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ABSTRACT

By making use of the familiar concept of neighborhoods of
analytic functions, we prove several inclusion relations

associated with the (n,5) neighborhoods for a subclass of
starlike functions of complex order involving Jacksons

(p’q)-derivative. Special cases of some of these inclusion
relations are shown to yield known results.
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functions, (p.q) -Derivative, (n,5) -Neighborhood,
Inclusion relations.

1. INTRODUCTION

Let A denote the class of functions of the form
f(z)=2+) az"
n=2

(1.2)

_ N o A={Z:z <1}
which are analytic in the open unit disc .
Further, let S denote the class

of all functions [1 2 A which are univalentin A (for details,
see [8]; see also some of the

recent investigations [2, 4, 5, 6, 10, 18]).

Denote by T a subclass of A consisting functions of the form

f(z):z—Zanz”, a >0, ZeA
n=2

(1.2)

introduced and studied by Silverman [17].

We briefly recall here the notion of g-operators i.e.
g-difference operator that play vital role in the theory of
hypergeometric series, quantum physics and in the operator

theory. The application of g-calculus was first introduced by

Jackson [11,21,22]. Kanas and Raducanu [14] have used the

fractional g-calculus operators in investigations of certain

classes of functions which are analytic in A . For details on

g-calculus one can refer [3, 7, 11, 13, 14, 19, 20] and also the

reference cited therein. For the convenience, we provide some

basic definitions and concept details of g-calculus which are

used in this paper. We suppose throughout the

paper that 0<p<q Sl.

For O<p<g=l the Jacksons (pl[1[lq)-derivative of a

function (1002 A is, by definition, given as follows [11]

f (pz)-f (qz)
(p-q)z

f '(0) forz =0.

forz =0,

D,.f ()=

(1.3
From (1.3), we have

D.f (z)=1+ Z;[n]mI az""

(1.4)
where

_p"-q’
[n]p,q - p_q !
(1.5)

is called (p, q)-bracket or twin-basic number. Clearly for a

function [1(11)=z"1[lwe obtain
n n

_ no_ P —q n-1 _ n-1
D,,h(z)=D,,z _ﬁz _[n]p‘GI z
Note also that for =1, the Jackson (p, q)-derivative reduces to
the Jackson g-derivative
given by (see [11]).
we define the Salagean (p; q)-differential operator as follows:
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0 fd ! 14
Dlp,qf (2)=f (2) e L2 @) || 1z(f @) e
D", f (@)=2D,,f () b " (2) “ b " f(2) ’

m m_ (1.9)
D" f (z)=2D, (D Lol @) Where

r 0<a<L,B>0,1>0,¢,mel, andb el =0 —{0}.
=z +z W (mel, =0 u{0},z €A)
Further, we de.ne the class qu(b a)

(1.6)
ST/ (b,a)=S;T (b,0) T .
We note that if p = 1 and limq[J! 1" Jwe obtain the familiar (1.10)

Salagean derivative [16]

D™ (z)=).n"a,z" (mel ;zeA).
n=2 2. COEFFICIENT INEQUALITIES

1.7) A necessary and sufficient condition for a function to be in the
Now let gT &M b,a)
Ripal (2)=Dgf @), dass = 40T I gier
RN (@)=0-2)D, f (2)+Az (D, f (2)) Lemma 2.1. [1] Let the function f(z) be defined by (1.2):
© ST2™ (b, a)
_ m _ n Then [J([1)2 ~  *Pd
_z+Z[n]p‘G| L+(n-DAJa,z", and only if
R0 @)=1-)R" f (2)+ Az (R (2)) H(n+|b|)(1—ﬁ)+ﬁ—a][n]r:q[1+(n—1)i]4|an|z”sl—a+|b|(1—,8),
n=2
=z+y [n]" [1+(n-DAfaz" . (2.1) )
;[ ]p‘q(18) where 1S <1,8>0andb (",
In general, we have . . Tfpmq (b, 05)
o im ’ Corollary 2.2. [1] Let the function [1([1)2
R (2)=A=2)R; 7 (2)+ Az (RS0 (2)) Then

) 1-a+p|@-pB)
:z+nZ=2:[n]p‘q L+(n-DrfFaz" (A>0;¢,m ed%”)lg [(n +|b|)(1—,B)+,B—a][n]:'q [+(n-DAF

Clearly, we have nZZ—lSa<1,320andbeD* _ _
' ’ ’ * with equality for
SR?I%qf (z)= f(Z)andiRlqu (z)=1zf"(z). with equality

1-a+p|@-B) 0
[(n+p)A-B)+p-a][n] [L+(n-DAF

We note that when p = 1; we get the differential operator f(z)=z-

RO (2
igt (2) defined and studied
by Frasin and Murugusundaramoorthy [9]. Also, We note that

henp=1andIlimd!1"00 t the differential t
W p 1 we get the differential operator 3. NEIGHBORHOOD

R (2 ):Z"'Z n"[L+(n-Difa,z" (A>0,{,m el )1he concept of (n,5) -neighborhood was first introduced by

n=2 Goodman [12], and then
generalized by Ruscheweyh [15]. The (n,5) -neighborhood
Zm (Z ) of the function 112 T is defined
With the aid of the differential operator ~ *P9 O 0we by

say that a function [1([J) belonging to

SEM (b, )

A is said to be in the class ~ #P:d

Noa(f )={g €T :g@2)=2 -3 p,[2"ad Ynfa, —bn|g5}
n=2 n=2

(3.1)

if it satisfies

111
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In particular, for the identity function e(z)=z, we have f(z)
® % ‘—— ‘<1—w (z eA;0<m <)
N n'((,.(e)={g eT :g(z)=2-) |p,|z"and Zn|bn|£5} 9(z)
- =2 (3.6)
(3.2)
Tém
Theorem 3.1. If Theorem 3.2. If (112 ST pa0.a) O
_ 2[1-a+p|A-B)] | :1 5[ 2+b)a-p) +,B—a][2];:q [+AF
[@+p)a-p)+p-a][2] [L+AF 2[((2+|b|)(1— p)+B-o)| 2" [+AF ~(1-)+o| @ ﬁ)}
(3.3) (3.7)
then then
Zm
STipa 0 @) =N, @) Gy Nos(@)cSTIL G, a)
Zm
Proof. Let 0([J)2 T’l pa ©,a) . Lemma 2.1 yields Proof. Suppose that [ 02 Nos @) . We find from (3.1) that

[@+b)a-p)+p-a ]2, L+ AT Y fa,|<1-a+b|@-Bn[a, b, <5,

(3.8)
o which implies that
which yields w S
z| | 1-a+p|-p) _ nZ=;|an_bn|3_
[@+pha-p)+p-a]2]] [L+2) " (b,0)
(3.5) Next, since [ uz ’1 X , we have [cf. equation 3.5]
On the other hand, use of (2.1), in conjunction with (3.5), we Z| | 2[1—05 Jr|b| (1—,3)]
have ] } = [e+bha-p)+ p-a][2] [+ AT
(1—,3)[2]qu [1+/1]Cz_;n |an| Letting ji/j ! 10000so
—b
<l-a+p|t-B)+[(@-B)-p|a-p)][2] . [1+,1]42|Tf (2) J~<§a“ .
lo@) |
_20-p+[a-a)+pla-p)] 120
(2+phA-p)+B-a 5 [+ +B-a] 2. o+ ¥ )
<0 pg <1_
Hence 2 [(2+|b|)(1—,3)+,3—a][2]:q L+2F {1-a+p|@-p)]) i
o 2[1-a+p|- ﬁ)] B
T |a | [(2+|b|)(1 B)+ - a] [1+i]4 - provided that uuisb given by (3.7). Thus, by the above
definition, 5 1 2pa ©:¢)

which, by the definition (3.2), establishes the inclusion (3.4)
asserted by Theorem 3.1.
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