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ABSTRACT 
 
By making use of the familiar concept of neighborhoods of 
analytic functions, we prove several inclusion relations 

associated with the ( , )n  neighborhoods for a subclass of 
starlike functions of complex order involving Jacksons 
( , )p q -derivative. Special cases of some of these inclusion 
relations are shown to yield known results. 
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Inclusion relations.  
 
 
1. INTRODUCTION 
 
 
Let A denote the class of functions of the form 
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which are analytic in the open unit disc 
 : 1Z Z  

. 
Further, let S denote the class 
of all functions 2 A which are univalent in   (for details, 
see [8]; see also some of the 
recent investigations [2, 4, 5, 6, 10, 18]).  
Denote by T a subclass of A consisting functions of the form 
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(1.2) 
introduced and studied by Silverman [17]. 
We briefly recall here the notion of q-operators i.e. 
q-difference operator that play vital role in the theory of 
hypergeometric series, quantum physics and in the operator 

 
 

theory. The application of q-calculus was first introduced by 
Jackson [11,21,22]. Kanas and Raducanu [14] have used the 
fractional q-calculus operators in investigations of certain 
classes of functions which are analytic in . For details on 
q-calculus one can refer [3, 7, 11, 13, 14, 19, 20] and also the 
reference cited therein. For the convenience, we provide some 
basic definitions and concept details of q-calculus which are 
used in this paper. We suppose throughout the 

paper that 0 1p q   .  

For 0 1p q    the Jacksons (p q)-derivative of a 
function 2 A is, by definition, given as follows [11] 
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(1.3) 
From (1.3), we have 
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(1.4) 
where 

  ,
,

n n

p q

p qn
p q



                       

(1.5) 
is called (p, q)-bracket or twin-basic number. Clearly for a 
function ( )=zn we obtain 
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 . 
Note also that for =1, the Jackson (p, q)-derivative reduces to 
the Jackson q-derivative 
given by (see [11]).  
we define the Salagean (p; q)-differential operator as follows: 
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(1.6) 
 
We note that if p = 1 and limq ! 1- we obtain the familiar 
Salagean derivative [16] 
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(1.7) 
Now let 
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In general, we have 
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Clearly, we have 

0,0 1,0
, , 1, ,( ) ( ) and ( ) ( ).p q p qf z f z f z zf z    

 
We note that when p = 1; we get the differential operator 

,
, ( )m
q f z


 defined and studied 

by Frasin and Murugusundaramoorthy [9]. Also, We note that 
when p = 1 and lim !1- we get the differential operator 
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With the aid of the differential operator 
,
, , ( )m
p q f z


we 

say that a function ( ) belonging to 

A is said to be in the class 
,
, , ( , )m
p qS b

 
if it satisfies 

   , ,
, , , ,

, ,
, , , ,

( ) ( )1 1Re 1 1 1 ,  (z )      
( ) ( )

m m
p q p q

m m
p q p q

z f z z f z
b f z b f z

 
 

 
 


                            

 (1.9)                                           
Where 

*
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Further, we de.ne the class 
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by  
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2. COEFFICIENT INEQUALITIES 
A necessary and sufficient condition for a function to be in the 

class 
,

, , ( , )m
p qST b

 
 is given 

by: 
Lemma 2.1. [1] Let the function f(z) be defined by (1.2): 

Then ( )2 
,

, , ( , )m
p qST b

 
 if 

and only if 
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where  
*1 1, 0and .b       

Corollary 2.2. [1] Let the function ( )2 
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*2, 1 1, 0 and ,n b       with equality for 
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3. NEIGHBORHOOD 

The concept of ( , )n  -neighborhood was first introduced by 
Goodman [12], and then 

generalized by Ruscheweyh [15]. The ( , )n  -neighborhood 
of the function 2 T  is defined 
by 
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In particular, for the identity function e(z)=z, we have 
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Theorem 3.1. If 
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then 
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(3.5) 
On the other hand, use of (2.1), in conjunction with (3.5), we 
have  
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Hence 
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which, by the definition (3.2), establishes the inclusion (3.4) 
asserted by Theorem 3.1.  
 
Now we determine the neighborhood for the class 
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which we define as follows. A function 
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then 
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which implies that 

2

.
2n n

n
a b 



 
 

Next, since 2 
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, we have [cf. equation 3.5] 
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Letting j j ! 1 so 
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provided that is given by (3.7). Thus, by the above 

definition, 
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