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ABSTRACT  
 
The Big-data refers to the huge scale distributed data 
processing applications that operate on unusually large 
amounts of data. Google’s MapReduce and Apache’s 
MapReduce, its open-source implementation, are the 
defacto software systems for Large Scale data 
applications. Study of the MapReduce framework is that 
the framework generates a large amount of intermediate 
data. Such existing information is thrown away after the 
tasks finish, because MapReduce is not able to utilize 
them. In this paper, we propose, a data-aware cache 
framework for large data applications. In this paper, tasks 
submit their intermediate results to the cache manager. A 
job queries the cache manager before executing the actual 
computing work. A novel cache description scheme and a 
cache request and reply protocols are designed. We 
implement Data aware caching by extending Hadoop. 
Keywords: Big-data, Hadoop, JobTracker, MapReduce, 
TaskTracker 
 
1. INTRODUCTION 
 
Google MapReduce is a programming model and a 
software framework for Big -scale distributed Computing 
on large amounts of data. Figure 1 illustrates the high-
level work flow of a MapReduce Task. Application 
developers specify the computation in terms of a map and 
a reduce function, and the underlying MapReduce Task 
scheduling system automatically parallelizes the 
computation across a cluster of machines. MapReduce 
obtain popularity for its simple programming interface and 
excellent Performance when implementing a large 
spectrum of applications. Since most such applications 
take a huge amount of input data, they are named as “Big-
data applications”. 

 
 

Figure 1: The MapReduce programming model architecture. 

 As shown in Figure 1, input data is first divided and then 
given to workers in the map stage. Individual data items 
are called records. The MapReduce system parses the 
input splits to each worker and produces records. After the 
map phase, intermediate results generated in the map 
phase are shuffled and sorted by the MapReduce system 
and are then given into the workers in the reduce phase. 
Final results are computed by multiple reducers and 
written back to the disk. 
 Hadoop is an open-source implementation of the Google 
MapReduce programming model. Hadoop consists of the 
Hadoop Common, which provides access to the file 
systems supported by Hadoop. Hadoop Distributed File 
System (HDFS) provides distributed file storage and is 
optimized for large unchangable blobs of data. A small 
Hadoop cluster will include a single master and multiple 
worker nodes called as slave. The master node runs 
multiple processes, including a TaskTracker and a Name 
Node. The TaskTracker is having control for managing 
running jobs in the Hadoop cluster. Whereas the Name 
Node manages the HDFS. The TaskTracker and the Name 
Node are usually collocated on the same physical machine. 
Other servers in the cluster run a Task Tracker and a Data 
Node processes. A MapReduce job is divided into tasks. 
Tasks are managed by the TaskTracker. The TaskTrackers 
and the DataNode are collated on the same servers to 
provide data locality in computation. MapReduce provides 
a standardized framework for implementing large-scale 
distributed computation, called as, the big-data 
applications. 
Still, there is a restriction of the system, i.e., the 
inefficiency in incremental processing. Incremental 
processing refers to the applications that incrementally 
grow the input data and continuously apply computations 
on the input in order to produce output. There are potential 
duplicate computations and operations being performed in 
this process. However, MapReduce does not have the any 
technique to identify such duplicate computations and 
accelerate job execution. Motivated by this observation, In 
this paper we propose, a data-aware cache system for big-
data applications using the MapReduce framework, which 
aims at extending the MapReduce framework and 
provisioning a cache layer for efficiently identifying and 
accessing cache items in a MapReduce job.  
 
2. LITERATURE REVIEW 
 
1. Large-scale Incremental Processing Using Distributed 
Transactions and Notifications [3]  
Daniel Peng et al. proposed, a system for incrementally 
processing updates to a large data set, and deployed it to 
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create the Google web search index. By replacing a batch-
based indexing system with an indexing system based on 
incremental processing using Percolator, Auther process 
the same number of documents per day.   

 
2. Design and Evaluation of Network-Leviated Merge for 
Hadoop Acceleration [7]  
Weikuan Yu et al. proposed, Hadoop-A, an acceleration 
framework that optimizes Hadoop with plugin components 
for fast data movement, overcoming the existing 
limitations. A novel network-levitated merge algorithm is 
introduced to merge data without repetition and disk 
access. In addition, a full pipeline is designed to overlap 
the shuffle, merge and reduce phases. Our experimental 
results show that Hadoop-A significantly speeds up data 
movement in MapReduce and doubles the throughput of 
Hadoop.  

 
3. Improving Mapreduce Performance through Data 
Placement in Heterogeneous Hadoop Cluster [5]  
Jiong Xie et al. proposed that ignoring the data locality 
issue in heterogeneous environments can noticeably 
reduce the MapReduce performance. In this paper, author 
addresses the problem of how to place data across nodes in 
a way that each node has a balanced data processing load. 
Given a data intensive application running on a Hadoop 
MapReduce cluster, our data placement scheme adaptively 
balances the amount of data stored in each node to achieve 
improved data-processing performance. Experimental 
results on two real data-intensive applications show that 
our data placement strategy can always improve the 
MapReduce performance by rebalancing data across nodes 
before performing a data-intensive application in a 
heterogeneous Hadoop cluster.  
4. Improving MapReduce Performance in Heterogeneous 
Network Environments and Resource Utilization [6]   
 Zhenhua Guo et al. proposed, Benefit Aware Speculative 
Execution which predicts the benefit of launching new 
speculative tasks and greatly eliminates unnecessary runs 
of speculative tasks. Finally, MapReduce is mainly 
optimized for homogeneous environments and its 
inefficiency in heterogeneous network environments has 
been observed in their experiments. Authors investigate 
network heterogeneity aware scheduling of both map and 
reduce tasks. Overall, the goal is to enhance Hadoop to 
cope with significant system heterogeneity and improve 
resource utilization. 
 
3. MOTIVATION 
 
MapReduce provides a standardized framework for 
implementing large-scale distributed computation, called 
as, the big-data applications. However, there is a limitation 
of the system, i.e., the inefficiency in incremental 
processing. Incremental processing refers to the 
applications that incrementally grow the input data and 
continuously apply computations on the input in order to 
generate output.  
There are potential duplicate computations being 
performed in this process. However, MapReduce does not 
have the technique to identify such duplicate computations 
and accelerate Task execution. Motivated by this 
observation, in this paper we propose, a data-aware cache 

system for big-data applications using the MapReduce 
framework, which aims at extending the MapReduce 
framework and provide a cache layer for efficiently 
identifying and accessing cache items in a MapReduce 
job. 

 
4. NEED  
 
4.1 Cache Description: 
Data-aware caching requires each data object to be 
indexed by its content. In the context of large scale data 
applications, this means that the cache description scheme 
needs to narrate the application framework and the data 
contents. Although most big-data applications run on 
standardized platforms, their individual tasks perform 
completely different operations and generate different 
intermediate results. The cache description scheme should 
provide a customizable indexing that enables content of 
their generated partial results. This is a nontrivial task. In 
the context of Hadoop, It utilizes the sterilization 
capability provided by the Java language to identify the 
object that is used by the MapReduce system to process 
the input data. 

 
4.2 Cache request and reply protocol:  
The size of the aggregated intermediate data can be very 
large. When such data is requested by other worker nodes 
or slave, determining how to transport this data becomes 
very complex. Normally for processing, program are 
moved to data node i.e. slave node to run the processing 
locally. Although, this may not always be applicable since 
the affinity of the worker nodes may not be easily 
changed. To solve Data locality problem, the protocol 
should be able to collate cache items with the worker 
processes potentially that need the data, so that the 
transmission delay and overhead are minimized. In this 
paper, we present a novel cache description scheme. A 
high-level description is presented in Figure. 2.  
 

 
 

Figure 2: High-level description of the architecture of Data 
aware caching. 

  
This scheme identifies the source input from which a 
cache item is acquired, and the operations applied on the 
input, so that a cache item produced by the workers in the 
map phase is indexed properly. In the reduce phase, we 



Rupali V. Pashte, International Journal of Wireless Communications and Network Technologies, 3(4),   June – July  2014, 66-72                                  

68 
 

devise a technique to take into consideration the partition 
operations applied on the output in the map phase. We also 
present a method for reducers to utilize the cached results 
in the map phase to accelerate the execution of the 
MapReduce job. We implement data aware caching in the 
Hadoop project by extending the relevant components. 
Our implementation follows a non-intrusive approach, so 
it only requires minimum changes to the application code. 
 
5. CACHE DESCRIPTION 
 
5.1 Map phase cache description scheme  
Cache refers to the intermediate data that is produced by 
worker nodes/processes during the execution of a 
MapReduce task. A piece of cached data is stored in a 
Distributed File System (DFS). The content of a cache 
item is described by the original data and the operations 
applied. Formally, a cache item is described by a 2-tuple: 
fOrigin, Operation. Origin is the name of a file in the DFS. 
Operation is a linear list of available operations performed 
on the Origin file. For example, in the word count 
application, each mapper node/process emits a list of 
fword, countg tuples that record the count of each word in 
the file that the mapper processes. Data aware caching 
stores this list to a file. This file becomes a cache item. 
Given an original input data file, word list 01237850.txt, 
the cache item is described by fword list 001237850.txt, 
item countg. Here, item refers to white-space-separated 
character strings. Note that the new line character is also 
considered as one of the white spaces, so item precisely 
captures the word in a text file and item count directly 
corresponds to the word count operation performed on the 
data file. The exact format of the cache description of 
different applications varies according to their specific 
semantic contexts. This could be designed and 
implemented by application developers who are 
responsible for implementing their MapReduce tasks. In 
our prototype, I present several supported operations: 
 
_ Item Count: This operation used to count of all 
occurrences of each item in a text file. The items are 
separated by a user defined separator. 
 _ Sort: This operation sorts the records of the file. The 
comparison operator is defined on two items and returns 
the order of priority. 
 _ Selection: This operation selects an item that meets a 
given criterion. It could be an order in the list of items. A 
special selection operation involves selecting the median 
of a linear list of items. 
 _ Transform: This operation transforms each item in the 
input file into a different item format. The transformation 
is described further by the other information in the 
operation descriptions. This can only be specified by the 
application developers. 
_ Classification: This operation used to classifies the 
items in the input file into multiple groups. This could be 
an exact classification, where a deterministic classification 
criterion is applied sequentially on each item, or an 
approximate classification, where an iterative 
classification process is applied and the iteration count 
should be recorded. 
Cache descriptions can be recursive. For example, in 
sequential processing, a data file could be processed by 

multiple worker processes. After that a cache item, 
generated by the final process, could be from the 
intermediate result files of previous worker nodes, so its 
description will be stacked together to form a recursive 
description. Whereas on other side, this recursive 
description could be expanded to an iterative one by 
directly appending the later operations to the older ones. 
Still, this iterative description loses the context 
information about the later operations, that is, if another 
process is operating on a later cache item and is looking 
for potential cache that could save its own operations. By 
inspecting an iterative description, one cannot discern 
between a later on cache item and a previous one because 
the origin of the cache item is the one that was fed by the 
application developers.  This way, the worker processes 
will be not able to identify the correct cache item, even if 
the cache item is present in cache manager. 

 
5.2 Reduce phase cache description scheme: 
The input for the reduce phase is a list of key-value pairs, 
where the value could be a list of values. Much like the 
scheme used for the map phase cache description, the 
original input and the applied operations are required. The 
original input item is retrieved by storing the intermediate 
results of the map phase in the DFS. The performed 
operations are identified by unique IDs that are specified 
by the user. The cached results, unlike those generated in 
the Map phase, cannot be directly used as the final output. 
This is because of an incremental processing, intermediate 
results generated in the Map phase are mixed in the 
shuffling phase, which causes a mismatch between the 
original input of the cache items and the newly generated 
input.  A solution to this problem is apply a finer 
description of the original input of the cache items in the 
reduce stage. The description should include the original 
data files generated in the Map stage. For example, two 
data files, “file1.data” and “file2.data”, are shuffled to 
produce two input files, “input1.data” and “input2.data”, 
for two reducers. “input1.data” and “input2.data” should 
include “file1.data” and “file2.data” as its shuffling 
source. As a result, new intermediate data files of the Map 
phase are generated during incremental processing; the 
shuffling input will be identified in a similar way. The 
reducers can identify new inputs from the shuffling 
sources by shuffling the newly-generated intermediate 
result from the Map phase to form the final results. For 
example, assume that “input3.data” is newly generated 
results from Map phase; the shuffling results “file1.data” 
and “file2.data” include a new shuffling source, 
“input3.data”. A reducer can identify the input “file1.data” 
as the result of shuffling “input1.data”, “input2.data”, and 
“input3.data”. The final results of shuffling the output of 
“input1.data” and “input2.data” are obtained by querying 
the cache manager. The added shuffling output of 
“input3.data” is then added to get the new results. Given 
the above description, the input given to the reducers is not 
cached wholly. Only a some part of the input is same to 
the input of the cache items. The remaining is from the 
output of the incremental processing phase of the map 
phase. If a reducer could combine the cached partial 
results with the results obtained from the new inputs and 
substantially reduce the overall computation time, reducers 
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should cache partial results. This property is examined by 
the operations executed by the reducers.  
 
 
6.  HADOOP MAP-REDUCE 
 
6.1 Apache Hadoop 
Apache Hadoop is an open-source software framework 
for storage and processing of large-scale data-sets on 
clusters of commodity hardware. 
'Map-Reduce' is a framework for processing parallelizable 
problems across large datasets using a large number of 
nodes, collectively referred to as a cluster or a grid . 
Computational processing can occur on data stored either 
in unstructured a file system or in a structured database. 
Map-Reduce can take advantage of data locality, 
processing it on or near the storage assets in order to 
reduce the distance of transmitted. 
"Map" step: Input is given to the master node, which 
divides it into smaller sub-problems, and distributes them 
to worker nodes. If required A worker node may again 
further sub-divide it, leading to a multi-level tree structure. 
The worker node processes the smaller sub-problem, and 
gives the answer back to its master node. 
"Reduce" step: The master node collects the answers of 
all the sub-problems and combines them to form the 
output which is the answer to the original problem it was 
trying to solve. 
Map Reduce allows for distributed processing of the map 
and reduction operations, where mapping operation is 
independent of the others, all maps can be performed in 
parallel. Similarly, a set of 'reducers' can perform the 
reduction phase, if and only if all outputs of the map 
operation that share the same key with to the same reducer 
at the same time. Larger dataset is used in Map Reduce, 
commodity server handle peta byte of data in few hours. If 
one mapper or reducer fails, then rescheduled is used to 
assuming the input data is still available. 

6.2 Task Tracker: the Map-Reduce engine 
The Map-Reduce engine consists of one JobTracker, to 
which client applications submit MapReduce jobs. The 
JobTracker sends work request to number of TaskTracker 
nodes in the cluster. To achieve data locality, works are 
process near to worker node. A rack-aware file system is 
used, the JobTracker maintain information about node 
which contains the data, and which is nearby machines. If 
the work cannot be performed on the actual node where 
the data resides, priority is given to nodes in the same rack 
in rack aware file system. This reduces network traffic on 
the main backbone network. If a TaskTracker fails or 
times out then that part of the Task is rescheduled. To 
check the status TaskTracker, A heartbeat is sent from the 
TaskTracker to the JobTracker every few minutes.  
 
6.3 Map cache:  
Apache Hadoop is an open-source implementation of 
originally implemented by Google, is the MapReduce 
distributed parallel processing algorithm. In Map phase 
input is divided into multiple file splits which are then 
processed by an equal number of Map worker processes, 
who achieve a data-parallel processing procedure. As 
depicted in Figure. 3, a file splited according to user given 

rules. The intermediate results obtained by processing file 
splits are then cached. Each file split is identified by the 
original file name, offset, and size. This causes 
complications in describing cache items. Further this 
scheme is slightly modified to work for the general 
situation, In which The original field of a cache item is 
changed to a 3-tuple of ffile name, offset, size.  

 

 
Figure 3: Map Phase A file in a DFS. 

  
A file split cannot cross file boundaries in Hadoop 
MapReduce, which simplifies the description scheme of 
cache items. Map cache items can be aggregated by 
grouping file splits. Original input file generate Multiple 
cache items from the same original file in the DFS are 
grouped under the path of the original file, i.e., file name, 
offset, sizeg, .Using this approach it optimize the actual 
storage of aggregated cache items .So Map cached item 
could be put on a single data node in the HDFS cluster 
which avoid costly queries to multiple data nodes. 
 
6.4 Reduce cache 
Cache description contains the file splits from the map 
phase. The input given to the reducers is from the whole 
input of the MapReduce job. Therefore, further simplify 
the description by using the file name with a version 
number to describe the original file to the reducers. The 
version number of the input file is used to distinguish 
incremental changes to input file. A straightforward 
approach is to encode the size of the input file is included 
with the file name. Since incremental changes, appending 
new data at the end of the file, the size of the file is enough 
to identify the changes made during different MapReduce 
jobs. Note that even the entire output of the input files of a 
MapReduce Task is used in the reduce phase, the file splits 
can still be aggregated, i.e., by using the form of ffile 
name, split, splitg.  As shown in Figure. 4, file splits are 
sorted and shuffled to produce the input for the reducers. 
Basically this process is implicitly handled by the 
MapReduce framework, the users specify a shuffling 
method by supplying a partitioner, which is implemented 
as a Java object in Hadoop. 

 
  

 
Figure 4: Architecture of Reducer 
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7. PROTOCOL 
 
7.1    Relationship between Task types and cache 
organization 
The partial results generated in the map and reduce phases 
can be used in different scenarios. There are two types of 
cache items: the map cache and the reduce cache. They 
have different complexities under different scenarios. 
Cache items in the map phase are easy to share because 
the operations applied are well-formed. When processing 
each file split, the cache manager reports the previous file 
splitting scheme used in its cache item. The new 
MapReduce Task needs to split the files according to the 
same splitting scheme in order to utilize the cache  items. 
However, if the new MapReduce Taskuses different file 
splitting scheme, the map results cannot be used directly, 
unless the operations applied in the map phase are context 
free. By context free, we mean that the operation only 
generates results based on the input records, which does 
not consider the file split scheme. This is generally true. 
When considering cache sharing in the reduce phase, we 
identify two general situations. The first is when the 
reducer’s complete different jobs from the cached reduce 
cache items of the previous MapReduce jobs, as shown in 
Figure. 5. In this case, after the mappers submit the results 
obtained from the cache items, the MapReduce framework 
uses the practitioner provided by the new MapReduce 
Taskto feed input to the reducers. The saved computation 
is obtained by removing the processing in the Map phase. 
Usually, new content is appended at the end of the input 
files, which requires additional mappers to process. 
However, this does not require additional processes other 
than those introduced above.  
The second situation is when the reducers can actually 
take advantage of the previously-cached reducing cache 
items as illustrated in Figure. 6. Using the description 
scheme, the reducers determine how the output of the map 
phase is shuffled. The cache manager automatically 
identifies the best-matched cache item to feed each 
reducer, which is the one with the maximum overlap in the 
original input file in the Map phase.  
 

 
Figure 5: Map with same map task and different reduce tasks 

 

 

 
 

Figure 6: The situation where two MapReduce jobs have the 
same map and reduce tasks.  

 
7.2   Cache item submission 
Mapper and reducer nodes/processes record cache items 
into their local storage space. When these operations are 
completed, the cache items are forwarded to the cache 
manager, which acts like a broker in the publish/subscribe 
paradigm. The cache manager records the description and 
the file name of the cache item in the DFS. The cache item 
should be put on the same machine as the worker process 
that generates it. This requirement improves data locality. 
The cache manager maintains a copy of the mapping 
between the cache descriptions and the file names of the 
cache items in its main memory to accommodate fastest 
reply to queries. It also takes backup of  the mapping file 
into the disk periodically to avoid permanently losing data. 
A worker node/process contacts the cache manager each 
time before it begins processing an input data file. The 
worker process sends the file name and the operations that 
it plans to apply to the file to the cache manager. The 
cache manager receives this message and compares it with 
the stored mapping data. If there is a exact match to a 
cache item, i.e., its origin is the same as the file name of 
the request and its operations are the same as the proposed 
operations that will be performed on the data file, then the 
manager will send back a reply containing the tentative 
description of the cache item to the worker process. The 
worker process receives the tentative description and 
fetches the cache item. For further processing, the worker 
needs to send the file to the next-stage worker processes. 
The mapper needs to inform the cache manager that it 
already processed the input file splits for this job. The 
cache manager then reports these results to the next phase 
reducers. If the reducers do not utilize the cache service, 
the output in the map phase could be directly shuffled to 
form the input for the reducers. Otherwise, a more 
complicated process is executed to obtain the required 
cache items; this will be explained in next Section. If the 
proposed operations are different from the cache items in 
the manager’s records, there are situations where the 
origin of the cache item is the same as the requested file, 
and the operations of the cache item are a strict subset of 
the proposed operations. The concept of a strict super set 
refers to the fact that the item is obtained by applying 
some additional operations on the subset item. For 
example, an item count operation is a strict subset 
operation of an item count followed by a selection 
operation. This fact means that if we have a cache item for 
the first operation, we could just add the selection 
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operation, which guarantees the correctness of the 
operation. One of the benefits of Data aware caching is 
that it automatically supports incremental processing. 
Incremental processing means that we have an input that is 
partially different or only has a small amount of additional 
data. To perform a previous operation on this new input 
data is troublesome in conventional MapReduce, because 
MapReduce does not provide the tools for readily 
expressing such incremental operations. Usually the 
operation needs to be performed again on the new input 
data, or the application developers need to manually cache 
the stored intermediate data and pick them up in the 
incremental processing. In Data aware caching, this 
process is standardized and formalized. Application 
developers have the ability to express their intentions and 
operations by using cache description and to request 
intermediate results through the dispatching service of the 
cache manager. 
 
7.2.1 Lifetime management of cache item: 
The cache manager needs to determine how much time a 
cache item can be kept in the DFS. Holding a cache item 
for an indefinite amount of time will waste storage space 
when no other MapReduce task utilizing the intermediate 
results of the cache item. There are two types of schemes 
for determining the lifetime of a cache item, as listed 
below. The cache manager also can promote a cache item 
to a permanent file and store it in the DFS, which happens 
when the cache item is used as the final result of a 
MapReduce task. In this case, the lifetime of the cache 
item is no longer managed by the cache manager. The 
cache manager still maintains the mapping between cache 
descriptions and the actual storage location.  

 
7.2.2 Fixed storage quota: 
Data aware caching allocates a fixed amount of storage 
space for storing cache items. Old cache items need to be 
removed out when there is no enough storage space for 
storing new cache items. The removal policy of old cache 
items can be modeled as a classic cache replacement 
problem. In this paper preliminary implementation, the 
Least Recent Used (LRU) is employed. The cost of 
allocating a fixed storage quota could be determined by a 
pricing model that captures the monetary expense of using 
that amount of storage space. Such pricing models are 
available in a public Cloud service.  

 
7.2.3 Optimal utility: 
Increasing the storage space of cache items, a utility-based 
measurement can be used to determine an optimal space 
allocated for cache items which maximize the benefits of 
Data aware caching and respect the constraints of costs. 
This approch estimates the saved computation time, ts, by 
caching a cache item for a given amount of time, ta. These 
two variables are used to derive the monetary gain and 
cost. The net profit, i.e., the difference of subtracting cost 
from gain, should be made positive. To achieve this, an 
accurate pricing model of computational resources is 
required. Although traditional computing infrastructures 
do not offer such a model, cloud computing offer. 
Monetary values of computational resources are well 
captured in existing cloud computing services, for 
example, in Amazon AWS and Google Compute Engine. 

For many organizations that rely on a cloud service 
provider for their IT infrastructure, this would be a perfect 
model. According to the official report from Amazon 
AWS, the amount of organizations that are actively using 
their services is huge, which help them to achieve near 
billion dollar revenue. Therefore, this pricing model 
should be very useful in real-world application. On the 
other hand, for organizations that rely on their own private 
IT infrastructure, this model will be inaccurate and should 
only be used as a reference. 
 
    Expensets= Pstorage × Scache × ts                 (1)     
    Savets = Pcomputation × Rduplicate × ts      (2)   
 
Equations (1) and (2) show how to compute the expense of 
storing cache and the corresponding saved expense in 
computation. The details of computing the variables 
introduced above are as follows. The gain of storing a 
cache item for ts amount of time is calculated by 
accumulating the charged expenses of all the saved 
computation tasks in ts. The number of the same task that 
is submitted by the user in ts is approximated by an 
exponential distribution. The mean of this exponential 
distribution is obtained by sampling in history. A newly 
generated cache item requires a bootstrap time to do the 
sampling. The cost is directly computed from the charge 
expense of storing the item for ta amount of time. The 
optimal lifetime of a cache item is the maximum ta, such 
that the profit is positive. The overall benefits of this 
scheme are that the user will not be charged more and at 
the same time the computation time is reduced, which in 
turn reduces the response time and increases the user 
satisfaction.  
 
7.3 Cache request and reply  
7.3.1 Map cache: 
There are several complications that are caused by the 
actual designs of the Hadoop MapReduce framework. The 
first is, when do map phase issue cache requests? As 
described above, map cache items are identified by the 
data chunk and operations performed. In order to preserve 
the original splitting scheme, cache requests must be sent 
out before the file splitting phase. The jobtracker, which is 
the central controller that manages a MapReduce job, 
issues cache requests to the cache manager. The cache 
manager replies a list of cache descriptions. The jobtracker 
then splits the input file on remaining file sections that 
have no corresponding results in the cache items. That is, 
the jobtracker needs to use the same file split scheme as 
the one used in the cache items in order to actually utilize 
them. In this scenario, the new appended input file should 
be split among the same number of map phase tasks, so 
that it will not slow the entire MapReduce Task down. 
Their results are then combined together to form an 
aggregated Map cache item; to achive this nested 
MapReduce job is used.  
 
7.3.2 Reduce cache: 
 The cache request process is more complicated. The first 
step is to compare the requested cache item with the 
cached items in the cache manager’s database. The cached 
results in the reduce phase may not be directly used due to 
the incremental changes. As a result, the cache manager 
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needs to identify the overlaps of the original input files of 
the requested cache and stored cache. In our preliminary 
implementation, this is done by performing a linear scan 
of the stored cache items to find the one with the 
maximum overlap with the request. When comparing the 
request and cache item, the cache manager first identifies 
the petitioner. The practitioner in the request and the cache 
item has to be identical, i.e., they should use the same 
partitioning algorithm and the same number of reducers. 
This requirement is illustrated in Figure. 7. The 
overlapped part means that a part of the processing in the 
reducer could be saved by obtaining the cached results for 
that part of the input. The incremented part, however, will 
need to be processed by the reducer itself. The final results 
are generated by combining both parts. The actual method 
of combining results is determined by the user.  
 

 
Figure 7: Working of Cache manager and reducer 

 
8. CONCLUSIONS 

 
This paper  present the design and evaluation of a data 
aware cache framework that requires minimum change to 
the original MapReduce programming model for 
provisioning incremental processing for Big data 
applications using the MapReduce model. In this paper 
propose, a data-aware cache description scheme, protocol, 
and architecture. In this Paper Presented method requires 
only a slight modification in the input format processing 
and task management of the MapReduce framework. As a 
result, application code only requires slight changes in 
order to utilize Data in data aware caching. This paper 
implements it in Hadoop by extending relevant 
components. In the future, we plan to adapt our framework 
to more general application scenarios and implement the 
scheme in the Hadoop project.  
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