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 
ABSTRACT 
 
The aim of this research is to develop optimal packet routing 
strategies for the Mesh Hypercube (MH) network of arbitrary 
size. MH has been introduced as a new interconnection 
network for multicomputer systems. The basic structure for 
this network is a combination of both mesh and hypercube 
networks. In this research, the parallel path property in the 
MH is studied and the length and the number of parallel 
shortest paths are computed. An optimal packet routing 
algorithm is given which uses minimal length path. The 
algorithm is simple and appears to be well suited to VLSI 
implementation. The simulation results of the proposed 
algorithm on various network designs showed that it performs 
very well at various network conditions. In a MH of size mn 
nodes, the algorithm performs outstandingly when nm. 
Specifically, the best results of both waiting-time and 
packet-latency network performance measures were achieved 
when m=4 and n=16, while the worst values of all measures 
were obtained when m=8 and n=8. 
 
Key words: Parallel Processing, Multicomputer, Routing, 
Packet-Routing, Interconnection Networks, 
Mesh-Hypercube, Hypercube, Mesh 
 
1. INTRODUCTION 
 
The design of efficient routing algorithms has received 
significant attention due to its importance to high 
performance in multicomputer systems [1-14]. Many 
applications that run on multicomputer systems depend 
highly on communication time.  Examples of such 
applications include sorting, matrix computations, parallel 
prefix, and Fourier Transform. 
Packet routing is the fundamental form of data 
communication in multicomputer systems [15-21].  An 
algorithm for packet routing has to determine each packet’s 
path through a network by using various information, such as 
source node address, destination node address, and the 
configuration of the network. The routing algorithm can be 
centralized or distributed [8].  In centralized routing, a single 
processor determines one shortest path from a given source 
node to a given destination node.  Finding the shortest path by 

 
 

a single, central processor is very slow and leads to a major 
bottleneck.  On the other hand, if every source node computes 
one shortest path to the destination and sends that path along 
with the message to guide it through the intermediate nodes, 
the bottleneck problem is avoided but traffic is increased and 
routing remains relatively slow. In a distributed routing, 
however, all intermediate nodes on the shortest path 
cooperate to find the shortest path using the destination 
address.  In this case, each intermediate node needs only the 
destination address to determine which neighbor falls on the 
shortest path to a given destination. An optimal routing 
strategy in any network would route packets from their source 
to their destination along shortest paths. The algorithm that 
routes packets along shortest paths is called minimal 
algorithm. The shortest paths can be found in a distributed 
fashion whereby each node in a path determines the address of 
the next node in the path. 
Routing capabilities are usually measured by the number of 
parallel paths between any two nodes, the diameter, and the 
average distance of the underlying topology of the network.  
The routing capabilities of Mesh-Hypercube were studied 
based on its average distance and diameter in [22]. 
This paper is organized as follows.  The next section gives an 
overview of the Mesh-Hypercube network. The analysis of 
Mesh-hypercube paths presented in section 3.  Routing 
strategies and a routing algorithm with its analysis are 
presented in section 4.  Simulation and results analysis of the 
proposed routing algorithm are given in section 5. Section 6 
concludes the paper. 
      
2. MESH-HYBERCUVE NETWORK OVERVIEW 
The network topology defines how the nodes are 
interconnected and generally modeled as a graph. The 
vertices in the graph represent the nodes (processors) and the 
edges denote the communication links (channels). The basic 
topologies used in most parallel computers are meshes and 
k-ary n-cube. In this section we give the basic definition of 
MH [22]. 
The topology of MH can be described as undirected graph, 
GMH = (V, E), where V denotes a set of nodes and E denote a 
set of edges. The MH can be viewed as a product graph 
because it combines a 1-dimensional mesh graph, hereafter 
we simply call it mesh; and a hypercube graph in such a way 
that if G=G1G2 where G1 represents the mesh graph and G2 
the hypercube then G is constructed by having n copies of the 
mesh graph and connecting each sibling in a hypercube 
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structure. The graph can also be viewed as having m rows and 
n columns, where nodes in each column form the mesh and 
the nodes in each row are connected in a hypercube structure 
of (log n) dimensions. 
The size of the MH is characterized by a two-tuple (m, n), 
where m defines the number of nodes forming a 
1-dimenssional mesh and n defines the number of nodes in a 
hypercube. For an MH(m, n), where n is a power of 2, the total 
number of nodes is equal to m×n. A node address in the 
MH(m, n) is denoted by a two-tuple (l, X), where 1≤ l ≤m, 
X=xk...x1x0, 0≤ k ≤(log n)-1, and xi{0, 1}. 
Given the set of nodes (V), the set of edges (E) is constructed 
as follows: For two nodes (l, xk ...x0) and (r, yk …y0) where 1≤ 
l, r ≤m, 0≤ k ≤(log n)-1, and [xi, yi {0, 1}, for all 0≤ I ≤k . 
1. The two nodes on the same mesh if xi=yi for all 
0≤i≤k. 
2. There is a hypercube link between two nodes iff l=r, 
xi≠yi, and xj=yj for all j≠i for 0≤ i, j ≤k. 
Figure 1 shows a MH(3, 8) network, the dotted lines represent 
hypercube links and solid lines represent 1-dimensional 
meshes. 
The choice of the two parameters, m, and n determines the 
size of the network, the implementation requirements, and the 
scaling complexity. The m parameter determines the size of 
the meshes while the parameter n defines the size of 
hypercubes on each row of the network. 

 
 
3. MESH-HYPERCUBE PATHS ANALYSIS 
An important feature in a multicomputer system is the 
existence of multiple paths between every two processors [6] 
[23-24]. The existence of multiple paths between every two 
processors enhances the fault tolerance of the system and the 
speedup of the transfer of data between pairs of processors 
[25-27]. When routing between processors, if there is a faulty 
link or node in the current path, the routing algorithm can 
choose a non-faulty path. A routing algorithm that allows 
packets to adapt to traffic conditions by selecting alternate 
paths is called adaptive. If a large amount of data to be 
exchanged between two processors, then it can be distributed 

over the paths between the two nodes such that each path can 
carry a portion of the data. 
The length of a path between any two nodes is equal to the 
number of links in the path. The distance between two nodes 
X and Y in a hypercube is equal to the Hamming distance 
between their binary addresses, denoted by H(X, Y). That is, if 
H(X, Y)=d, then X’s and Y’s binary addresses differ in exactly 
d bit positions. A path between X and Y is called optimal path 
if its length is equal to the distance between the two nodes. A 
shortest path is a path of minimal length among all possible 
paths between the two nodes. A routing algorithm that uses a 
shortest possible path for each packet is called minimal. In the 
next proposition we compute the length of the shortest path 
between any two nodes in a MH.  
Proposition 1: The length of the shortest path from a source 
node (Ls , S) to a destination node (Ld , D)  in MH is |Ld-Ls|+ 
H( S , D). 
To explain the proposition, we give an example. Suppose (Ls, 
S)=(1,000) and (Ld, D)=(3,111). The length of the path 
between (Ls, S) and (Ld, D) is equal to Ld - Ls + H(S, D) = 
(3-1)+H(000,111) =2+3=5. This example can be seen clearly 
in Figure 2 that shows all possible parallel shortest paths 
between (1,000) and (3,111) in a MH. The total number of 
parallel shortest paths in a mesh-hypercube is given in 
proposition 2. 
Proposition 2: The total number of parallel shortest paths 

between any two nodes (Ls, S) and (Ld, D) in MH is H(S , D) 
, if Ls = Ld  or H(S , D)+1 , otherwise. 
It can be seen that using proposition 2, the total number of 
parallel shortest paths between (1,000) and (3,111) is equal to 
four (see figure 2). 
(1,000) (1,100)  (1,110)  (2,110)  (3,110)  (3,111) 
(1,000) (1,001)  (1,101)  (2,101)  (3,101)  (3,111) 
(1,000) (1,010)  (1,011)  (1,111)  (3,111)  (3,111) 
(1,000) (2,000)  (3,000)  (3,001)  (3,011)  (3,111) 
Figure 2: Multiple parallel paths between (1,000) and 
(3,111). 
 
 
 
 

 Figure 1:MH(3, 8) consists of 3 rows and 8 columns. 

(1, 000) 

(2, 000) 

(3, 000) 

(1, 001) (1, 010) (1, 011) (1, 100) (1, 101) (1, 110) (1, 111) 
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4. ROUTING STRATEGIES 
An optimal (minimal) routing algorithm should take the 
packet from a source node to a destination node using shortest 
path. In MH, there may be several routing strategies. 
Due to the regularity of the mesh-hypercube structure, a 
distributed routing scheme can be implemented without 
global information. At the source node, the packet contains 
the source address, the destination address, message, and 
additional information, see figure 3. The inter-processor 
traffic of a node gets redistributed into two categories, the 
hypercube communication and the mesh communication. If 
the source and the destination of a packet are within the same 
hypercube subnetwork of the MH network, the routing 
procedure is exactly the same as of the regular hypercube 
network. Similarly, if the source and the destination of the 
packet are within the same mesh subnetwork of the MH 
network, the routing procedure is exactly the same as that of a 
regular mesh interconnected network. 

Source 
address 

Destinatio
n 
address 

Additional 
informatio
n 

Message 

Figure 3: Packet format. 

If neither of the previous two cases is true, the source and the 
destination are on different hypercubes and on different 
meshes subnetworks of the MH network. A routing strategy 
for this case is first to use the hypercube routing scheme until 
the packet arrives at the same mesh where the destination 
resides, and then to use the mesh routing scheme for the 
packet to arrive at the destination. Or the mesh routing 
scheme can first be applied to forward the packet to the same 
hypercube where the destination resides, and then the packet 
can reach the destination using the hypercube routing 
scheme. A third routing strategy would route packets by 
mixing the hypercube and the mesh routing until the packet is 
forwarded to the same hypercube or to the same mesh where 
the destination resides, and then forward the packet to the 
destination using the hypercube or the mesh routing scheme, 
respectively. A specification of the algorithm for the third 
strategy is given bellow. 
Description of the Algorithm 
An algorithm for packet routing has to determine each 
packet’s path through a network by using various 
information, such as destinations addresses and the 
configuration of the network [28]. In the following, the case 
when Ls  Ld will be considered The algorithm takes as input: 
the local node address (L, X), the destination node address 
(Ld, D), and a TAG. The argument TAG can take one of three 
values: S means that the current node is the source, H means 
that the packet has been received through a hypercube link, 
or, M, the packet was received through a mesh link. The 
output of the algorithm is the address of next node on the 
shortest path to the destination. Once an intermediate node 
(L, X) in the path receives the packet, it does the following.  If 
(L, X) equal to (Ld , D), then the packet is consumed and the 
routing stops.  Otherwise, the next node to receive the packet 

is determined as follows. If the cube addresses of (L, X) and 
(Ld, D), namely X and D, are equal, then the next node is 
(L+1, D). If both nodes (L, X) and (Ld, D) are on the same 
hypercube subnetwork, then the next node is (L, 
xk-1…..di…X0), where di is the right most bit over which X 
and D differ. Otherwise, the two nodes are on different mesh 
subnetwork and different hypercube subnetwork (i.e., L ≠ Ld 
and X≠ D). In this case, if the packet has been received on a 
mesh link, then the next node is (L, xk-1…..di…X0), where di 
is the right most bit over which X and D differ. If the packet 
has been received on hypercube link then the next node is 
(L+1, X). In the case where L>Ld, the algorithm works in a 
similar fashion. The details of both cases are given in the 
algorithm shown in figure 4. 
Procedure Packet-Routing: 
Inputs: (L , X): current node address;  (Ld , D): destination 
node address 
TAG: The link at which the packet has been received. 
begin 
case 1: (L, X) = (Ld, D): 
   Send packet to local processor and exit the algorithm. 
 
case 2: X = D: /* on the same mesh*/ 
            if  L > Ld  then Send packet to  ( L-1, X ); 
           else  Send packet to  ( L+1, X );     // i.e., L < Ld  
 
case 3: L = Ld: /* i.e. on the same hypercube*/ 
          Call procedure Route-in-hypercube 
 
case 4: TAG = S or TAG = M /* Current node is the source or 
packet received through a Mesh link */ 
    Call procedure Route-in-hypercube /* route using 
Hypercube link */ 
 
case 5: TAG = H  /* Packet received through a Hypercube 
link, route it using a Mesh link */ 
  if L > Ld  then Send packet to  ( L-1, X ); // send it to 
previous level 
           else Send packet to  ( L+1, X ); // send it to next level 
 
End Procedure Packet-Routing. 
 
Procedure Route-in-hypercube 
Inputs:(L , X): current node address 
            (Ld , D): destination node address 
begin 
 Assume the current-node’s hypercube address is 
  X= xk-1….x0;  
     Let Y = X  D /* the symbol  is the bitwise XOR 
operation 
     Let yi be the right most bit of Y such that yi =1 
     Send packet to (L , xk-1...~xi…x0) ; where ~xi is the bit 
complement of xi 
End Route-in-hypercube. 
Figure 4.: Mesh-hypercube routing algorithm. 
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An Illustrative Example 
To illustrate how the algorithm works, we consider a MH(3, 
8) as shown in Figure 5. Suppose a packet is sent from the 
source (1, 000) to the destination (3, 111). Following the 
execution of procedure Packet-Routing at the source node (1, 
000), case 1, case 2, and case 3 are not satisfied. Case 4 is 
satisfied since the TAG is equal to S, this leads to a call for 
procedure Route-in-hypercube.  This procedure in turn 
sends the packet to (1, 001). At node (1, 001), case 5 is 
satisfied since the packet at this node has been received 
through a hypercube link (i.e., TAG = H) and L < Ld. As a 
result, the packet will be forwarded to (2, 001) using mesh 
link. At node (2, 001), case 4 is satisfied since TAG is equal to 
M, the packet will be forwarded to (2, 011) by 
Rout-in-hypercube procedure using a hypercube link. 
Similarly, at node (2, 001), the packet is sent to node (3, 011) 
in case 5 using a mesh link. Finally, case 1 is satisfied and the 
packet is sent by Rout-in-hypercube procedure to node 
(3,111) which is the destination. A path of length 5 is shown 
with arrows in figure 5. 
To  

Analysis of the Algorithm 
As we mentioned earlier the routing algorithm works in a 
distributed fashion where each intermediate node on the 
shortest path executes the algorithm when it receives a packet. 
The only information needed by the intermediate node to 
decide the next neighbor falling on the shortest path is the 
address of the destination node, i.e., Ld and D. Therefore, the 
algorithm is optimal in space. Every step in the algorithm 
requires only a few (constant) clock cycles to execute (mostly 
bitwise operations). Therefore, the time complexity of the 
algorithm is O(1) and hence it’s optimal in time. 
 The efficiency of a routing algorithm is generally measured 
by its running time which is the total number of 
communication time-units the algorithm requires to route 
packets to their destinations. It can be seen from the algorithm 

that the process to propagate the packet to its destination is 
done by modifying the source node level number or modifying 
the source node hypercube address bit by bit at the source node 
and at each intermediate node. Therefore, if the source and 
the destination are at the same hypercube then the algorithm 
takes at most O(log n) steps, since in the worst case the 
address of the source node will be transformed bit by bit to 
agree with the address of the destination node, and the 
number of bits in the address is log n bits where n is the 
number of nodes in the hypercube of MH(m, n). If the source 
and destination nodes are at the same mesh, then the 
algorithm takes at most O(m) steps. Otherwise, the source and 
destination are on different meshes and on different 
hypercubes, which is the worst case, the algorithm takes 
O(m+log n) steps. It should be observed that O(m+log n) 
corresponds to the diameter of MH(m, n) which represents the 
maximum distance between any two nodes [15], and hence no 
algorithm can route a packet between any two nodes in 
MH(m, n) in less than O(m+log n). 
Simulation and Results Analysis 
Simulations of the proposed packet routing algorithm on 

various MH networks have shown that there is a relative 
relationship between the injection rate of packets and the 
network performance measures. These measures are average 
network load, average waiting time, and average network 
latency. The simulation is conducted to compare the 
performance of the algorithm on different network 
configurations of the same number of nodes. 
In the simulation, the following assumptions were set: the 
network is fault-free, each node has infinite queue size, 
packets at each node get their service based on 
First-Come-First-Serve (FCFS), all packets have the same 
size, packet injection rate follows an exponential distribution, 
source and destination nodes are selected randomly according 
to uniform distribution, a node cannot send a message to 
itself, and finally, a packet needs one-time unit to traverse a 

Figure 5: Routing example in MH(3, 8). 

 (1, 000) 

(2, 000) 

 (3, 000) 

   (1, 001)    (1, 010)    (1, 011)    (1, 100)    (1, 101)    (1, 110)    (1, 111) 
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link. The simulation is performed on MH(m, n) networks of 
size 64 nodes with different values of n and m. Specifically, 
MH(1, 64), MH(4, 16), and MH(8, 8). 
  
Figure 6 shows the simulation results for the average network 
load.  In general, figure 6 demonstrates a proportional 
association between the number of injected packets and the 
average network load. It can be seen that the worst network 
load was obtained for MH(8, 8), while the best results were 
achieved for both MH(1, 64) and MH(4, 16), respectively. It 
was noticed that the network load in MH network decreases 
with lower values of m and higher values of n. The reason is 
due to the fact that, both the average distance and the diameter 
of the hypercube subnetwork are less than those for a MH of 
the same size. Therefore, a network with small average 
distance between nodes and small diameter exhibit faster 
packet delivery which reduces the overall network load. On 
the other hand, increasing the value of m results in an increase 
in the diameter and the average distance of a MH network, 
which leads to a higher network load.  Table 1 shows the 
simulation results of average network load for various MH 
networks taking into consideration different packet injection 
rates. 

Table 1: Network load for various MH networks. 

Packets MH(4, 16) MH(8, 8) MH(1, 64) 
1000 67.68 86.56 65.63 

2000 136.62 161.95 127.234 

3000 201.78 241.83 194.77 

4000 269.18 323.02 252.23 

5000 341.18 403.86 318.1 

6000 402.79 485.28 377.22 
 
T 

 
Figure 6:. Network Load for various MH networks. 
 
Table 2 and figure 7 show the average waiting time for the 
packets in the three MH networks. The average waiting time 
in MH(4, 16) network is better than in both MH(1, 64) and 

MH(8, 8). The reason is that the packets in MH(4, 16) benefit 
from the large number of parallel shortest paths offered by the 
hypercube subnet works available in MH. 

 
 Table 2: Waiting Time for various MH 
networks. 
 
Packets MH(4, 16) MH(8, 8) MH(1, 64) 
1000 12.34 33.08 18.55 
2000 25.55 51.83 30.63 
3000 34.88 77.77 44.69 
4000 40.72 101.11 53.29 
5000 47.84 125.75 63.18 
6000 57.18 150.22 74.06 

    
 Figure 7: Waiting time for various MH networks. 
 
 Table 3 and figure 8 show a comparison between the packet 
latency on the various MH networks. The packet latency in 
MH(4, 16) tend to be less than in both MH(1, 64) and MH(8, 
8). These results are attributable to the fact that the packets in 
MH(4, 16) network benefit from the available mesh links to 
escape a congested hypercube links. Therefore, the waiting 
time at the intermediate nodes of MH(4, 16) is less than that 
in the case of the MH(1, 64) and much better than that in 
MH(8, 8). 
 
 

Table 3: Packet latency for various MH networks. 
 
Packets MH(4, 16) MH(8, 8) MH(1, 64) 
1000 15.60 37.29 21.59 
2000 28.80 55.96 33.68 
3000 38.14 81.90 47.73 
4000 44.00 105.24 56.32 
5000 51.13 129.91 66.21 
6000 60.47 154.37 77.08 
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Figure 8: Packet latency for various MH networks. 
 
 4 0 CONCLUSIONS AND SUGGESTIONS 
 In this research, the routing capabilities of mesh-hypercube 
network have been studied.  First, the length and the number 
of parallel shortest paths in MH were computed.  Then a 
distributed routing algorithm was developed, analyzed, and 
simulated. The analysis shows that the communication time 
between every two nodes in a MH(m, n) is O(m + log n) since 
the algorithm uses only minimal length paths. The proposed 
algorithm is simple and requires a fixed number of execution 
cycles and appears to be well-suited to VLSI implementation.  
Simulation results revealed that the proposed routing 
algorithm performs better in mesh-hypercube networks with 
low values of m and large values of n. When trying different 
network designs by changing the values of m and n of a 
MH(m, n) and keeping the network size fixed, it was noticed 
that the worst values for the network performance measures 
were obtained when m=8 and n=8. The best results for both 
waiting time and packet latency were achieved when m=4 and 
n=16. This is due to the fact that the average distance and the 
diameter of the hypercube subnetworks are superior to those 
of mesh subnetworks. Therefore, the algorithm benefits from 
these features of the hypercube along with its high 
connectivity. In addition, the large number of parallel shortest 
paths in the hypercube subnetwork of MH led to small waiting 
time and latency. 
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