NEIGHBORHOODS OF A CLASS OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS ASSOCIATED WITH JACKSONS ($\mathbf{p} ; \mathbf{q}$) DERIVATIVE

Tariq AL-Hawary ${ }^{1}$, A.A. Amourah ${ }^{2}$, Laith Abualigah ${ }^{3}$
${ }^{1}$ Department of Applied Science, Ajloun College, Al-Balqa Applied University, Ajloun 26816, Jordan.
${ }^{2}$ epartment of Mathematics, Faculty of Science and Technology, Irbid National University, Irbid, Jordan.
${ }^{3}$ Faculty of Computer Sciences and Informatics, Amman Arab University, Amman, Jordan

Abstract

By making use of the familiar concept of neighborhoods of analytic functions, we prove several inclusion relations associated with the (n, δ) neighborhoods for a subclass of starlike functions of complex order involving Jacksons (p, q)-derivative. Special cases of some of these inclusion relations are shown to yield known results.

Key words: Analytic functions, Starlike functions, Convex functions, (p, q)-Derivative, (n, δ)-Neighborhood, Inclusion relations.

1. INTRODUCTION

Let A denote the class of functions of the form
$f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$
which are analytic in the open unit disc $\Delta=\{Z:|Z<1|\}$. Further, let S denote the class
of all functions $\square \square 2 \mathrm{~A}$ which are univalent in Δ (for details, see [8]; see also some of the
recent investigations [2, 4, 5, 6, 10, 18]).
Denote by T a subclass of A consisting functions of the form
$f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, \quad a_{n} \geq 0, \quad Z \in \Delta$
(1.2)
introduced and studied by Silverman [17].
We briefly recall here the notion of q-operators i.e. q-difference operator that play vital role in the theory of hypergeometric series, quantum physics and in the operator
theory. The application of q-calculus was first introduced by Jackson [11,21,22]. Kanas and Raducanu [14] have used the fractional q-calculus operators in investigations of certain classes of functions which are analytic in Δ. For details on q-calculus one can refer $[3,7,11,13,14,19,20]$ and also the reference cited therein. For the convenience, we provide some basic definitions and concept details of q-calculus which are used in this paper. We suppose throughout the
paper that $0<p<q \leq 1$.
For $0<p<q \leq 1$ the Jacksons $(\mathrm{p} \square \square \mathrm{q})$-derivative of a function $\square \square 2 \mathrm{~A}$ is, by definition, given as follows [11]
$D_{p, q} f(z)= \begin{cases}\frac{f(p z)-f(q z)}{(p-q) z} & \text { for } z \neq 0, \\ f^{\prime}(0) & \text { for } z=0 .\end{cases}$

(1.3)

From (1.3), we have
$D_{q} f(z)=1+\sum_{n=2}^{\infty}[n]_{p, q} a_{n} z^{n-1}$
(1.4)
where
$[n]_{p, q}=\frac{p^{n}-q^{n}}{p-q}$,
(1.5)
is called (p, q)-bracket or twin-basic number. Clearly for a function $\square(\square)=\mathrm{z}^{\mathrm{n}} \square \square$ we obtain
$D_{p, q} h(z)=D_{p, q} z^{n}=\frac{p^{n}-q^{n}}{p-q} z^{n-1}=[n]_{p, q} z^{n-1}$.
Note also that for $=1$, the $\operatorname{Jackson}(\mathrm{p}, \mathrm{q})$-derivative reduces to the Jackson q-derivative given by (see [11]).
we define the Salagean ($p ; q$)-differential operator as follows:

$$
\begin{aligned}
D_{p, q}^{0} f(z) & =f(z) \\
D_{p, q}^{1} f(z) & =z D_{p, q} f(z) \\
& \vdots \\
D_{p, q}^{m} f(z) & =z D_{p, q}^{1}\left(D_{p, q}^{m-1} f(z)\right)
\end{aligned}
$$

$\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z\left(\mathfrak{R}_{\lambda, p, q}^{\zeta, m} f(z)\right)^{\prime}}{\mathfrak{R}_{\lambda, p, q}^{\zeta, m} f(z)}-\alpha\right)\right\} \gg 1+\frac{1}{b}\left(\frac{z\left(\mathfrak{P}_{\lambda, p, q}^{\zeta, m} f(z)\right)^{\prime}}{\mathfrak{R}_{\lambda, p, q}^{\zeta, m} f(z)}-1\right),(\mathrm{z} \in \Delta)$ (1.9)

Where

$$
=z+\sum_{n=2}^{\infty}[n]_{p, q}^{m} a_{n} z^{n} \quad\left(m \in \square_{0}=\square \cup\{0\}, z \in \Delta\right)
$$

$0<\alpha \leq 1, \beta \geq 0, \lambda>0, \zeta, m \in \square_{0}$ and $b \in \square^{*}=\square-\{0\}$.

Further, we de.ne the class $S T_{\lambda, p, q}^{\zeta, m}(b, \alpha)$ by
$S T_{\lambda, p, q}^{\zeta, m}(b, \alpha)=S_{\lambda, p, q}^{\zeta, m}(b, \alpha) \bigcap T$.
(1.10)

We note that if $\mathrm{p}=1$ and $\lim _{\mathrm{q}} \square$! $1^{-} \square \square$ we obtain the familiar
Salagean derivative [16]
$D^{m} f(z)=\sum_{n=2}^{\infty} n^{m} a_{n} z^{n}\left(m \in \square_{0} ; \mathrm{Z} \in \Delta\right)$.
(1.7)

Now let

$$
\begin{align*}
\mathfrak{R}_{\lambda, p, q}^{0, m} f(z) & =D_{p, q}^{m} f(z) \\
\mathfrak{R}_{\lambda, p, q}^{1, m} f(z) & =(1-\lambda) D_{p, q}^{m} f(z)+\lambda z\left(D_{p, q}^{m} f(z)\right)^{\prime} \\
& =\mathrm{Z}+\sum_{n=2}^{\infty}[n]_{p, q}^{m}[1+(n-1) \lambda] a_{n} z^{n} \\
\mathfrak{R}_{\lambda, p, q}^{2, m} f(z) & =(1-\lambda) \mathfrak{R}_{\lambda, p, q}^{1, m} f(z)+\lambda z\left(\mathfrak{R}_{\lambda, p, q}^{1, m} f(z)\right)^{\prime} \tag{2.1}\\
& =\mathrm{Z}+\sum_{n=2}^{\infty}[n]_{p, q}^{m}[1+(n-1) \lambda]^{2} a_{n} z^{n} \tag{1.8}
\end{align*}
$$

In general, we have

$$
\begin{aligned}
\mathfrak{R}_{\lambda, p, q}^{\zeta, m} f(z) & =(1-\lambda) \mathfrak{R}_{\lambda, p, q}^{\zeta-1, m} f(z)+\lambda z\left(\mathfrak{R}_{\lambda, p, q}^{\zeta-1, m} f(z)\right)^{\prime} \quad \text { Then } \\
& =\mathrm{Z}+\sum_{n=2}^{\infty}[n]_{p, q}^{m}[1+(n-1) \lambda]^{\zeta} a_{n} z^{n}\left(\lambda>0 ; \zeta, m \in\left[\left\lvert\, \begin{array}{c}
\left.a_{0}\right) \mid \leq
\end{array} \frac{1-\alpha+|b|(1-\beta)}{[(n+|b|)(1-\beta)+\beta-\alpha][n]_{p, q}^{m}[1+(n-1) \lambda]^{\zeta}}\right.\right.\right.
\end{aligned}
$$

Clearly, we have
$\mathfrak{R}_{\lambda, p, q}^{0,0} f(z)=f(z)$ and $\mathfrak{R}_{1, p, q}^{1,0} f(z)=z f^{\prime}(z)$.
We note that when $\mathrm{p}=1$; we get the differential operator

$$
\mathfrak{R}_{\lambda, q}^{\zeta, m} f(z)
$$ defined and studied by Frasin and Murugusundaramoorthy [9]. Also, We note that when $\mathrm{p}=1$ and $\lim \square!1^{-} \square \square$ we get the differential operator $\mathfrak{R}_{\lambda}^{\zeta, m} f(z)=\mathrm{Z}+\sum_{n=2}^{\infty} n^{m}[1+(n-1) \lambda]^{\zeta} a_{n} z^{n}\left(\lambda>0 ; \zeta, m \in \square_{0}\right)$

3. NEIGHBORHOOD

where $-1 \leq \alpha<1, \beta \geq 0$ and $b \in \square^{*}$.
Corollary 2.2. [1] Let the function $\square(\square) 2$ $S T_{\lambda, p, q}^{\zeta, m}(b, \alpha)$.

2. COEFFICIENT INEQUALITIES

A necessary and sufficient condition for a function to be in the
class $S T_{\lambda, p, q}^{\zeta, m}(b, \alpha)$ is given
by:
Lemma 2.1. [1] Let the function $\mathrm{f}(\mathrm{z})$ be defined by (1.2):
Then $\square(\square) 2 S T_{\lambda, p, q}^{\zeta, m}(b, \alpha)$ if and only if
$\sum_{n=2}^{\infty}[(n+|b|)(1-\beta)+\beta-\alpha][n]_{p, q}^{m}[1+(n-1) \lambda]^{\zeta}\left|a_{n}\right| z^{n} \leq 1-\alpha+|b|(1-\beta)$,

3. (n, δ)

The concept of (n, δ)-neighborhood was first introduced by
Goodman [12], and then Goodman [12], and then

With the aid of the differential operator $\mathfrak{R}_{\lambda, p, q}^{\zeta, m} f(z){ }_{\square \square \text { we }}$ say that a function $\square(\square)$ belonging to
A is said to be in the class $S_{\lambda, p, q}^{\zeta, m}(b, \alpha)$ if it satisfies
generalized by Ruscheweyh [15]. The (n, δ)-neighborhood of the function $\square 2 \mathrm{~T}$ is defined
by

$$
N_{n, \delta}(f)=\left\{g \in T: g(z)=z-\sum_{n=2}^{\infty}\left|b_{n}\right| z^{n} \text { and } \sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right| \leq \delta\right\}
$$

In particular, for the identity function $\mathrm{e}(\mathrm{z})=\mathrm{z}$, we have
$N_{n, \delta}(e)=\left\{g \in T: g(z)=z-\sum_{n=2}^{\infty}\left|b_{n}\right| z^{n}\right.$ and $\left.\sum_{n=2}^{\infty} n\left|b_{n}\right| \leq \delta\right\}\left|\frac{f(z)}{g(z)}-1\right|<1-\varpi \quad(z \in \Delta ; 0 \leq \varpi<1)$.
Theorem 3.2. If $\square \square 2 S T_{\lambda, p, q}^{\zeta, m}(b, \alpha) \square$ and

Theorem 3.1. If
$\delta=\frac{2[1-\alpha+|b|(1-\beta)]}{[(2+|b|)(1-\beta)+\beta-\alpha][2]_{p, q}^{m}[1+\lambda]^{\zeta}}$,
(3.3)
then
$S T_{\lambda, p, q}^{\zeta, m}(b, \alpha) \subset N_{n, \delta}(e)$.
Proof. Let $\square(\square) 2$ $S T_{\lambda, p, q}^{\zeta, m}(b, \alpha)$. Lemma 2.1 yields $[(2+|b|)(1-\beta)+\beta-\alpha][2]_{p, q}^{m}[1+\lambda]^{5} \sum_{n=2}^{\infty}\left|a_{n}\right| \leq 1-\alpha+|b|\left(1-\underset{n=2}{\infty} \eta_{n}\left|a_{n}-b_{n}\right| \leq \delta\right.$,
which yields
$\sum_{n=2}^{\infty}\left|a_{n}\right| \frac{1-\alpha+|b|(1-\beta)}{[(2+|b|)(1-\beta)+\beta-\alpha][2]_{p, q}^{m}[1+\lambda]^{\zeta}}$.
(3.5)

On the other hand, use of (2.1), in conjunction with (3.5), we have

Hence

$$
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq \frac{2[1-\alpha+|b|(1-\beta)]}{[(2+|b|)(1-\beta)+\beta-\alpha][2]_{p, q}^{m}[1+\lambda]^{\zeta}}=\delta,
$$

which, by the definition (3.2), establishes the inclusion (3.4) asserted by Theorem 3.1.

Now we determine the neighborhood for the class $S T_{\lambda, p, q}^{\zeta, m}(b, \alpha) \quad \square \square$ which we define as follows. A function $\square(\square) 2 \mathrm{~T}$ is said to be in the class $S T_{\lambda, p, q}^{\zeta, m}(b, \alpha)$ if there exists a function
${ }_{\square(\square) 2} S T_{\lambda, p, q}^{\zeta, m}(b, \alpha)$ such that
which implies that
$\sum_{n=2}^{\infty}\left|a_{n}-b_{n}\right| \leq \frac{\delta}{2}$.
Next, since $\square \square 2 S T_{\lambda, p, q}^{\zeta, m}(b, \alpha)$, we have [cf. equation 3.5]
$\sum_{n=2}^{\infty}\left|b_{n}\right| \leq \frac{2[1-\alpha+|b|(1-\beta)]}{[(2+|b|)(1-\beta)+\beta-\alpha][2]_{p, q}^{m}[1+\lambda]^{\zeta}}$.
Letting $\mathrm{j} \square \mathrm{j}!1 \square \square$ so
$\leq \frac{\delta}{2}\left(\frac{\left.[(2+b)(1-\beta)+\beta-\alpha][2]^{m}\right]^{m}[1+\lambda \mid\}^{\xi}}{[(2+b)(1-\beta)+\beta-\alpha][2]_{p q}^{m}[1+\lambda]^{5}-[1-\alpha+|b|(1-\beta)]}\right) \leq 1-\sigma$
provided that $\square \square$ is given by (3.7). Thus, by the above definition, $S T_{\lambda, p, q}^{\zeta, m}(b, \alpha)$

REFERENCES

1. Al-Hawary, T., Yousef, F., Frasin, B.A. Subclasses of analytic functions of complex order involving Jackson.s (p; q)-derivative, Proceedings of International Conference on Fractional Differentiation and its Applications (ICFDA). Available at SSRN 3289803 (2018).
2. Al-Hawary, T., Frasin, B.A., Yousef, F. Coefficients estimates for certain classes of analytic functions of complex order, Afrika Matematika 29(7-8) (2018): 1265-1271.
3. Al-Oboudi, F.M. On univalent functions de.ned by a generalized $\mathrm{S}^{1} / 4 \mathrm{al}^{11 / 4}$ agean operator, International Journal of Mathematics and Mathematical Sciences 2004(27) (2004): 1429-1436.
4. Amourah, A.A., Yousef, F., Al-Hawary, T., Darus, M. On a class of p -valent non-Bazilevic functions of order $\mu+i \beta$,International Journal of Mathematical Analysis 10(15) (2016): 701-710. https://doi.org/10.12988/ijma.2016.6236
5. Amourah, A.A., Yousef, F., Al-Hawary, T., Darus, M. On H3(p) Hankel determinant for certain subclass of p-valent functions, Italian Journal of Pure and Applied Mathematics 37 (2017): 611-618.
6. Tariq Al-Hawary. 2018. A Certain New Familiar Class of Univalent Analytic Functions with Varying Argument of Coefficients Involving Convolution. Italian journal of pure and applied mathematics-N. 39(2018):326-333.
7. Aral, A., Gupta, V., Agarwal, R.P. Applications of q-calculus in operator theory, Springer, New York, 2013.
8. Duren, P.L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
9. Frasin, B.A., Murugusundaramoorthy, G. A subordination results for a class of analytic functions defined by q-dimerential operator, submitted.
10. Frasin, B.A., Al-Hawary, T., Yousef, F. Necessary and sufficient conditions for hypergeometric functions to be in a subclass of analytic functions, Afrika Matematika (2018) 1-8.
11. Jackson, F.H. On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh 46 (1908): 253-281.
12. Goodman, A.W. Univalent functions and nonanalytic curves, Proceedings of the American Mathematical Society 8(3) (1957): 598-601.
13. Govindaraj, M., Sivasubramanian, S. On a class of analytic function related to conic domains involving q-calculus, Analysis Math. 43(3) (2017): 475-487. https://doi.org/10.1007/s10476-017-0206-5
14. Kanas, S., Raducanu, D. Some subclass of analytic functions related to conic domains, Math. Slovaca 64(5) (2014): 1183-1196.
15. Ruscheweyh, S. Neighborhoods of univalent functions, Proceedings of the American Mathematical Society 81(4) (1981): 521-527.
16. G. Salagean, Subclasses of univalent functions, in . Complex Analysis: Fifth Romanian Finnish Seminar,.Part I(Bucharest, 1981), pp.362-372, Lecture Notes in Mathematics, Vol. 1013, Springer- Verlag, Berlin/ New York, 1983.
17. Silverman, H. Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975): 109-116.
18. Yousef, F., Amourah, A.A. Darus, M. Differential sandwich theorems for p -valent functions associated with a certain generalized differential operator and integral
operator, Italian Journal of Pure and Applied Mathematics 36 (2016): 543-556.
19. Yousef, F., Al-Hawary, T., Murugusundaramoorthy, G. 2019. Fekete-Szegö functional problems for some subclasses of bi-univalent functions defined by Frasin differential operator. Afrika Matematika, 30(3-4), 495-503.
20. Amourah, A.A., Yousef, F., Al-Hawary, T., Darus, M. 2017. On H3(p) Hankel determinant for certain subclass of p-valent functions. Italian journal of pure and applied mathematics -N. 37(2017): 611-618.
21. Abualigah, L. M. Q. (2019). Feature selection and enhanced krill herd algorithm for text document clustering. Berlin: Springer.
22. Abualigah, L. M., Khader, A. T., \& Hanandeh, E. S. (2019). Modified Krill Herd Algorithm for Global Numerical Optimization Problems. In Advances in Nature-Inspired Computing and Applications (pp. 205-221). Springer, Cham.
https://doi.org/10.1007/978-3-319-96451-5_9
