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 
ABSTRACT 
 
Using two cameras separated by some distance, along with the 
concepts of parallax, we can determine the distance to an 
object. The joint transform correlator is a natural tool to 
consider for this task. Since the Fourier transform, on which 
optical correlators are based, is lossless and retains shift 
information, we suppose that distance information encoded in 
a stereo image pair is preserved through the correlation 
process. We then recover that distance by investigating the 
location of the correlation peak(s). Data obtained indicates 
that it is possible to extract distance information from a joint 
transform correlation result.  
 
Key words : Fourier optics, signal processing, machine 
vision, correlation.  
 
1. INTRODUCTION 
 
Due to their low cost and ease of launch vehicle integration, 
U-class spacecraft (CubeSats), comprising multiples of 
10×10×11.35 cm cubic units, have generated a lot of interest 
[1]. At the University of North Dakota an interdisciplinary, 
student-run CubeSat program, the Open Prototype for 
Educational Nanosats (OPEN) [2], has been established with 
a primary goal of creating a CubeSat design that is very 
affordable (< $5000.00). The first CubeSat (OpenOrbiter [3]) 
is scheduled for launch in 2017 and will be an Earth 
observing satellite. However, we have proposed other versions 
that will require multiple CubeSats and will require these 
spacecraft to remain at specific distances from each other. 
Given the limited power budget we have, due to our low-cost 
design, we are very interested in a passive approach to 
maintaining this separation. Hence, our interest in optical 
correlators. 

1.1 Optical Correlators 

An optical correlator is a device for comparing two images 
using Fourier transforms and is generally used for pattern 
matching purposes. More specifically, an optical correlator 
takes two input images and outputs another image showing 
the cross-correlation. Or, in other words, in what relative  

 
 

 
position do the two images best match. If the two input images 
are sufficiently similar and similarly oriented (scale, aspect, 
and  rotate), one will see a bright spot in the correlation result, 
commonly referred to as a peak. The location and brightness 
of the peak indicates the location of one image within the 
other and the level of similarity. 
 
The first successful optical correlator, the matched filter 
correlator (MFC), was developed by VanderLugt in 1963 [4]. 
The MFC was a pioneering development in the optical 
correlator field and is still in use today. The significance of 
VanderLugt’s design was that the required Fourier 
transforms would be computed optically rather than digitally, 
which, in 1963, provided a serious performance advantage. 
However, a drawback to VanderLugt’s design was that 
performance was highly sensitive to the alignment of the 
optical train. 
 
The MFC was designed to locate a particular image, known as 
the “reference”, inside one or many other images, referred to 
as the “target”. With the advent of modern spatial light 
modulators, it is typically the case that the “reference” image 
be digitally processed into a “filter”. This processing usually 
involves performing a Fourier transform on the “reference” 
image followed by another step that may or may not include 
the manipulation of the real and imaginary components of the 
Fourier transform. Figure 1 depicts the MFC process. 
 

 
Figure 1: Matched filter correlator schematic. 

 
As such, the reference and target image are treated differently 
within the correlator, and the MFC is best suited to such 
asymmetrical applications and not the application of interest 
here. 

 
The joint transform correlator (JTC) was invented in 1966 [5] 
by Weaver and Goodman and was intended to overcome the 
limitations of the matched filter correlator. The JTC is much 

Object Distance Determination Using a Joint                             
Transform Correlator  

Ronald Marsh1, Tyler Schmitt2 

1University of North Dakota, USA, rmarsh@cs.und.edu 
2Le Moyne College, USA, schmittj@stu.lemoyne.edu 

 

                                                                                                                                                  ISSN  2278-3083 
Volume 6, No.1, January – February 2017 

International Journal of Science and Applied Information Technology 
Available Online at http://www.warse.org/ijsait/static/pdf/file/ijsait01612017.pdf 



Ronald Marsh and Tyler Schmitt, International Journal of Science and Advanced Information Technology, 6 (1), January - February  2017, 1 -5 

2 
 

 

less sensitive to instrument alignment but is also less 
space-efficient. In addition, both input images in a JTC 
undergo the same transformations; there is no concept of a 
“target” or “reference” image and there is no digital 
preprocessing of either image. Figure 2 depicts the JTC 
process. Thus, the JTC is better suited to applications that 
require no preferential treatment of either input image, such 
as the application of interest here. 

 
Figure 2: Joint transform correlator schematic. 

 
As expected, correlation (MFC or JTC) need not be done 
optically anymore; the same process can be performed 
digitally [6] affording easier post-analysis of the correlation 
result and affording easier implementation on a CubeSat. 

1.1 Application to Distance Detection 

As noted in the abstract, many animals use two eyes to 
determine distance to an object and we can we can do 
something very similar using two cameras separated by some 
distance along with the concepts of parallax [7,8,9]. The idea 
behind parallax is to compare two images of the same scene 
taken from different vantage points leading to an indicator of 
distance. Optical correlators, in particular, the joint transform 
correlator, is a natural tool to consider for this task. If 
implemented using traditional computational means, a 
computer would detect the distance to the object by measuring 
the shift in the object’s 2D location from one vantage point to 
another [10]. 
 
Since the Fourier transform, on which optical correlators are 
based, is lossless, retains shift information, and has a fixed 
computational complexity regardless of image content, we 
postulate that any distance information encoded in the 
original images will be preserved through the correlation 
process. In effect, the correlator automates the process of 
finding a common pixel in the algorithm outlined in [11]. 
Since we use a new pair of images, acquired from a pair of 
cameras, for each distance measurement, the joint transform 
correlator is the logical choice. To the best of our knowledge, 
the use of a JTC to determine distance to an object is a novel 
approach. 
 
2. EXPERIMENT 
 
Images were acquire by two Microsoft LifeCam Cinema 
webcams aligned horizontally. One experiment used a 19.05 
cm separation between cameras, while the other used a 24.13 
cm separation between cameras (figure 3). LifeCam Cinema 
webcams have a 73° field of view and an autofocusing lens. 
To best replicate the conditions expected in orbit, where there 

would be little background information, the target was a 
2.5625”x4.375” cell phone on a wall in a dark room. 
 
We measured the distance to the wall with a tape measure, 
then took a picture with each camera. Since the LifeCam 
Cinema webcams acquire 640x360 color images, we used the 
convert utility from the ImageMagick [12] package to expand 
the image size, of all images acquired, to 1024x1024 
facilitating the use of the fast Fourier transform. The 
ImageMagick script used is: 
 
Convert input_file.jpg –gravity center –background black -extent 
1024x1024 output_file.pgm 
 

 
Figure 3: Microsoft LifeCam webcam used for image collection. 

 
The ImageMagick script takes the original sized (640x360) 
color jpeg image, centers the original image in the expanded 
space (1024x1024), fills the extra space with black pixels, and 
saves the result to a1024x1024 sized gray scale pgm image. 
Figure 4 depicts the result (note that this image was NOT used 
in the experiment and is included purely for demonstrative 
purposes). 
 

 
Figure 4: Example of ImageMagick preprocessing. 

2.1 JTC Implementation 

There are a variety of approaches that can be used to generate 
a joint transform correlation, the method shown in figure 2 
(probably the simplest and most common), a method 
proposed by Jin and Lee that uses a fractional Fourier 
transform [13], a method proposed by Wang, He, and Sheng 
that uses power spectrum subtracting and exponential 
filtering [14]. Nomura, in 1998, proposed that Phase-encoded 
JTC [15]. Finally, Cherri and Alam proposed the reference 
phase-encoded fringe-adjusted joint transform correlation 
[16].  

 
We chose the method shown in figure 2 and implemented it 
with some changes, as follows. As noted above the images are 
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padded to form 1024x1024 images, using our variation of the 
JTC shown in figure 2 requires that we perform the JTC on a 
4096x1024 array/image. Initially, the 4096x1024 array 
contains the two images acquired from the left and right 
cameras (left image and right image). However, originally we 
intentionally positioned the images such that the left image is 
located on the left side of the array and the right image is 
shifted by N pixels to the right, where N is determined by 
equation 1. 

       (1) 

Where width is the width of the input image (1024 in our case). 
The intent is to add a certain amount of phase into the JTC 
such that the resultant correlation peak will be located in the 
center of the leftmost image if no difference exists in the input 
images. Using the same example image as used in figure 4, we 
obtain the 4096x1024 image shown in figure 6. Please note 
that the background was changed from black to a dark gray to 
better depict the positioning of the two images in the 
4096x1024 image. In the actual tests the background was left 
black. 
 
Once the input array is populated a fast Fourier transform 
(FFT) is performed along the horizontal dimension (4096 
pixels), followed by a fast Fourier transform (FFT) performed 
along the vertical dimension (1024 pixels). We then calculate 
the modulus of the result and populate the input array with 
that data. The process is then repeated creating the correlation 
result. 
 

 
Figure 5: Example input to JTC. 

 
 
Figure 6 shows the JTC result using the input shown in figure 
5. Three peaks are visible. The peak enclosed by the box is a 
peak that is always present with this implementation of the 
JTC, sometimes referred to as the DC term or 0 Hz term. 
Since there is no positional difference between the left and 
right images shown in figure 5, the actual correlation peak(s) 
(circled) are located in the center of the image (leftmost image 
in figure 5), as expected. We have two peaks (circled) due to 
the mirroring nature of the Fourier transform. 
 
 

 
Figure 6: Example correlation output. 

 

However, as we found in an earlier study [17], when we 
positioned the images using the offset described by equation 
1, we would get a “flipping” of the axis as the object gets 
closer. During this study we found that by changing the offset 
we eliminate that “flipping” effect. The offset used is now 
show in equation 2. 
 

          (2) 
 

Where width is the width of the input image (1024 in our case). 
 
Figures 7 and 8 show the input and correlation output using 
the offset of equation 2. In figure 8, instead of using circles, 
we used arrows to point out the location of the peaks. 
 

 
Figure 7: Example input to JTC. 

 
 

 
Figure 8:  Example correlation output. 

 
3. RESULTS 

 
For the 24.13 cm (9.5 inch) camera separation, images were 
acquired at different distances ranging from 0.6096 m to 
6.096 m. For the 19.05 cm (7.5 inch) camera separation, 
images were acquired at different distances ranging from 
0.24384 m to 6.096 m. We plot the location of the peak versus 
the distance to the wall to find a clear relation. Coordinates of 
the peak are measured from center, since distance to the wall 
should not depend on the size of the image. Note that we take 
the absolute value of the coordinates since swapping the input 
images negates the peak’s coordinates. 
 
Since we collected data at a limited number of distances, we 
then applied a curve fit to produce a method applicable to any 
distance. For the 19.05 cm camera separation we found that 
the data was best represented by equation 3. 

      (3) 
Where X is the correlation peak location and Y is the resulting 
distance value.  
 
 
Table 1 provides the data used. The first column is the 
measured object distance (distance to cameras in feet), the 
second is the correlation peak location, the third column is the 
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distance derived from equation 3, the fourth is the difference 
between the actual and curve fit distance, and the fifth and 
sixth columns are the error, in inches and in cm, of the 
distance calculation using equation 3. Figure 9 provides the 
same data only plotted. The measured points are represented 
as dots with the curve fit data represented as the line. 
 
 

Table 1:  Data for 19.05 cm camera separation. 
Object Peak  Object Location Error 
Distance Location Distance Difference (cm) 
0.708 834 0.682  0.026 0.80 
0.792 761 0.743  0.048 1.48 
0.875 663 0.846  0.029 0.87 
0.958 577 0.965 -0.007 0.21 
1 500 1.104 -0.104 3.17 
2 255 2.074 -0.074 2.26 
3 167 3.072 -0.072 2.18 
4 122 4.099 -0.099 3.01 
5 97 5.050 -0.050 1.51 
10 47 9.607  0.393 11.98 
15 28 14.875  0.125 3.82 
20 19 20.259 -0.259 7.91 

 
Figure 9:  Distance vs peak location for 19.05 cm data using 

equation 3. 
As with the 19.05 cm camera separation, we only collected 
data at a limited number of distances for the 24.13 cm camera 
separation. Therefore, we again applied a curve fit to produce 
a method applicable to any distance. For the 24.13 cm camera 
separation we found that the data was best represented by 
equation 4. 

    (4) 
 

Where X is the correlation peak location and Y is the resulting 
distance value.  
 
Table 2 provides the data used. The first column is the 
measured object distance (distance to cameras in feet), the 
second is the correlation peak location, the third column is the 
distance derived from equation 4, the fourth is the difference 
between the actual and curve fit distance, and the fifth and 
sixth columns are the error, in inches and in cm, of the 
distance calculation using equation 4. Figure 10 provides the 
same data only plotted. The measured points are represented 
as dots with the curve fit data represented as the line. 
 
 

Table 2:  Data for 24.13 cm camera separation. 
Object Peak  Object Location Error 
Distance Location Distance Difference (cm) 
0.958 890 1.004 -0.046 1.41 
1.042 852 1.044 -0.002 0.07 
1.67 741 1.184  0.486 14.83 
2 374 2.184 -0.184 5.62 
3 248 3.158 -0.158 4.80 
4 186 4.088 -0.088 2.67 
5 148 5.018 -0.018 0.56 
10 70 9.840  0.160 4.89 
15 44 14.958  0.042 1.29 
20 31 20.534 -0.534 16.28 

 
An obvious question, since both camera separations can be 
modeled by a Harris curve, is what would be the error if one 
were to simply average the two sets of parameters into a single 
Harris curve? Creating a curve represented by equation 5. 

     (5) 
 

Where X is the correlation peak location and Y is the resulting 
distance value.  

 
Figure 10:  Distance vs peak location for 24.13 cm data using 

equation 4. 
 

The resulting errors are much larger than when using a curve 
specific to the camera separation. For the 19.05 cm camera 
separation the minimum error increases from 0.316 inch 
(0.80 cm) to 1.735 inch (4.41 cm) while the maximum error 
increases from 4.716 inch (11.98 cm) to 81.057 inch (205.88 
cm). For the 24.13 cm camera separation the minimum error 
increases from 0.028 inch (0.07 cm) to 1.86 inch (4.72 cm) 
while the maximum error increases from 6.411 inch (16.28 
cm) to 32.336 inch (82.13 cm). The resulting errors are much 
larger than when using a curve specific to the camera 
separation. We also provide a plot of the 24.13 cm camera 
separation data using equation 5 in figure 11. 
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Figure 11:  Distance vs peak location for 24.13 cm data using 

equation 5. 
 

4. CONCLUSION 
 
Work to date has achieved its goal of proving that distance 
can be recovered from a joint transform correlation peak. We 
have also shown that a relatively simply Harris curve can be 
used to extrapolate distances between known measured points 
with very good accuracy (15 cm or less). It is important to note 
that this formula was generated under the specific conditions, 
including a 73° field of view and the two separations used. As 
we have shown, the specific parameters making up the 
interpolation formula is very dependent on the camera 
separations; otherwise, as shown, the error becomes much 
larger, probably too large for most applications. Finally, at 
this time the method has not been tested in/onboard an 
application such as the CubeSat platform (for which this 
research was originally conceived). The work to date and 
near-future work is entirely proof of concept, and we may 
expect that applications follow once a strong foundation is 
laid and such satellite(s) can be fabricated and launched. 
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