers have the ability to express their intentions and
operations by using cache description and to request
intermediate results through the dispatching service of the
cache manager.

7.2.1 Lifetime management of cache item:
The cache manager needs to determine how much time a
cache item can be kept in the DFS. Holding a cache item
for an indefinite amount of time will waste storage space
when no other MapReduce task utilizing the intermediate
results of the cache item. There are two types of schemes
for determining the lifetime of a cache item, as listed
below. The cache manager also can promote a cache item
to a permanent file and store it in the DFS, which happens
when the cache item is used as the final result of a
MapReduce task. In this case, the lifetime of the cache
item is no longer managed by the cache manager. The
cache manager still maintains the mapping between cache
descriptions and the actual storage location.

7.2.2 Fixed storage quota:
Data aware caching allocates a fixed amount of storage
space for storing cache items. Old cache items need to be
removed out when there is no enough storage space for
storing new cache items. The removal policy of old cache
items can be modeled as a classic cache replacement
problem. In this paper preliminary implementation, the
Least Recent Used (LRU) is employed. The cost of
allocating a fixed storage quota could be determined by a
pricing model that captures the monetary expense of using
that amount of storage space. Such pricing models are
available in a public Cloud service.

7.2.3 Optimal utility:
Increasing the storage space of cache items, a utility-based
measurement can be used to determine an optimal space
allocated for cache items which maximize the benefits of
Data aware caching and respect the constraints of costs.
This approch estimates the saved computation time, ts, by
caching a cache item for a given amount of time, ta. These
two variables are used to derive the monetary gain and
cost. The net profit, i.e., the difference of subtracting cost
from gain, should be made positive. To achieve this, an
accurate pricing model of computational resources is
required. Although traditional computing infrastructures
do not offer such a model, cloud computing offer.
Monetary values of computational resources are well
captured in existing cloud computing services, for
example, in Amazon AWS and Google Compute Engine.

For many organizations that rely on a cloud service
provider for their IT infrastructure, this would be a perfect
model. According to the official report from Amazon
AWS, the amount of organizations that are actively using
their services is huge, which help them to achieve near
billion dollar revenue. Therefore, this pricing model
should be very useful in real-world application. On the
other hand, for organizations that rely on their own private
IT infrastructure, this model will be inaccurate and should
only be used as a reference.

 Expensets= Pstorage × Scache × ts (1)
 Savets = Pcomputation × Rduplicate × ts (2)

Equations (1) and (2) show how to compute the expense of
storing cache and the corresponding saved expense in
computation. The details of computing the variables
introduced above are as follows. The gain of storing a
cache item for ts amount of time is calculated by
accumulating the charged expenses of all the saved
computation tasks in ts. The number of the same task that
is submitted by the user in ts is approximated by an
exponential distribution. The mean of this exponential
distribution is obtained by sampling in history. A newly
generated cache item requires a bootstrap time to do the
sampling. The cost is directly computed from the charge
expense of storing the item for ta amount of time. The
optimal lifetime of a cache item is the maximum ta, such
that the profit is positive. The overall benefits of this
scheme are that the user will not be charged more and at
the same time the computation time is reduced, which in
turn reduces the response time and increases the user
satisfaction.

7.3 Cache request and reply
7.3.1 Map cache:
There are several complications that are caused by the
actual designs of the Hadoop MapReduce framework. The
first is, when do map phase issue cache requests? As
described above, map cache items are identified by the
data chunk and operations performed. In order to preserve
the original splitting scheme, cache requests must be sent
out before the file splitting phase. The jobtracker, which is
the central controller that manages a MapReduce job,
issues cache requests to the cache manager. The cache
manager replies a list of cache descriptions. The jobtracker
then splits the input file on remaining file sections that
have no corresponding results in the cache items. That is,
the jobtracker needs to use the same file split scheme as
the one used in the cache items in order to actually utilize
them. In this scenario, the new appended input file should
be split among the same number of map phase tasks, so
that it will not slow the entire MapReduce Task down.
Their results are then combined together to form an
aggregated Map cache item; to achive this nested
MapReduce job is used.

7.3.2 Reduce cache:
 The cache request process is more complicated. The first
step is to compare the requested cache item with the
cached items in the cache manager’s database. The cached
results in the reduce phase may not be directly used due to
the incremental changes. As a result, the cache manager

Rupali V. Pashte, International Journal of Wireless Communications and Network Technologies, 3(4), June – July 2014, 66-72

72

needs to identify the overlaps of the original input files of
the requested cache and stored cache. In our preliminary
implementation, this is done by performing a linear scan
of the stored cache items to find the one with the
maximum overlap with the request. When comparing the
request and cache item, the cache manager first identifies
the petitioner. The practitioner in the request and the cache
item has to be identical, i.e., they should use the same
partitioning algorithm and the same number of reducers.
This requirement is illustrated in Figure. 7. The
overlapped part means that a part of the processing in the
reducer could be saved by obtaining the cached results for
that part of the input. The incremented part, however, will
need to be processed by the reducer itself. The final results
are generated by combining both parts. The actual method
of combining results is determined by the user.

Figure 7: Working of Cache manager and reducer

8. CONCLUSIONS

This paper present the design and evaluation of a data
aware cache framework that requires minimum change to
the original MapReduce programming model for
provisioning incremental processing for Big data
applications using the MapReduce model. In this paper
propose, a data-aware cache description scheme, protocol,
and architecture. In this Paper Presented method requires
only a slight modification in the input format processing
and task management of the MapReduce framework. As a
result, application code only requires slight changes in
order to utilize Data in data aware caching. This paper
implements it in Hadoop by extending relevant
components. In the future, we plan to adapt our framework
to more general application scenarios and implement the
scheme in the Hadoop project.

REFERENCES

[1] Yaxiong Zhao, Jie Wu, and Cong Liu, “Dache: A Data
Aware Caching for Big- Data Applications Using the
MapReduce Framework” , TSINGHUA SCIENCE AND
TECHNOLOGY ISSN 1007-0214l l05/10l,Volume 19,
Number 1, pp 39- 50, February 2014
[2] Hadoop, http://hadoop.apache.org/,2013
[3] D. Peng and f. Dabek,”Large Scale incremental
Processing using distributed Transaction and notification”,
in Proc. of OSDI’2010, Berkeley, CA, USA, 2010
[4] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica, “Improving Mapreduce performance in
heterogeneous environments”,in Proc. of OSDI’ 2008,
Berkeley, CA, USA, 2008.

[5] Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding,
“Improving MapReduce Performance through Data
Placement in Heterogeneous Hadoop Clusters”,
Department of Computer Science and Software
Engineering Auburn University, Auburn, AL 36849-5347
[6] Zhenhua Guo, Geoffrey Fox “Improving MapReduce
Performance in Heterogeneous Network Environments
and Resource Utilization” School of Informatics and
Computing Indiana University Bloomington Bloomington,
IN USA
[7] Weikuan Yu, Member, IEEE, Yandong Wang, and
Xinyu Que, “Design and Evaluation of Network-Levitated
Merge for Hadoop Acceleration”, IEEE
TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS
[6] Amawon web services, http://aws.amazon.com/, 2013.
[7] Google compute engine, http://cloud.google.com/
Products/computeengine.html, 2013.
[8] G. Ramalingam and T. Reps. A categorized
bibliography on incremental computation, in Proc. of
POPL ’93, New York, NY, USA, 1993.
[9] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R.
E. Gruber. Bigtable: A distributed storage system for
structured data, in Proc. of OSDI’2006, Berkeley, CA,
USA, 2006.
[10] S. Ghemawat, H. Gobioff, and S.-T. Leung, The
google file system, SIGOPS Oper. Syst. Rev., vol. 37, no.
5, pp. 29-43, 2003.

