
Mahmoud Omari, International Journal of Science and Advanced Information Technology, 8 (6), November - December 2019, 92 - 98

92


ABSTRACT

The aim of this research is to develop optimal packet routing
strategies for the Mesh Hypercube (MH) network of arbitrary
size. MH has been introduced as a new interconnection
network for multicomputer systems. The basic structure for
this network is a combination of both mesh and hypercube
networks. In this research, the parallel path property in the
MH is studied and the length and the number of parallel
shortest paths are computed. An optimal packet routing
algorithm is given which uses minimal length path. The
algorithm is simple and appears to be well suited to VLSI
implementation. The simulation results of the proposed
algorithm on various network designs showed that it performs
very well at various network conditions. In a MH of size mn
nodes, the algorithm performs outstandingly when nm.
Specifically, the best results of both waiting-time and
packet-latency network performance measures were achieved
when m=4 and n=16, while the worst values of all measures
were obtained when m=8 and n=8.

Key words: Parallel Processing, Multicomputer, Routing,
Packet-Routing, Interconnection Networks,
Mesh-Hypercube, Hypercube, Mesh

1. INTRODUCTION

The design of efficient routing algorithms has received
significant attention due to its importance to high
performance in multicomputer systems [1-14]. Many
applications that run on multicomputer systems depend
highly on communication time. Examples of such
applications include sorting, matrix computations, parallel
prefix, and Fourier Transform.
Packet routing is the fundamental form of data
communication in multicomputer systems [15-21]. An
algorithm for packet routing has to determine each packet’s
path through a network by using various information, such as
source node address, destination node address, and the
configuration of the network. The routing algorithm can be
centralized or distributed [8]. In centralized routing, a single
processor determines one shortest path from a given source
node to a given destination node. Finding the shortest path by

a single, central processor is very slow and leads to a major
bottleneck. On the other hand, if every source node computes
one shortest path to the destination and sends that path along
with the message to guide it through the intermediate nodes,
the bottleneck problem is avoided but traffic is increased and
routing remains relatively slow. In a distributed routing,
however, all intermediate nodes on the shortest path
cooperate to find the shortest path using the destination
address. In this case, each intermediate node needs only the
destination address to determine which neighbor falls on the
shortest path to a given destination. An optimal routing
strategy in any network would route packets from their source
to their destination along shortest paths. The algorithm that
routes packets along shortest paths is called minimal
algorithm. The shortest paths can be found in a distributed
fashion whereby each node in a path determines the address of
the next node in the path.
Routing capabilities are usually measured by the number of
parallel paths between any two nodes, the diameter, and the
average distance of the underlying topology of the network.
The routing capabilities of Mesh-Hypercube were studied
based on its average distance and diameter in [22].
This paper is organized as follows. The next section gives an
overview of the Mesh-Hypercube network. The analysis of
Mesh-hypercube paths presented in section 3. Routing
strategies and a routing algorithm with its analysis are
presented in section 4. Simulation and results analysis of the
proposed routing algorithm are given in section 5. Section 6
concludes the paper.

2. MESH-HYBERCUVE NETWORK OVERVIEW
The network topology defines how the nodes are
interconnected and generally modeled as a graph. The
vertices in the graph represent the nodes (processors) and the
edges denote the communication links (channels). The basic
topologies used in most parallel computers are meshes and
k-ary n-cube. In this section we give the basic definition of
MH [22].
The topology of MH can be described as undirected graph,
GMH = (V, E), where V denotes a set of nodes and E denote a
set of edges. The MH can be viewed as a product graph
because it combines a 1-dimensional mesh graph, hereafter
we simply call it mesh; and a hypercube graph in such a way
that if G=G1G2 where G1 represents the mesh graph and G2
the hypercube then G is constructed by having n copies of the
mesh graph and connecting each sibling in a hypercube

ROUTING CAPABILITIES OF MESH-HYPERCUBE NETWORK

 Mahmoud Omari
Department of Computer Science, Amman Arab University, Amman, Jordan

 ISSN 2278-3083
Volume 8, No.6, November –December 2019

International Journal of Science and Applied Information Technology
Available Online at http://www.warse.org/ijsait/static/pdf/file/ijsait13862019.pdf

https://doi.org/10.30534/ijsait/2019/138620198

Mahmoud Omari, International Journal of Science and Advanced Information Technology, 8 (6), November - December 2019, 92 - 98

93

structure. The graph can also be viewed as having m rows and
n columns, where nodes in each column form the mesh and
the nodes in each row are connected in a hypercube structure
of (log n) dimensions.
The size of the MH is characterized by a two-tuple (m, n),
where m defines the number of nodes forming a
1-dimenssional mesh and n defines the number of nodes in a
hypercube. For an MH(m, n), where n is a power of 2, the total
number of nodes is equal to m×n. A node address in the
MH(m, n) is denoted by a two-tuple (l, X), where 1≤ l ≤m,
X=xk...x1x0, 0≤ k ≤(log n)-1, and xi{0, 1}.
Given the set of nodes (V), the set of edges (E) is constructed
as follows: For two nodes (l, xk ...x0) and (r, yk …y0) where 1≤
l, r ≤m, 0≤ k ≤(log n)-1, and [xi, yi {0, 1}, for all 0≤ I ≤k .
1. The two nodes on the same mesh if xi=yi for all
0≤i≤k.
2. There is a hypercube link between two nodes iff l=r,
xi≠yi, and xj=yj for all j≠i for 0≤ i, j ≤k.
Figure 1 shows a MH(3, 8) network, the dotted lines represent
hypercube links and solid lines represent 1-dimensional
meshes.
The choice of the two parameters, m, and n determines the
size of the network, the implementation requirements, and the
scaling complexity. The m parameter determines the size of
the meshes while the parameter n defines the size of
hypercubes on each row of the network.

3. MESH-HYPERCUBE PATHS ANALYSIS
An important feature in a multicomputer system is the
existence of multiple paths between every two processors [6]
[23-24]. The existence of multiple paths between every two
processors enhances the fault tolerance of the system and the
speedup of the transfer of data between pairs of processors
[25-27]. When routing between processors, if there is a faulty
link or node in the current path, the routing algorithm can
choose a non-faulty path. A routing algorithm that allows
packets to adapt to traffic conditions by selecting alternate
paths is called adaptive. If a large amount of data to be
exchanged between two processors, then it can be distributed

over the paths between the two nodes such that each path can
carry a portion of the data.
The length of a path between any two nodes is equal to the
number of links in the path. The distance between two nodes
X and Y in a hypercube is equal to the Hamming distance
between their binary addresses, denoted by H(X, Y). That is, if
H(X, Y)=d, then X’s and Y’s binary addresses differ in exactly
d bit positions. A path between X and Y is called optimal path
if its length is equal to the distance between the two nodes. A
shortest path is a path of minimal length among all possible
paths between the two nodes. A routing algorithm that uses a
shortest possible path for each packet is called minimal. In the
next proposition we compute the length of the shortest path
between any two nodes in a MH.
Proposition 1: The length of the shortest path from a source
node (Ls , S) to a destination node (Ld , D) in MH is |Ld-Ls|+
H(S , D).
To explain the proposition, we give an example. Suppose (Ls,
S)=(1,000) and (Ld, D)=(3,111). The length of the path
between (Ls, S) and (Ld, D) is equal to Ld - Ls + H(S, D) =
(3-1)+H(000,111) =2+3=5. This example can be seen clearly
in Figure 2 that shows all possible parallel shortest paths
between (1,000) and (3,111) in a MH. The total number of
parallel shortest paths in a mesh-hypercube is given in
proposition 2.
Proposition 2: The total number of parallel shortest paths

between any two nodes (Ls, S) and (Ld, D) in MH is H(S , D)
, if Ls = Ld or H(S , D)+1 , otherwise.
It can be seen that using proposition 2, the total number of
parallel shortest paths between (1,000) and (3,111) is equal to
four (see figure 2).
(1,000) (1,100)  (1,110)  (2,110)  (3,110)  (3,111)
(1,000) (1,001)  (1,101)  (2,101)  (3,101)  (3,111)
(1,000) (1,010)  (1,011)  (1,111)  (3,111)  (3,111)
(1,000) (2,000)  (3,000)  (3,001)  (3,011)  (3,111)
Figure 2: Multiple parallel paths between (1,000) and
(3,111).

 Figure 1:MH(3, 8) consists of 3 rows and 8 columns.

(1, 000)

(2, 000)

(3, 000)

(1, 001) (1, 010) (1, 011) (1, 100) (1, 101) (1, 110) (1, 111)

Mahmoud Omari, International Journal of Science and Advanced Information Technology, 8 (6), November - December 2019, 92 - 98

94

4. ROUTING STRATEGIES
An optimal (minimal) routing algorithm should take the
packet from a source node to a destination node using shortest
path. In MH, there may be several routing strategies.
Due to the regularity of the mesh-hypercube structure, a
distributed routing scheme can be implemented without
global information. At the source node, the packet contains
the source address, the destination address, message, and
additional information, see figure 3. The inter-processor
traffic of a node gets redistributed into two categories, the
hypercube communication and the mesh communication. If
the source and the destination of a packet are within the same
hypercube subnetwork of the MH network, the routing
procedure is exactly the same as of the regular hypercube
network. Similarly, if the source and the destination of the
packet are within the same mesh subnetwork of the MH
network, the routing procedure is exactly the same as that of a
regular mesh interconnected network.

Source
address

Destinatio
n
address

Additional
informatio
n

Message

Figure 3: Packet format.

If neither of the previous two cases is true, the source and the
destination are on different hypercubes and on different
meshes subnetworks of the MH network. A routing strategy
for this case is first to use the hypercube routing scheme until
the packet arrives at the same mesh where the destination
resides, and then to use the mesh routing scheme for the
packet to arrive at the destination. Or the mesh routing
scheme can first be applied to forward the packet to the same
hypercube where the destination resides, and then the packet
can reach the destination using the hypercube routing
scheme. A third routing strategy would route packets by
mixing the hypercube and the mesh routing until the packet is
forwarded to the same hypercube or to the same mesh where
the destination resides, and then forward the packet to the
destination using the hypercube or the mesh routing scheme,
respectively. A specification of the algorithm for the third
strategy is given bellow.
Description of the Algorithm
An algorithm for packet routing has to determine each
packet’s path through a network by using various
information, such as destinations addresses and the
configuration of the network [28]. In the following, the case
when Ls  Ld will be considered The algorithm takes as input:
the local node address (L, X), the destination node address
(Ld, D), and a TAG. The argument TAG can take one of three
values: S means that the current node is the source, H means
that the packet has been received through a hypercube link,
or, M, the packet was received through a mesh link. The
output of the algorithm is the address of next node on the
shortest path to the destination. Once an intermediate node
(L, X) in the path receives the packet, it does the following. If
(L, X) equal to (Ld , D), then the packet is consumed and the
routing stops. Otherwise, the next node to receive the packet

is determined as follows. If the cube addresses of (L, X) and
(Ld, D), namely X and D, are equal, then the next node is
(L+1, D). If both nodes (L, X) and (Ld, D) are on the same
hypercube subnetwork, then the next node is (L,
xk-1…..di…X0), where di is the right most bit over which X
and D differ. Otherwise, the two nodes are on different mesh
subnetwork and different hypercube subnetwork (i.e., L ≠ Ld
and X≠ D). In this case, if the packet has been received on a
mesh link, then the next node is (L, xk-1…..di…X0), where di
is the right most bit over which X and D differ. If the packet
has been received on hypercube link then the next node is
(L+1, X). In the case where L>Ld, the algorithm works in a
similar fashion. The details of both cases are given in the
algorithm shown in figure 4.
Procedure Packet-Routing:
Inputs: (L , X): current node address; (Ld , D): destination
node address
TAG: The link at which the packet has been received.
begin
case 1: (L, X) = (Ld, D):
 Send packet to local processor and exit the algorithm.

case 2: X = D: /* on the same mesh*/
 if L > Ld then Send packet to (L-1, X);
 else Send packet to (L+1, X); // i.e., L < Ld

case 3: L = Ld: /* i.e. on the same hypercube*/
 Call procedure Route-in-hypercube

case 4: TAG = S or TAG = M /* Current node is the source or
packet received through a Mesh link */
 Call procedure Route-in-hypercube /* route using
Hypercube link */

case 5: TAG = H /* Packet received through a Hypercube
link, route it using a Mesh link */
 if L > Ld then Send packet to (L-1, X); // send it to
previous level
 else Send packet to (L+1, X); // send it to next level

End Procedure Packet-Routing.

Procedure Route-in-hypercube
Inputs:(L , X): current node address
 (Ld , D): destination node address
begin
 Assume the current-node’s hypercube address is
 X= xk-1….x0;
 Let Y = X  D /* the symbol  is the bitwise XOR
operation
 Let yi be the right most bit of Y such that yi =1
 Send packet to (L , xk-1...~xi…x0) ; where ~xi is the bit
complement of xi
End Route-in-hypercube.
Figure 4.: Mesh-hypercube routing algorithm.

Mahmoud Omari, International Journal of Science and Advanced Information Technology, 8 (6), November - December 2019, 92 - 98

95

An Illustrative Example
To illustrate how the algorithm works, we consider a MH(3,
8) as shown in Figure 5. Suppose a packet is sent from the
source (1, 000) to the destination (3, 111). Following the
execution of procedure Packet-Routing at the source node (1,
000), case 1, case 2, and case 3 are not satisfied. Case 4 is
satisfied since the TAG is equal to S, this leads to a call for
procedure Route-in-hypercube. This procedure in turn
sends the packet to (1, 001). At node (1, 001), case 5 is
satisfied since the packet at this node has been received
through a hypercube link (i.e., TAG = H) and L < Ld. As a
result, the packet will be forwarded to (2, 001) using mesh
link. At node (2, 001), case 4 is satisfied since TAG is equal to
M, the packet will be forwarded to (2, 011) by
Rout-in-hypercube procedure using a hypercube link.
Similarly, at node (2, 001), the packet is sent to node (3, 011)
in case 5 using a mesh link. Finally, case 1 is satisfied and the
packet is sent by Rout-in-hypercube procedure to node
(3,111) which is the destination. A path of length 5 is shown
with arrows in figure 5.
To

Analysis of the Algorithm
As we mentioned earlier the routing algorithm works in a
distributed fashion where each intermediate node on the
shortest path executes the algorithm when it receives a packet.
The only information needed by the intermediate node to
decide the next neighbor falling on the shortest path is the
address of the destination node, i.e., Ld and D. Therefore, the
algorithm is optimal in space. Every step in the algorithm
requires only a few (constant) clock cycles to execute (mostly
bitwise operations). Therefore, the time complexity of the
algorithm is O(1) and hence it’s optimal in time.
 The efficiency of a routing algorithm is generally measured
by its running time which is the total number of
communication time-units the algorithm requires to route
packets to their destinations. It can be seen from the algorithm

that the process to propagate the packet to its destination is
done by modifying the source node level number or modifying
the source node hypercube address bit by bit at the source node
and at each intermediate node. Therefore, if the source and
the destination are at the same hypercube then the algorithm
takes at most O(log n) steps, since in the worst case the
address of the source node will be transformed bit by bit to
agree with the address of the destination node, and the
number of bits in the address is log n bits where n is the
number of nodes in the hypercube of MH(m, n). If the source
and destination nodes are at the same mesh, then the
algorithm takes at most O(m) steps. Otherwise, the source and
destination are on different meshes and on different
hypercubes, which is the worst case, the algorithm takes
O(m+log n) steps. It should be observed that O(m+log n)
corresponds to the diameter of MH(m, n) which represents the
maximum distance between any two nodes [15], and hence no
algorithm can route a packet between any two nodes in
MH(m, n) in less than O(m+log n).
Simulation and Results Analysis
Simulations of the proposed packet routing algorithm on

various MH networks have shown that there is a relative
relationship between the injection rate of packets and the
network performance measures. These measures are average
network load, average waiting time, and average network
latency. The simulation is conducted to compare the
performance of the algorithm on different network
configurations of the same number of nodes.
In the simulation, the following assumptions were set: the
network is fault-free, each node has infinite queue size,
packets at each node get their service based on
First-Come-First-Serve (FCFS), all packets have the same
size, packet injection rate follows an exponential distribution,
source and destination nodes are selected randomly according
to uniform distribution, a node cannot send a message to
itself, and finally, a packet needs one-time unit to traverse a

Figure 5: Routing example in MH(3, 8).

 (1, 000)

(2, 000)

 (3, 000)

 (1, 001) (1, 010) (1, 011) (1, 100) (1, 101) (1, 110) (1, 111)

Mahmoud Omari, International Journal of Science and Advanced Information Technology, 8 (6), November - December 2019, 92 - 98

96

link. The simulation is performed on MH(m, n) networks of
size 64 nodes with different values of n and m. Specifically,
MH(1, 64), MH(4, 16), and MH(8, 8).

Figure 6 shows the simulation results for the average network
load. In general, figure 6 demonstrates a proportional
association between the number of injected packets and the
average network load. It can be seen that the worst network
load was obtained for MH(8, 8), while the best results were
achieved for both MH(1, 64) and MH(4, 16), respectively. It
was noticed that the network load in MH network decreases
with lower values of m and higher values of n. The reason is
due to the fact that, both the average distance and the diameter
of the hypercube subnetwork are less than those for a MH of
the same size. Therefore, a network with small average
distance between nodes and small diameter exhibit faster
packet delivery which reduces the overall network load. On
the other hand, increasing the value of m results in an increase
in the diameter and the average distance of a MH network,
which leads to a higher network load. Table 1 shows the
simulation results of average network load for various MH
networks taking into consideration different packet injection
rates.

Table 1: Network load for various MH networks.

Packets MH(4, 16) MH(8, 8) MH(1, 64)
1000 67.68 86.56 65.63

2000 136.62 161.95 127.234

3000 201.78 241.83 194.77

4000 269.18 323.02 252.23

5000 341.18 403.86 318.1

6000 402.79 485.28 377.22

T

Figure 6:. Network Load for various MH networks.

Table 2 and figure 7 show the average waiting time for the
packets in the three MH networks. The average waiting time
in MH(4, 16) network is better than in both MH(1, 64) and

MH(8, 8). The reason is that the packets in MH(4, 16) benefit
from the large number of parallel shortest paths offered by the
hypercube subnet works available in MH.

 Table 2: Waiting Time for various MH
networks.

Packets MH(4, 16) MH(8, 8) MH(1, 64)
1000 12.34 33.08 18.55
2000 25.55 51.83 30.63
3000 34.88 77.77 44.69
4000 40.72 101.11 53.29
5000 47.84 125.75 63.18
6000 57.18 150.22 74.06

 Figure 7: Waiting time for various MH networks.

 Table 3 and figure 8 show a comparison between the packet
latency on the various MH networks. The packet latency in
MH(4, 16) tend to be less than in both MH(1, 64) and MH(8,
8). These results are attributable to the fact that the packets in
MH(4, 16) network benefit from the available mesh links to
escape a congested hypercube links. Therefore, the waiting
time at the intermediate nodes of MH(4, 16) is less than that
in the case of the MH(1, 64) and much better than that in
MH(8, 8).

Table 3: Packet latency for various MH networks.

Packets MH(4, 16) MH(8, 8) MH(1, 64)
1000 15.60 37.29 21.59
2000 28.80 55.96 33.68
3000 38.14 81.90 47.73
4000 44.00 105.24 56.32
5000 51.13 129.91 66.21
6000 60.47 154.37 77.08

0

100

200

300

400

500

600

1000 2000 3000 4000 5000 6000

Av
er

ag
e

Ne
tw

or
k

Lo
ad

Packets

Network Load

MH(8, 8)
MH(4, 16)
MH(1, 64)

0

20

40

60

80

100

120

140

160

1000 2000 3000 4000 5000 6000

A
ve

ra
ge

 W
ai

tin
g

Ti
m

e

Packets

Waiting Time

MH(8, 8)
MH(1, 64)
MH(4, 16)

Mahmoud Omari, International Journal of Science and Advanced Information Technology, 8 (6), November - December 2019, 92 - 98

97

Figure 8: Packet latency for various MH networks.

 4 0 CONCLUSIONS AND SUGGESTIONS
 In this research, the routing capabilities of mesh-hypercube
network have been studied. First, the length and the number
of parallel shortest paths in MH were computed. Then a
distributed routing algorithm was developed, analyzed, and
simulated. The analysis shows that the communication time
between every two nodes in a MH(m, n) is O(m + log n) since
the algorithm uses only minimal length paths. The proposed
algorithm is simple and requires a fixed number of execution
cycles and appears to be well-suited to VLSI implementation.
Simulation results revealed that the proposed routing
algorithm performs better in mesh-hypercube networks with
low values of m and large values of n. When trying different
network designs by changing the values of m and n of a
MH(m, n) and keeping the network size fixed, it was noticed
that the worst values for the network performance measures
were obtained when m=8 and n=8. The best results for both
waiting time and packet latency were achieved when m=4 and
n=16. This is due to the fact that the average distance and the
diameter of the hypercube subnetworks are superior to those
of mesh subnetworks. Therefore, the algorithm benefits from
these features of the hypercube along with its high
connectivity. In addition, the large number of parallel shortest
paths in the hypercube subnetwork of MH led to small waiting
time and latency.

REFERENCES
1. Adhikari, Nibedita and Chitta Ranjan Tripathy. 2014.

Star-crossed cube: An alternative to star graph, Turkish
Journal of Electrical Engineering and Computer
Sciences, January, vol. 22, no. 3, pp. 719-734.

2. Alam, Mahfooz and Ankur K. 2015. A Comparative Study
of Interconnection Network, International Journal of
Computer Applications, October, vol. 127, no. 4, pp.
37-43.

3. Bokhari, S. 1990. Communication Overhead on the Intel
ipsc-860 Hypercube, Icase Interim Report 10, ICASE,
May.

4. Ho, C.-T and Johnsson, L. 1986. Distributed Routing
Algorithms for Broadcasting and Personalized
Communication in Hypercubes, Proceedings of the 1986
International Conference on Parallel Processing, pp.
640-648.

5. Nasir, Faizan and Jamshed Siddiqui. 2018. Comparative
Analysis of Cube and Star Based Networks,
INTERNATIONAL JOURNAL OF COMPUTER
SCIENCES AND ENGINEERING, November, vol. 6,
no. 11, pp. 51-59.

6. Padmanbhan, K. and Lawrie, D. 1983. A class of
Redundant Path Multistage Interconnection Networks,
IEEE Transactions on Computers, December, vol. C-32,
no. 12, pp. 1099-1108.

7. Saad, Y. and Schultz, M. H. 1987. Data Communication in
Hyperbus, Journal of Parallel and Distributed
Computing, vol. 9, pp. 115-153.

8. Omari, Mahmoud. 2014. Adaptive Algorithms for
Wormhole-Routed Single-Port Mesh-Hypercube
Network, IJCSI International Journal of Computer
Science Issues, Vol. 11, No 1, January, pp. 66-73.

9. Al-Mahadeen, Bassam and Mahmoud Omari. 2004. A
Broadcast Algorithm for All-Port Wormhole-Routed
Mesh-Hypercube Network, Information Technology
Journal, Vol.3, No. 3, pp.283-289.

10. Al-Mahadeen, Bassam and Mahmoud Omari. 2004.
Adaptive Wormhole Routing in Mesh-Hypercube
Network, Journal of Applied Sciences, Vol.4, No. 4,
pp.568 – 574.
https://doi.org/10.3923/jas.2004.568.574

11. Omari, Mahmoud and Mohammed Mahafzah. 2001.
Fault-Tolerant Routing in Hypercube Networks,
Al-Manarah Research Journal, published by AL al-bayt
University, Vol. 7, No. 1, May, pp. 49-60.

12. Luccio, F., M. Mahafzah, M. Omari, and L. Pagli. 2000.
Masked Interval Routing: A New Routing Scheme, The
Computer Journal, Vol. 43, No.2, May, pp. 121-129.

13. Luccio, F., M. Mahafzah, M. Omari, and L. Pagli. 1998.
“Routing with the Use of Masks,” Proceedings of The 5th
Colloquium on Structural Information and
Communication Complexity (SIROCCO’98), pp.
188-200. June 22-24, 1998, Amalfi, Italy.
Carleton Scientific.

14. Omari, Mahmoud. 2008. Packet Routing in
Mesh-Hypercube Network. 2008. Abhath Al-Yarmouk
Journal: Basic Science& Engineering Series, published
by Yarmouk University, Vol. 17, No. 1(B), pp. 177-189.

15. Khan, Zaki A. 2016. Optimal Dynamic Scheduling
Algorithm for Cube Based Multiprocessor
Interconnection Networks, International Journal of
Control Theory and Applications, December, vol. 9, no.
40, pp. 485-490.

16. Seo, Daeho, Ali, Akif, Lim, Won-Taek, Rafique,
Nauman, and Mithuna Thottethodi. 2005. Near-Optimal
Worst-Case Throughput Routing for Two-Dimensional
Mesh Networks, Proceedings of the 32nd Annual

0

20

40

60

80

100

120

140

160

180

1000 2000 3000 4000 5000 6000

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy

Packets

Packet Latency

MH(8, 8)

MH(1, 64)

MH(4, 16)

Mahmoud Omari, International Journal of Science and Advanced Information Technology, 8 (6), November - December 2019, 92 - 98

98

International Symposium on Computer Architecture,
June, 04-08, pp. 432-443.

17. Stout, Q. F. and Wagar, B. 1990. Intensive Hypercube
Communication, Journal of Parallel and Distributed
Computing, vol. 10, pp. 167-181.

18. Wu, Jie. 2002. A Deterministic Fault-tolerant and
Deadlock-free Routing Protocol in 2-D Meshes Based on
Odd-even Turn Model, Proceedings of the 16th
international conference on Supercomputing, New York,
New York, USA, pp. 67-76.

19. Ye, Terry Tao, Benini, Luca, and Giovanni De Micheli.
2004. Packetization and Routing Analysis of On-chip
Multiprocessor Networks, Journal of Systems
Architecture: the EUROMICRO Journal, February, vol.
50 no. 2-3, pp. 81-104.

20. Yeung, K. H. and Yu, T. S. 1997. Selective Broadcast
Data Distribution Systems, IEEE Transactions on
Computers, January 1997, vol. 46, no. 1, pp. 100-104.
https://doi.org/10.1109/12.559808

21. Abualigah, L. M. Q. (2019). Feature selection and
enhanced krill herd algorithm for text document
clustering. Berlin: Springer.

22. Omari, M. 2003. Mesh-Hypercube: A Network Topology
for Parallel Systems, Mu’tah Lil-Buhuth wad-Dirasat
(Natural and Applied Sciences Series), Mu’tah
University, vol. 18, no. 1, pp. 37-60.

23. Banner, R., Orda, A. 2007. Multipath Routing
Algorithms for Congestion Minimization, IEEE/ACM
Transactions on Networking, vol. 15, no. 2, April, pp.
413 – 424.

24. Nation, W. G. and Siegel, H. J. 1990. Disjoint Path
Properties of the Data Manipulator Network Family,
Journal of Parallel and Distributed Computing, vol. 9,
pp. 419-423.

25. Gaughan. P., Dao, B., Yalamanchili, S., and Schimmel,
D. 1996. Distributed, Deadlock-Free Routing in Faulty,
Pipelined, Directed Interconnection Networks, IEEE
Transactions on Parallel and Distributed Systems, vol.
45, no. 6, pp. 651-665.

26. Lan, Y. 1995. An Adaptive Fault-Tolerant Routing
Algorithm for Hypercube Multicomputers, IEEE
Transactions on Parallel and Distributed Systems, vol. 6,
no. 11, pp. 1147-1152.

27. Raghavendra, C. S., Avizienis, A., and Ercegovac. M. D.
1984. Fault Tolerance in Binary Tree Architectures,
IEEE Transactions on Computers, June, vol. C-33, no. 6,
pp. 568-572.

28. Grammatikakis, M. D., Hsu, D.F., and Andsibeyn, J. F.
1998. Packet Routing in Fixed-Connection Networks: A
Survey, Journal of Parallel and Distributed Computing
vol. 54, no. 2, November, pp. 77–132.
https://doi.org/10.1006/jpdc.1998.1483

