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ABSTRACT 
 
In this paper we consider the problem of counting magic 
squares 6 by 6. We introduce and study special types of magic 
squares of order six. We present the property preserving 
transformations. We list the enumerations of the squares, 
which processes special features. 
 
Key words : Magic squares; Four corner propery; Balanced 
magic squares 
 
1. INTRODUCTION 
In this paper we consider the old famous problem of magic 
squares. A semi magic square is a square matrix, where the 
sum of all entries in each column or row yields the same 
number. Some authors call it magic square. This number is 
called the magic constant. We call a semi magic square a 
magic square if both main diagonals sum up to the magic 
constant. A natural magic square of order n is a matrix of size 
n×n such that its entries consist of all integers from one to n². 
The magic constant is in this case 

)1(5.0 2 nn . 
a natural magic square of order three 

8 1 6 
3 5 7 
4 9 2 

 
The combinations, which appear in the columns, rows and 
both diagonals of this square, are the only distinct three 
element combinations of the numbers from 1 to 9 with sum 
15. A symmetric magic square is a natural magic square of 
order n such that the sum of both elements of each pair of dual 
(opposite entries) is equal to 
 

12 n . 
 
    A pandiagonal magic square is a magic square such that 
the sum of all entries in all broken diagonals equals the magic 
constant. For example, we note in table 2 that the sum of the 
entries 34, 36, 7, 44, 10, 2, 42 is 175, which is the magic 
 

 

constant. These entries represent the first right broken 
diagonal.  
 
A natural pandiagonal and symmetric magic square of order 
seven 
39 34 21 35 8 37 1 
9 12 36 24 19 48 27 
30 17 46 7 32 3 40 
6 28 25 22 44 5 45 
18 43 4 33 20 10 47 
31 26 14 38 41 23 2 
42 15 29 16 11 49 13 

 
      A pandiagonal and symmetric magic square is called 
super magic. A complete Magic square is a pandiagonal 
square with some supplementary qualities. For a complete 
Magic square of order 4, the sum of the entries: 

22211211 ,,, aaaa
 ,  33311311 ,,, aaaa

  and 

44411411 ,,, aaaa
  is also equal to the magic sum. 

 
.  
It is well known that we have only eight 3x3 magic squares 
(with sum in all directions 15). All these squares have the 
number 5 as a middle entry and all these squares can be 
formed using the following transformations: rotations with 

angles 
 270,180,90  and reflections about the middle 

column, middle row and both diagonals of the square. 
In the seventeenth century F. Bessy was the first person to 
state that the number of the 4x4 magic squares is 880, where 
he considered a magic square with all its rotations and 
reflections one square. Hire listed later these squares in tables 
in the year 1693. Today we can use the computer to check that 
there are 
880*8 = 7040 
magic squares of order four. At the beginning of the twentieth 
century these squares were classified theoretically into twelve 
classes. One of these classes is the class of pandiagonal magic 
squares consisting of 48 squares. It was proven that they are 
generated by three basic squares (cf. [1]). In 1973 Schoeppel 
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found the number of all natural magic squares of order five. 
He computed it using an elementary computer. It is 
64 826 306 * 32 = 2 202 441 792, 
where we multiply by 32 due to the existence of a property 
preserving transformations. According to [2] there exists 
736 347 893 760 
natural nested magic squares of order six. According to [3] 
the number of super magic squares of order five is sixteen and 
number of super magic squares of order seven is 20 190 684. 
The number of complete magic squares of order four is 48, 
and the number of complete magic squares of order eight (cf. 
[4]) is 368 640. It is well-known that there are pandiagonal 
magic squares and symmetric squares of order five. It was 
proven that the pandiagonal magic squares are generated 
through 144 basic squares. Hence, there are 
144 * 200 = 28 800 
natural pandiagonal squares of order five. But, there are 
neither pandiagonal magic squares nor symmetric squares of 
order six. The proof can be found in [3]. The number of 
natural magic squares of order six is actually unknown up to 
day. In [5] Trump obtained using empirical methods (Monte 
Carlo Method) the following interval estimation for this 
number 
 
(1.7712 e19, 1.7796 e19) 
 
with a probability of 99%. We give here the number of a 
subset of such squares. We define here classes of magic 
squares of order six, which satisfy some of the conditions for 
both types. In [4] we find an enumeration of some subsets of 
pandiagonal squares. In the references [5], …, [10] we find 
some partial listings for the number of magic squares. In 
[11,12] there is an enumeration of Franklin squares, which 
are special magic squares of order 8 by 8. 
 
1.2 Four corner magic square 
This concept was introduced by Al-Ashhab for the first time 
in [5]. Al-Ashhab studied this type there in some simple 
cases. In [6] Al-Ashhab considered the type called nested four 
corner magic square with a pandiagonal magic square, where 
the inside 4 by 4 square was pandiagonal. In [5] we find an 
enumeration of this class of squares. We can find other 
enumerations of other classes of squares of this type in the 
references [7], [8], [9], [10] and [6]. Alashhab and Trump 
computed in 2015 the number of natural four corner squares. 
It is 8 730 627 225 792. 
1.3 Objectives and Benefits of our Work 
The study was focused on squares with centres, which are 
symmetric, semi symmetric or have positive determinants. In 
the following subsection we illustrate the previous concepts. 
In this paper we summarize and present the total 
enumerations concerning four corner magic squares. 
 
 
 
 
 

2. BASIC THEORIES 
[1] 2.1. The types of squares 
 
     A four corner magic square is a magic squares of order six 
with magic constant 3s such that the equations 
 

,244433433 saaaa 
     

 
siiaiiaiiaiia 2)3)(3()3()3( 

                
 
hold for i=1,2,3. A four corner magic square of order 6 can be 
written as  
 

y f g t M G 
z h n j q N 
w E e a m D 
A k Q b H R 
V p d o Z T 
B F I J L Y 

where 
A =  2s – b – t – y,  B = b +  j + o + t – s – w, 
D = d + g + n + y – a – p – q, 
E = 3s – a – e – m – w – D,  F = 3s– f – h – k – p – E, 
G = 2s + e + w –  (j + o + p + q + t), 
H = e + g + s + w + y – j – k – o – p – q, 
I = a + b +  s – d – g – n,  J = 3s – a – b – j – o – t, 
M = 3s – f – g – t – y – G,  N = 3s – h – j – n – q – z, 
L = f + h + k + p – m – s, Q = 2s – a – b – e, 
R = a + b + j + o + p + q + t – g – 2s – w, 
T =  h + j + q+ z – d – s,V = 2s – j – o – z 
Y = p + q + s – b – e – y, Z = 2s – p – q – h. 
We see that it has seventeen independent variables, which are 
represented by the small letters. Further, we see that  
A + p + I + t + q + D = 3s, 
R + Z + J + g + h + w = 3s. 
That is two broken diagonals sum up to the magic constant. In 
this sense we can think about this new type of squares as a 
partial type of pandiagonal magic squares 6 by 6. 
 We call a four corner magic squares such that 
 

(1)           )0(  043344433  aaaa
 

 
a four corner magic square of order six with negative 
(positive) center. This means that the 2 by 2 square in the 
center has negative (positive) determinant. 
        The number of all different possible values for a, b and e 
by computing the number of four corner magic squares is 
3429. Hence, there are 3429 possible centers of the natural 
four corner magic squares. The number of squares with 
positive center is 232. Hence, there are 3197 possible centers 
of the negative four corner magic squares. Among these 
squares there are 153 (res. 306) centers of the four corner 
magic squares, which are symmetric (res. semi symmetric).  
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   A natural four corner magic square 
[2] 2.2. Property preserving transformations 
 
    There are seven classical transformations, which take a 
magic square into another magic square. These 
transformations also preserve the property "four corner 
magic".  Now, a four corner magic squares can be 
transformed by executing the following interchanges 
simultaneously into another one of the same kind: 

interchange 12a  (res. 62a
) with 15a

 (res. 65a
) 

interchange 21a  (res. 26a
) with 51a

 (res. 56a
) 

interchange 22a  (res. 25a
) with 55a

 (res. 52a
) 

interchange 23a
 (res. 24a ) with 53a

 (res. 54a
) 

interchange 32a
  (res. 42a ) with 35a

 (res. 45a
) 

 
It is obvious that the center remains unchanged by this 
transformation. This means that a square with negative 
(positive) center will be transformed into another one of the 
same kind. We can use this transformation to reduce the 
number of computed natural magic squares. In order to 
eliminate the effect of the previous transformations we 
compute all natural four corner magic squares for which the 
following conditions hold: 
 

(2)           )0(  ,,2  qpbeaebasa
 
[3] This means that we compute first the number of all 
natural squares satisfying these conditions. We multiply then 
this number by sixteen in order to get the number of squares. 
[4]   
[5] 2.3. The Semi Pandiagonal Magic Squares 
 
    We can generalize the concept of four corner magic square 
to the semi pandiagonal magic square. It has the following 
structure: 
 
where 
A=4s – 2d – f – h – l – n – p – 2q – 2a + 2u + 2v – x – y + 2z, 
B=a – c + d + h + l + n + p + 2q – s – 2u – 2v + x + y  – 2z, 
D=o – k – l – h + s + e,    E=2s – o – m – e,  F= m – a + o – s 
+ v + z, 
   G=2s – u – v – z, 
H = 4s – l – p – r – i – k – x – y,   J = s – l – d + u – x + z, 
L = d – c + l + m + o + p + q – s – 2u – v + x + y – z, 
M = c – a – d – h – l – m – n – o – p – 2q + 4s + 2u + v – x – 
y + z, 
N = 3s – k – i – c – u – z, 
Q=2a + 2d + f + h + l + m + n + 2q – r – 3s – 2u – 2v + x + y 
– 2z + e, 
R=c – d + k – m – o – q + i + u + z, 

T=s  –  q  –  p + u + v  –  y,    W=k – f + l – m + p + r + i – s 
+ x – e, 
Y=3s – o – I – n – x – e. 
It is easy to see that each four corner magic is a semi 
pandiagonal magic square. Further, the transformations 
considered in 2.3 are property preserving for this new type. 
        It is worth mentioning that the two dependent variables 
in the frame of center square (E and H) depends only on the 
variables in the outer frame. This is helpful by programming 
in order to reduce run time. The problem of counting the 
natural squares of this type of squares is yet unsolved. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

[6] 3.0 Symbolic Computations of the Determinant 
 
It is sometimes of interest to determine the determinant of the 
magic square as a square matrix. In the case of the semi 
pandiagonal magic squares there are cases when the 
determinant is zero. In general the determinant is not zero for 
any semi pandiagonal magic square. In case we have all 
entries of the frame of outer 4 by 4 center (E, k, l, m, r, H, p, y, 

o and e) equal to the value s5.0 . Then, we can compute 
using symbolic calculation software that the determinant is 
zero. In fact we can verify that any square of the following 
type has this property: 
 
A symbolic square with zero determinant 
 
 
 
 
 
 
 
 
 
 
   We used computers to count the several types of four corner 
magic squares. The used code can be found in [11]. The new 
results in this paper are the enumeration of four corner magic 

6 23 11 13 33 25 
19 28 36 3 7 18 
2 29 1 17 27 35 
21 8 22 34 10 16 
32 9 15 20 30 5 
31 14 26 24 4 12 

a i c d f z 
h o o o o s – h 
p o u v o R 
q o z G o T 
n o o o o s – n 
m q t w j k 

a A c d f B 
h E k l m D 
L r u v H R 
q p z G y T 
n o i x e Y 
M Q N W J F 
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squares having a negative determinant center, which is 
neither symmetric nor semi symmetric. Moreover, the value 
of a is 6, 7 or 8. In other words we consider the all centers such 
that 
 
a < e < b,   5< a < 9 ,  2s – a – b – e > a,    a(2s – a – b – e) > 
be  (3) 
 
In the following tables we list the number for squares 
associated with such centres: 
 
list of the number with a =6 
 
b Center

s 
number b Center

s 
number 

17,…
, 21 

27 346261873
2 

29 20 272033548
7 22,23 22 287762795

8 
30 20 283550183

8 24 12 161521602
7 

32 22 318578923
6 25 14 183266068

3 
33 22 317504330

9 26 15 194563395
6 

34 20 305173556
5 27 17 226208507

1 
35 20 298075640

5 28 17 230224612
0 

36 18 277953702
3 The total number of centers associated with a = 6 is 266. The 

total number of the squares is 
37 026 787 410. 
 
list of the number with a =7 
 
b Center

s 
number b Center

s 
Number 

17,…
, 21 

25 316631539
4 

29 18 247062408
5 22,23 19 243590512

9 
31 20 283550183

8 24 12 154169309
5 

32 20 278823415
1 25 12 155140031

4 
33 18 259302122

2 26 15 196132602
6 

34 18 260058312
6 27 15 197439548

1 
35 16 238403631

4 28 18 245964322
0 

36 16 237122233
2 The total number of centers associated with a = 7 is 242. The 

total number of the squares is 
 
33 133 901 727. 
list of the number with a =8 
 
b Center

s 
number b Center

s 
number 

17,…
, 21 

20 246525148
5 

30 18 247062408
5 22 9 111325270

9 
31 18 242346384

5 23 9 112204862
3 

32 16 226856629
0 24 10 125123289

4 
33 16 226690971

8 25 13 165470930
1 

34 14 199026621
6 26 13 169068613

8 
35 14 205014664

0 27 16 214393636
2 

36 12 175733360
6 28 16 213891504

2 
* * * 

The total number of centers associated with a = 8 is 214. The 
total number of the squares is 

27 807 342 954. 
[7] As summary, we have 2738 centers, which are neither 
symmetric nor semi symmetric and have negative 
determinant. Based on the data in [6], [7] and in this paper we 
state: the number of the squares associated with these centers 
is represented in the following list: 
List of the number with a=1,…,16 
a Center

s 
number a Center

s 
number 

1 255 3852302267
5 

9 183 2412601781
4 2 270 4066291938

3 
10 152 1762923729

8 3 279 3962819394
7 

11 121 1524419994
9 4 282 4086636847

9 
12 87 1106188872

9 5 280 3966691562
4 

13 55 7037768734 
6 266 3715782866

6 
14 33 4328085633 

7 242 3313390172
7 

15 15 2059934349 
8 214 2780734295

4 
16 4 618706214 

 
When we sum all numbers together we conclude that: the 
number of the squares with negative center is 
379 552 332 175. 
Hence, the total number of the squares with negative center is 
379552332175 *16 = 6 072 837 314 
There are 232 centers of the natural positive determinant four 
corner magic squares. According to [9] there are 
30 350 772 825 * 16 = 485 612 365 200 
squares of this type. There are 153 possible symmetric centers 
of the natural four corner magic squares. According to [11] 
there are 
28 634 584 244 * 16 = 458 153 347 904 
different natural four corner magic squares with symmetric 
center. There are 306 possible semi symmetric centers of the 
natural four corner magic squares. According to [10] there are 
101 425 060 998 * 16 = 1 622 800 975 968 
different natural four corner magic squares with semi 
symmetric center. Hence, there are 
8 639 404 003 872 
different four corner magic squares of order six. 
The problem of counting the number of squares of order six 
has been now completely solved. We see that the maximum 
number of squares for a fixed center is the number generated 
by the semi symmetric center 
a = 17, b = 20, e = 18 
It is 398369256. Further, the minimum number of squares for 
a fixed center is the number generated by the symmetric 
center    
a = 1, b = 35, e = 2. 
It is 80012582. 
 
 4. GENERAL BALANCED MAGIC SQUARE 
4.1 The case of any order  
We distinguish between even and odd order for a magic 
square in the definition. A 2l by 2l magic square is called 
balanced iff 
 
ak,k + ak,2l+1 – k + a2l+1 – k,k + a2l+1 – k, 2l+1 – k = 2s, for all 1≤ k ≤ , 
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where s = (2l)2 + 1. This means the four corners of the center 
squares sum up to 2s each. 
         In case of  2l+1 by 2l+1 magic square then we require 
that 
ak,k + ak,2(l+1) – k + a2(l+1) – k,k + a2(l+1) – k, 2(l+1) – k = 4s, for all 1≤ k 
≤ , 
al+1,l+1  =  s,   s = 2l2+2l+1. 
         
     It is well-known that the following structure 
 

2s – h – i – j j i h 

l 2s – v – q – 
l q v 

2(h+q)+i+j+v+g – 4s l+v+g+q-2
s 

2s 
– 
g 
– 
q 

6s 
–(l+g+i+j)–2(q+h+v
) 

4s – h – 2q– l – v – g 2s – g – j 
g 
– 
i 

l+v+g+h+i+j+2q – 
4s 

 

is a general structure of the magic square 4 by 4. Here, the 
magic constant is 2s. So, we can say that all magic square 4 by 
4 are balanced. Also, all natural magic square 3 by 3 are 
balanced, while there are according to our calculations just 
830 396  4  8 = 26 572 672 
balanced natural magic square 5 by 5. The number of 
balanced natural magic square of orders 6 and higher is still 
open. 
          Actually, it is well-known that the following structure 
 

G f F E D B A 

L l K j i J H 

R r q p o n m 

2s–t 2s – u 2s–W s W u t 

2s – m 2s – n 2s – o 2s – p 2s – q 2s – r 2s – R 

2s – H 2s – J 2s – i 2s – j 2s – 
K 2s – l 2s – L 

2s – A 2s – B 2s – D 2s – E 2s – F 2s – f 2s – 
G 

 
where 
A = 2i + 6s + l – 2f – 2r – 4m + t – o – p – u + 2j, B=n – f + q 
+ r + o + j – 3s, 
D = u – j + s + m + n – i – l, E = 2f + 6s – 2i + 2m – t – 2j  – 
2n – q – o, 
F = 3s – l  – i + r + m – t – j, G = 2i + l + t + j + o + p – 6s, 
H=f + r + 2m  + o + p + u – j – i – 2s – l – t, J = 4s + 2f  + l – 
q – o – j – u – 2n, 
K=3s + i – 2f – r – 2m + t – p + j + n, L= 2s + n – l – f – i + q, 
R=7s – m – n – o – p – q – r, W = 6s + q – o + j – 2f – 2m – p 
– u. 
 
is a general structure of the symmetric pandiagonal magic 
square 7 by 7. Here, the magic constant is 7s. Of course, such 
magic squares are balanced. The number of natural 
symmetric pandiagonal magic square is 
20 190 684. 
         We call a matrix (aij) a balanced magic 6x6 square if 
a11 + a61 + a16 + a66 = 2s  
a22 + a25 + a52 + a55 = 2s 
a33 + a43 + a34 + a44 = 2s 
Compared with a general magic square we have 3 additional 
equations (the corner sum of the center 2x2, 4x4, 6x6 square), 

but only 2 are linearly independent in the whole set of 
equations. Hence, there are 21 independent variables for 
balanced magic 6x6 squares. 
 
4.2 The case of order six 
 We present a general form of balanced magic 6x6 squares as 
follows: 
  
where 
D = 3s – 2a – h –  b – q – g – j – c – f + m + v + z + o, 
E = s – D – l – x + u + z,  G = s – f  – t – y + n + o, 
K =  4s – (l + p + r  + t + x + y + i),  T = 3s – a – h – b – q – g, 
Y = 3s – j – n – o – p – r,  R = 3s – c – K– i – u – z. 
We notice that it has 21 free variables. 
  
For a semi-pandiagonal magic square we additionally require 
the following sums for 2 broken diagonals: 
a31 + a22 + a13 + a64 + a55 + a46 = 3s 
a41 + a52 + a63 + a14 + a25 + a36 = 3s 
If one of these equations is satisfied in a balanced magic 
square of order 6 then the other equation is satisfied, too. 
Therefore we get only one additional free variable. From 
b + n + c + E + (2s – n – o – m) + (s – q – p + u + v – y) = 3s    
(3) 
we obtain 
p = 2(a + b + c + u – m – o – s) + f + g + h + j – l – x – y   (4) 

a j C D f 3s – a – j – c – D – f 
h n K l m 3s – K – l – m – n – h 
b r u v t 3s – u – v – x – r – b 
q p z 2s – u – v – z y s – q – p + u + v – y 
g o i x 2s – n – o – m m + n + s – i – x – g  
T Y R E G m + v + z + o – a – s 
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By using this value for p we obtain a general form for 
balanced semi-pandiagonal magic squares of order 6. It has 
20 free variables, which coincide with the previous definition. 
 
 
4.3 The case of any order seven 
              How many natural balanced pandiagonal magic 
squares 7 by 7 are there? In order to solve this open problem 
we consider first the general form of such squares: 
 

 
 
 
A =f−d−j + m−o−p−u + y + z + μ−ϕ + 2s, B =u−f−h−n−q−c−y 
+ ϕ + 5s 
G =c + e + f + x + y + z−d−j + m−2o−p−u, K =o−h−m−c + 
i−t−e + 4s 
R =c−d + h−j−l + m−2o−p−q−2i + t + e + 5s, w =i−d−t−u + y 
+ z−e + 2s, 
Γ =d−f + j−n−i + t + u−v−y−z−μ + ϕ + 3s, 
Θ =j−f−c−m + 2o + p + i−t + v−e, ψ =d + u−c−h−n−y + 3s, 
ρ =d + j + l + q−v−z−μ, τ =c + h + n−d−j−l−o−i−u−ϕ + 5s, 
ε =d + t−v−x−z + 2s, Σ =l + x + z−h−c−n−p + i−t + 2s, 
δ =f + i + y + z + μ−h−3s, η =h + j + n + o + p + 
q−f−m−z−μ−e, 
λ =d−m + o + p−x−y−z + 2s, Π =h + n + v−d−j−l−i−ϕ + 3s, 
ϑ =f + e + m + t + μ−j−o−2s, ϭ =7s−G−h−j−K−l−m, 
α =c + f + h + m + n + y + z−d−j−o−p−u−ϕ, ξ 
=7s−n−o−p−q−R−i. 
 
It has 21 independent variables. This seems to be a more 
difficult problem than counting the balanced squares 6 by 6. 
We shall note that we have now a wider range of numbers, 
namely from 1 to 49, which requires also more calculations. 
     We consider a special case of this structure. It has a special 
5 by 5 square in the center. The general form of it is 
 

c a h g p q 
50 
− 
L 

v W N I u 50−x 
50 
− 
v 

e y k D 75−k−D 50− y 
50 
− 
e 

b z 100−( 
2k+D) 25 2k+D−5

0 50−z 
50 
− 
b 

t F k+D−2
5 

50−
D 50−k 50−F 

50 
− 
t 

m x 50−u 50−I 50−N 50−W 
50 
− 
m 

L s j 50−g O R 
50 
− 
c 

 
a=2L + v + b − g + j + m − p − q + t − 2u + x − I − W + e − 25 
, 
c=175 − v − b − m − t − e − L , 
F=g − v − b −  y  − 2L − j − m + p + q − s − t + 2u − 2x − z + 
I − e + 200 , 
h=2u − j − x + I + W − 25,     N=x − u − I − W + 75 , 
O=x − 2u − p − I − W + 125,   R=g − v − b − 2L − j − m + p 
− s − t + 2u − x + I + W − e + 125. 
It has 18 independent variables. We see that the center is a 3 
by 3 magic square. The center is independent of the other 
cells. We fix the center and then count the squares such that 
W  < x < 50 −x,  W < 50 – W. 
We restate this condition as W  < x < 25. 
 
 
 5.CONCLUSION 
 
5.1. Conclusion 
We have considered many types of magic squares. We talked 
about the way how to calculate their number. Sometimes we 
had to consider subsets of the general  class in order to be able 
to calculate the number in reasonable time. 
 
5.2. Suggestion 
We may try to find more property preserving transformations. 
This will help by reducing the run time.  We shall also try to 
write the codes for the computations by using nested loops in 
such way, which allows  parallel computing. By doing this we 
can reduce the time of calculations. Also, the way of checking 
the conditions of the square can be written in a the manner of 
backtracking, which reduces the time of calculations. 
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