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ABSTRACT 

This paper presents the results obtained with the 
application of a Polynomial Neural Network (PNN) 
classifier for the detection and localisation of craniofacial 
landmarks, namely the ear tragus and eye corners. The input 
feature vector of the classifier is derived by Gabor filtering, 
using masks over two scales and four orientations. With the 
use of a PNN as classifier, the feature input experiences a 
dimensional expansion so that a small neighbourhood for 
the landmarks is preferable. This in turn influences the size 
of the Gabor masks that can be used, namely the coverage of 
the Gaussian envelope at the smallest frequency. This paper 
analyses the trade-off between coverage of filter envelope 
and the dimensionality of the feature vector. Detection rates 
obtained from tests on images from three face databases are 
given. The robustness of the classifier to variations in 
intensity, noise, scale and rotation is analysed. The results 
show that a PNN based on Gabor features, gives good 
performance for the extraction of the ear and eye features. 
 
Keywords – Feature Extraction, Face Processing, Ear 
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1 INTRODUCTION 
Feature extraction is an important task in Face Processing 

as several techniques rely on detecting salient features for 
subsequent processing. Typically, facial features have been 
used for image normalisation [1], pose estimation and 3D 
face modelling [2-5], face detection in what is known as 
bottom-up feature-based methods [6-9] and face recognition 
[10, 11]. Down the history line of Face Processing, a clear 
trend in feature extraction has been observed from 
conventional grey-level processing [11] to the state-of-the-
art favouring colour processing techniques [3, 12-18] and 
Gabor filtering [10, 19-21]. 
 

A general framework for face processing consists of face 
localisation, facial feature extraction and face recognition 
[22]. Face detection and recognition can in general be 
treated as pattern classification problems, where statistical 

methods [23-27] and neural network solutions [6-8, 19, 20, 
28] have taken first stage in favour of methods employing 
decision rules based on geometry/symmetry of features 
extracted by grey-level processing, e.g. corners, edges, 
ridges and contours [29]. The reason for this shift in the 
design of face processing solutions is the ability to use large 
training sets for machine learning, which have given very 
good performance results, whereas methods relying solely 
on decision rules perform well only when operating 
conditions such as illumination, scale and rotation are 
closely controlled. However, features calculated from grey-
level operators, such as gradient values and integral 
projections [30, 31] continue to be used for gross 
localisation of features, specifically in setting the window 
for the area of interest in which other approaches are 
applied to search for the desired feature. 
 

Although extraction of eye features has been widely 
reported in the literature, the extraction of ear features has 
been much less popular. Still research has been carried out 
in the use of ear as a recognition biometric feature both in 
2D [32] and 3D [33, 34]. The motives for using ear as a 
biometric are its invariance to emotions, rigid shape and 
size constancy over time. Ear features have been found to be 
of high discriminative value in biometric personal 
identification [33-36]. 
 

1.1 Research Context 
 

Based on the very good performance of statistical methods 
reported in literature, the different craniofacial feature 
extraction algorithms have been developed as a pattern 
classification paradigm using neural networks. Separate nets 
have been trained for the ear tragus and inner and outer eye 
corners. One of the objectives of the research work has been 
the extraction of these craniofacial landmarks in different 
views around the head, since it forms part of a registration 
framework in which craniofacial landmarks need to be 
reconstructed in stereo views. Thus the feature extraction 
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tasks are attempted on frontal and profile views as well as 
on views midway between the frontal and profile view at an 
azimuth angle of 45 degrees. The ability of the chosen 
approach to operate with scale, rotation, intensity and noise 
variations was assessed from images provided in the AR 
[37], FERET [38, 39] and CAS-PEAL [40] databases. 
 

Specific literature on ear tragus extraction using an 
automated paradigm has not been encountered during the 
literature review, so the results obtained would provide 
estimates of detection rates corresponding to a craniofacial 
landmark not tested earlier. On the other hand, the results 
obtained with the eye corners can be compared with other 
researchers’ works. The type of neural network used is a 
Polynomial Neural Network (PNN). 

 
The discriminatory power of a PNN for classification 

problems has been shown by Huang et al. [19, 28, 41] for 
face detection, where it was described to have a better 
performance than a MultiLayer Perceptron (MLP). PNN has 
been successfully applied for the recognition of handwritten 
character [42]. PNN combines the input vector by finding 
product combinations between the input vector elements 
[43]. The concomitant increase in the dimensionality of the 
feature space can be reduced by Principal Component 
Analysis (PCA). For the results presented, the area of 
interest (AOI) for the different features have been set 
manually. Automated methods to determine these AOIs can 
be developed based on gradient and colour information. 

 

2 CRANIOFACIAL LANDMARK EXTRACTION 
This section describes the methodology adopted to 

localise the eye corners and ear tragus given an AOI in 
which these features are found. The design of the Gabor 
filter set is described first, followed by its application for 
extracting the craniofacial landmarks. 
 

2.1 Gabor Filter Set Design 
 

The Gabor filter was first proposed by Dennis Gabor in 
1946 [44, 45] to provide a basis for synthesising signals in 
the time and frequency domain simultaneously. This has 
been known to involve uncertainty and the Gabor filter has 
been shown to provide the minimum uncertainty in this 
respect. Gabor filters have since been used as a feature 
extraction tool in addition to its original application for 
signal synthesis. The 2D-Gabor filter can be represented in 
the normalised form as proposed in [46]: 
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x and y are the spatial dimensions. The Gabor filter is a 

complex sinusoidal plane wave modulated by a Gaussian 
envelope, the frequency of which can be varied by the 
parameter f.  and  set the standard deviations of the 
Gaussian envelope along the two spatial dimensions. Angle 
 controls the orientation of the filter. Figure 1 shows the 
real part of a Gabor filter. 
 

 
Figure 1: Example of Real part of Gabor filter  

 
With the flexibility of the Gabor filter to sweep a wide 

range of orientations, 8 orientations are normally chosen to 
cover a full revolution and 5 scales to vary the frequency. 
The scales are normally chosen to be multiples of 2 so as to 
keep the frequency bandwidth to 1 octave. So it is a common 
practice in Machine Vision applications to use 40 masks for 
feature extraction. The frequencies and orientations are then 
given by: 
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The 2-D Gabor representation in the frequency domain 

can be formulated as follows: 
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The time and frequency representations clearly show the 

correspondence of high frequency to a sharper Gaussian 
envelope and lower frequencies to a broader Gaussian 
envelope. For a given mask size, it is desirable to choose the 
filter parameters so that the Gaussian envelope covers the 
space grid adequately; a coverage of up to two standard 
deviations in the two dimensions can be used as a rule of 
thumb to ensure adequate coverage. Clipping the Gaussian 
envelope before it reaches a low value gives rise to the 
‘ringing effect’ in the frequency domain. Another 
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consideration in setting the filter parameters for feature 
extraction is to use a spatial frequency less than or equal to 
the Nyquist frequency of 0.5 cycles per pixel. Figure 2 
shows the magnitude of Gabor filter set over 5 scales and 8 
orientations, where the coverage over two standard 
deviations are shown with equal spread in the two 
dimensions (==1). The frequency domain representation 
of this filter set is shown in Figure 3. 
 

 
Figure 2: Magnitude of Gabor Kernels over 5 scales and 8 orientations 

with fmax = 0.5 cycles per pixel, ==1 
 

 
Figure 3: Frequency Distribution for fmax = 0.5 cycles per pixel, ==1 
 

The filter design for the feature extraction has a trade-off 
between dimensionality of the resulting feature set and the 
maximum operating frequency. On the high end of the mask 
size, a large feature set leads to a classifier difficult to train 
and needing a correspondingly large training set, while on 

the high end of the frequency range, aliasing may occur due 
to proximity to the Nyquist frequency. Figure 4 shows the 
change in the frequency distribution by making the 
parameters  and  0.5 and 2 respectively. Figure 5 shows 
that by using a value of 1.35 for  and  leads to a frequency 
coverage along the different orientations where the plots just 
touch each other. 
 

 
Figure 4: Frequency Distribution for fmax = 0.5 cycles per pixel, (a) 

==0.5 (b) ==2 
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Figure 5: Frequency Distribution for fmax=0.5 cycles per pixel, 

==1.35 
 

The filter set shown in Figure 4(a) is such a case where 
the frequency bandwidth of the filters at the lowest scale 
completely encompass the bandwidth of the filters at the 
other scales. On the other hand, having gaps between the 
frequency coverage of the different filters leads to poor 
generalisation of the feature set over untested data. In this 
case, Figure 4(b) shows a frequency plot that has a sparse 
coverage and will lead to poor generalisation. By choosing 
to have equal coverage in the two dimensions, the resultant 
circular frequency coverage cannot be stacked together 
without leaving gaps in between, as shown in Figure 5. So 
in practice, the filter set is designed as a compromise to 
have some degree of overlap.  

The filter set design can be carried out based on the 
dominant spatial frequencies of the features to be extracted 
in conjunction with findings obtained from psycho-visual 
tests. For example, psycho-visual experiments have shown 
that the Human Visual System has an angular separation of 
approximately 30 with a frequency separation of an octave 
[47]. For the filter design task at hand, the aim was to make 
sure that the spatial coverage of the Gaussian envelope was 
adequate for the feature window size and the latter was 
chosen to give a feature space with a low dimensionality. As 
for the dominant frequency, this cannot be selected for the 
eye corner and the ear tragus based on spectral analysis as 
there are likely to be differences among individuals, 
especially for the ear tragus. 
 

However, at the scales of the images used, the 31x31 grid 
size selected for representing the different landmarks (from 
which the central 15x15 locations are employed to form the 
feature set) was found consistently to contain adequate 
information in the neighbourhood of the central location. So 

knowing that the information contained in the 31x31 
window, to be captured by convolution with a 15x15 kernel, 
was adequate for representing the landmarks, the filter 
design strategy adopted has been to use a 15x15 grid size for 
the Gabor kernels, and to analyse the optimal coverage of a 
Gaussian envelope in such a way that it reached 
approximately two standard deviations at the periphery of 
that 15x15 grid. The final filter set was subsequently derived 
based on the results of this analysis. A 45 angular spacing 
has been used as opposed to a 30 spacing due to the lesser 
number of kernels obtained over the same angle range (0 to 
180), which is a critical factor with Polynomial Neural 
Networks and due to the commonality of using 45 in the 
Face Processing literature. Figure 6 shows a 15x15 grid with 
an adjacent Gaussian envelope with standard deviation of 4 
pixels so that at the two extremes of the grid in a given 
dimension, the function reaches a low value (it reaches 
approximately two standard deviations at the periphery of 
the 15x15 grid). 
 

 
Figure 6: 15x15 grid and Gaussian envelope with  = 4 

 
Since the same spread is used in the two dimensions, the 

same Gaussian profile exists in the other dimension, but 
only one of them is shown in Figure 6. With two scales and 
an octave separation between the frequencies, this Gaussian 
envelope would correspond to the smallest frequency and 
the next higher frequency would be twice this frequency. A 
1-D Gaussian function with zero mean has the following 
form: 
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Figure 7 shows the two Gaussian envelopes obtained at 
these two frequencies with equal spread in the two 
dimensions (==1) 
 

 
Figure 7: Gaussian Envelopes (a) f = 0.18 cycles per pixel (b) fmax = 0.36 

cycles per pixel with ==1 
 

The corresponding frequency spectrum plotted at 2 
standard deviations from the mean is shown in Figure 8. 
From the frequency plot and the value obtained for fmax 
(0.36), it is clear that the Nyquist frequency is close. The 
frequencies of the Gabor filter can be moved away from the 
Nyquist limiting value of 0.5 by halving the frequency so 
that f = 0.18 and fmax = 0.09. However making only these 
changes would expand the Gaussian envelope as the 
sharpness is formulated in terms of the frequency. 
 

 
Figure 8: Frequency Distribution at two standard deviations 

 
To keep the same sharpness at before,  and  can be 

made 0.5 so that effectively, the ratios f/ and f/ do not 
change. The Gaussian envelopes are shown in Figure 9. As 
expected, the Gaussian envelopes does not change, but the 
frequency distribution changes as shown in Figure 10. 
 

 
Figure 9: Gaussian envelopes with frequencies and normalization factors 

halved 
 

 
Figure 10: Frequency Distribution with frequencies halved 

 
The overlapping of frequency contours at the two 

frequencies means that the masks obtained by halving the 
maximum frequency do not contribute to the bandwidth of 
the filter set. Since it was clear that for such a small grid 
size as 15x15, a trade-off between Gaussian coverage and 
maximum usable frequency is inevitable, a maximum 
frequency of 0.25 per pixel was used with ==1. The 
resultant Gaussian envelopes and frequency distribution are 
as shown in Figure 11 and Figure 12 respectively. While the 
coverage of the Gaussian envelope is adequate for the 
maximum frequency, the corresponding coverage for a 
frequency of 0.125 per pixel is not optimal and will lead to 
ringing effect in the frequency domain. 
 

The ringing effect is known to cause blurring at edges 
when a filter with a sharp cut-off is applied to a image. 
However, since the aim here is feature extraction rather than 
image synthesis, a fair degree of ringing due to sharp cut-off 
can be tolerated although ideally a filter with little ringing 
would be preferred. Moreover, the ringing effect will have 
the same effect across the different feature windows 
collected for training. Since the features obtained are first 
analysed by PCA, the adverse effect caused by ringing is 
likely to be suppressed. 
 

 
Figure 11: Gaussian envelopes for (a) f = 0.125 cycles per pixel (b) fmax 

= 0.25 cycles per pixel with ==1 
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Figure 12: Frequency Distribution for fmax = 0.25 cycles per pixel with 

==1 
 

Due to the lengthy process of validating the suitability of 
these filter parameters and the mask grid and feature 
window sizes, a study of any improvement in performance 
of the classifier over a given training set size has not been 
carried. It is certainly something worth investigating, e.g. 
using Gabor mask sizes of 20x20 with 40x40 feature 
windows, 25x25 mask size with 50x50 feature windows and 
so forth. The ultimate judge of the suitability of such a filter 
design paradigm would be the ability of the trained classifier 
to discriminate between feature and non-feature windows. 
 

From the response of the Gabor masks over the two scales 
and four orientations, illumination invariance can be 
achieved by dividing the responses by the root mean square 
value of the magnitudes of the responses over all the scales 
and orientations used. If Gk,m represents the response at 
scale k and orientation m at a given location (x, y), then the 
normalisation step for illumination correction can be 
expressed as follows [21]: 
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Alternatively, Huang et al. [19] performed illumination 
correction by subtracting a best-fit intensity plane from the 
image before applying the Gabor masks. Gabor kernels were 
generated for frequencies of 0.25 and 0.125 cycles per pixel 
with unity values for  and  and orientations of 0, 45, 90 
and 135 degrees. These Gabor kernels were convolved with 
the 31x31 eye corner windows from which the central 15x15 
region was selected to form the Gabor feature vector. 8 such 
15x15 Gabor response matrices were obtained over the two 
scales and four orientations applied. The Gabor response, 
being complex, offers the possibility to use both the phase 
and magnitude to form the feature vector. However, only the 
magnitude was used since the feature vector based on both 
the phase and magnitude led to of high dimensionalities, 
making it difficult to train the neural networks. The next 

section describes how these feature vectors were used to 
train a PNN for locating eye corners. 

2.2 Eye Corner Extraction 
 

Face images from the AR database [37] were employed 
for developing the algorithm to extract eye corners in the 
frontal view. The AR database offers four images for a given 
subject with variations in lighting. These are: 

1. Normal lighting 
2. Bright illumination from the left side of the face 
3. Bright illumination from the right side of the face 
4. Bright illumination over the whole of the face 

 
These variations in lighting were used to test the 

robustness of the algorithm to changes in illumination. One 
hundred samples of size 31x31, with the outer eye corner 
located at the centre, were collected from these images.  A 
1800-element vector was thus generated for each image 
sample (15x15 central pixels from the 31x31 window over 2 
scales and 4 orientations) from the normalised Gabor 
magnitude response. These samples were used to generate 
the feature vectors for the true positive training set of the 
neural network for which outputs of +1 were set.  

 
Additionally, samples where the outer eye corners were 

not in the central position of the 31x31 window were 
collected. Outputs of -1 were set for these samples. A 
Polynomial Neural Network (PNN) was used as the 
classifier for the feature detection and localisation. The 
neural network had one neuron in the output layer and the 
number of neurons in the input layer was related to the 
dimensionality of the feature vector. Figure 13 shows the 
network architecture adopted. 
 

 
Figure 13: PNN Architecture 

 

The overall transformation of the network can be 
expressed as: 
 

 )).,(*( bzzzWTQ T   
 

Where T is the activation function, W is the input weight 
matrix, b is the bias, z is the input vector and from it, the 
product combinations z.zT is derived. The output of the 
network is Q. The dimensional expansion in finding product 
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combinations of the input vector makes it computationally 
intensive to directly use the 1800 elements of the Gabor 
feature vector as input since it would increase the number of 
dimensions to 1800*1800 + 1800. Additionally, having a 
large dimensionality for the input feature set generally 
means that the neural network has to be trained over a 
larger set so as to cover the variation of the input vector 
sufficiently. This is a necessary condition for neural network 
solutions to work robustly [14, 22]. So the feature set 
obtained for the positive samples are first mapped to a lower 
dimensional basis using (PCA). 
 

The output of PCA is a set of eigenvectors and 
eigenvalues, from which the contribution of each 
eigenvector can be gauged by its corresponding eigenvalue. 
Although the selection of the number of dimensions to 
retain in the dataset is arbitrary, the minimum number of 
dimensions was determined from the eigenvalue spectrum 
by finding the eigenvalue number at which the sum of 
eigenvalues arranged in descending order, starting from the 
smallest and summing towards the largest, equals the largest 
eigenvalue. This process is illustrated in Figure 14. The 
feature vector has a dimension of 1800 and thus 1800 
eigenvalues are obtained. The largest eigenvalue is found to 
have a size of about 0.02. The selection of the number of 
dimensions to be retained starts by summing the 
eigenvalues’ magnitudes from the 1800th towards the first, 
and the point where the cumulative sum is equal to the 
largest eigenvalue is used as an indication of the minimum 
dimensionality to be retained. 
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Figure 14: Example of an Eigenvalue Spectrum 

 
It was found that neural networks trained from product 

combinations calculated from feature vectors of 20 
dimensions (giving about 400 elements) were fast to train 
and yielded very low mean squared errors, those trained on 
feature vectors with 25 dimensions (giving about 600 
elements) were also relatively easy to train and gave low 
mean square errors, but neural networks trained on feature 
vectors with more than 30 dimensions (giving about 900 
elements) were more difficult to train. So in subsequent 
selections of the number of dimensions, 20 and 25 have 

been used wherever appropriate. For the case presented 
above in which 9 was the minimum dimension, 20 
dimensions were retained. The dataset is then mapped onto 
the reduced dimensional space and the product 
combinations are computed to act as the input for the PNN. 
Additionally, a further input is computed based on the 
mapped (z) and original (X) datasets by finding the 
following distance measure: 
 

   22)( zXXD  

 
This distance measure is added to the input feature vector. 

For the example considered earlier where it was decided that 
20 dimensions would be retained, this means that the input 
feature vector to the PNN is 421 (20*20+20+1) instead of 
420. The resultant feature set is used to train the PNN. This 
procedure was followed for extracting the different 
landmarks. 
 

2.2.1 Experimental Results 
 

The first test performed was for the outer eye corner for 
normal and high illumination images. The criterion for 
successful localisation was set within a 3 pixel margin of the 
eye corner. The ground truth for the eye corner is based on a 
subjective inspection. One hundred positive samples taken 
from four images of twenty-five subjects were collected for 
the normal and high illumination scenarios. The resultant 
dataset with a dimensionality of 1800 was analysed by PCA 
and from the method based on the eigenvalue spectrum 
described above, 7 dimensions were obtained; so 20 
eigenvectors were retained. For subsequent testing, the 
trained neural network was applied on 300 sample images of 
subjects not included in the training set, giving a detection 
rate of 94%. The method of illumination correction used in 
this case was subtraction of an intensity plane of best-fit. 
Figure 15 shows some output samples for the outer eye 
extraction. 
 

 
Figure 15: Examples of Outer Eye Corners Results [37] 

 
It is worth mentioning that the same tests were run using 
the intensity values of the central 15x15 pixels as feature 
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input and a detection rate of 86% was obtained. This 
confirmed that the Gabor features achieved better results. 
Moreover, it was evident during testing that the bright 
images performed poorer compared to normally lit ones, 
despite their being part of the training set. Thus the next 
tests performed for the inner eye corner were based only 
on face samples taken under normal lighting conditions. 
These amount to two per subjects in the AR database [37] 
giving fifty samples for training for the same 25 subjects 
used previously. 
 

For the tests with the inner eye corner, illumination 
invariance was achieved by applying Equation (6). A 
minimum of 9 dimensions was obtained from PCA, based 
on which 20 dimensions were retained. When tested over 
150 subjects not used as part of the training set, 149 
successes were recorded. The only case where the 
algorithm was deemed to have failed was when the PNN 
response was below 0.5 although the position was correct. 
Figure 16 shows output samples for inner eye corner 
extraction. 

 

 
Figure 16: Examples of Inner Eye Corner Extraction Results [37] 

 
Since the AR database contains only frontal images, the 

FERET [38, 39] database was employed to test the same 
approach for extracting the outer eye corner in the profile 
and intermediate views. However, the face images given in 
the FERET database are taken with no control over the scale 
and it was observed that the angles are not strictly controlled 
as well. The images given in the FERET database are taken 
to emulate real-life conditions, and for processing such 
images using statistical methods, it is common to employ 
different templates for discrete ranges of angles, and 
choosing the template that gives the best fit. The scale is 
normally compensated by using an image pyramid. 

 
This methodology has not been adopted in extracting the 

craniofacial features in order to test the performance of the 
proposed PNN classifier in the presence of such variations.  
The hypothesis is that the eye corner would appear in the 
31x31, although differently and that the PNN would be able 
to learn these variations. Furthermore, the profile views 
were mostly correct in orientation and could be adjudged to 
be so. However, this was harder to do for the 45 degrees 
intermediate view images. The tests were carried out on the 

whole set of images given in each of these category without 
any pre-selection. These tests would show the ability to 
operate in the presence of variations in scale and 
orientation. 
 

The experiment to extract the outer eye corner in the 
profile view from the FERET database was carried out on a 
training set containing 100 face images. The feature vectors 
corresponding to these 100 face images to train the PNN 
were calculated as described above. From PCA, the 
minimum number of dimensions required was 24, based on 
which 25 dimensions were used. The testing of the trained 
neural network was done on 118 face images not included in 
the training set, from which a detection rate of 70% was 
obtained. It was noticed that the neural network was harder 
to train, especially for the false positives obtained. The 
training set was augmented with the outer eye corner 
samples which failed from the 118 profile images. PCA was 
performed on the new training set, this time a minimum of 
29 dimensions was required. So 30 dimensions were 
retained. 
 

The increase in the number of dimensions from 25 to 30 
correspondingly increased the number of dimensions of the 
polynomial vector set from 641 (25*25+25+1) to 931 
(30*30+30+1). So the resultant network was even harder to 
train and achieved a mean-square error few orders of 
magnitudes more than that obtained from tests with the AR 
database. This is likely to be due to the variation in scale 
and the size of the neighbourhood captured in the mask 
being not discriminative enough; it was generally found that 
the neural network performed badly on the large scale 
images and either failed due to occlusion of the eye corner 
by the eyelashes or gave a high net response at the 
intersection of the eyelashes with the edge of the eyelid, 
most probably due to the fact that in large scale images, this 
would appear similar to an eye corner. 

 
The latter problem did not occur for images of smaller 

scale. Tests on the neural network trained over the 
augmented set gave a detection rate of 75% when tested over 
212 profile images. The marginal improvement in detection 
rate and the difficulty in training the neural network were 
factors against the hypothesis that the proposed method can 
be used at different scales. The neighbourhood size chosen 
should be adequate to contain enough information about the 
landmark of interest. 
 

Tests were also performed on the intermediate 45 degrees 
views from FERET, where in this case the images have an 
added variation in that the views were not controlled to be at 
45 degrees. So in addition to the variation in scale which 
was found to deteriorate the network performance, the 
network was also assessed in its ability to operate with 
considerable changes in the face orientation. A performance 
only as good as the previous 75% was expected from these 
tests. 100 outer eye corner windows were collected and used 
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to form the training set. PCA yielded a minimum number of 
22 dimensions, 25 dimensions were retained. 
 

The same trend in the neural network being harder to 
train and leaving a higher mean-square error as compared to 
that obtained with the AR database was observed. 118 
images, not part of the training set, were used to test the 
detection accuracy, out of which 64% were successful. The 
training set was augmented with those that failed from the 
118 images and the minimum number of dimensions needed 
was again higher at 28. 30 dimensions were retained to form 
the input feature set. Upon testing with 240 new images, a 
detection rate of 67% was obtained. So it can concluded that 
the variation in rotation also has an adverse effect on the 
network performance. 
 

One face database that uses a camera arrangement with 
controlled scale and orientation is the CAS-PEAL face 
database [40]. Part of the CAS-PEAL face database has been 
made available for research as CAS-PEAL-R1 database. 
This version of the database was used for performing similar 
tests as described earlier. With control on the scale and 
orientation, a better performance was expected. Tests could 
be performed on the intermediate 45 degrees views only as 
the profile views of the original database are not included in 
the current reduced version. 

 
150 images containing the outer eye corner in the 

intermediate view were collected and processed with the 
Gabor masks to generate the feature set. PCA was applied 
and the minimum number of dimensions obtained from the 
eigenvalue spectrum method was 15; 20 dimensions were 
retained. The trained network was tested on 208 face images 
not used as part of training for which a detection rate of 
92% was obtained. The neural networks were easy to train 
and yielded very low residual error. The detection rate 
improved to 94% when the false negatives were added to the 
training set and the trained PNN was tested on 218 images. 
 

2.2.2 Network Tolerance to Illumination Changes and 
Noise 

 
This sections aims to assess the robustness of the 

proposed feature extraction methodology in general to 
variations in illumination and random noise. The trained 
neural network obtained from the AR database is used for 
this purpose and tested over a single person’s image. The 
results of this assessment can be applied to correct for 
brightness in the area of interest, whereas the level of noise 
at which the network fails gives an indication of its 
tolerance to typical noise levels encountered in standard 
camera devices. For testing the performance of the network 
to illumination changes, gamma manipulation was used to 
artificially alter the intensity and contrast of the eye 
window. The set of images obtained are shown in Figure 17 
with reference to a  for each image. The gamma values are 

used as references to the different images to show the 
variation of the intensity and standard deviation of the 
images in Figure 18. 
 

 
Figure 17: Eye windows processed by gamma manipulation [37] 

 
 

 
Figure 18: Variation of Mean Intensity and Standard Deviation with 

gamma 
The range of the mean intensities of the images show that 

over the gamma values considered, the variation from 
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normal lighting conditions includes realistic changes. So the 
result from this analysis can be used to predict the 
performance of the feature extraction method. It should be 
noted that that intensity correction by division with the root 
mean square value of the magnitude of the Gabor response 
over the scales and orientations used was still applied and 
the failing of the system was in the presence of such a 
correction. 
 

The trained PNN was tested over these different images. 
The network did not give any false positives for these 
images; the network response was zero when it could not 
detect an eye corner in the image. The network response for 
the different images, referenced by their gamma values, are 
shown in Figure 19.  
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Figure 19: Net Response for the different images obtained by gamma 

manipulation 
 

From the variation of the network performance with the 
changes in image intensity and contrast brought about by 
gamma manipulations, the range of gamma over which the 
network performance is satisfactory can be set at 0.55-1.85, 
assuming a 0.7 threshold is used for the minimum network 
response for accepting a given pixel as the location for a 
feature. This corresponds to an intensity range of 
approximately 60 to 160. So the network is found to tolerate 
changes in illumination over an acceptable range, and in a 
well-illuminated environment, it should operate properly. 
 

A common source of noise in image acquisition devices 
due to the digitisation of the image array and counting of 
photons on the camera sensor array to yield the intensity of 
the image can be modelled by Gaussian probability 
distribution function. Figure 20 shows examples of images 
obtained for the eye windows when zero mean Gaussian 
noise was added to varying standard deviations. The 
standard deviation given for each of the images is 
normalised to the range [0 1], applied to a normalised grey-
scale intensity image. 
 

 
Figure 20: Eye windows corrupted with zero mean Gaussian noise of 

different standard deviations [37] 
 

Being of random nature, the behaviour of the trained 
network cannot be gauged on a single degraded image. 
While it is expected to have a degradation in the network 
performance with the addition of more Gaussian noise, the 
behaviour of the network did not show a monotonic 
degradation in performance. For example, it was found 
during testing that addition of Gaussian noise at a standard 
deviation of 0.0009 gave a net response of 0.11 (1 used to 
signify presence and -1 to signify absence of feature) but a 
standard deviation of 0.0010 gave a net response of 0.98. 

 
A better understanding of the effect of Gaussian noise on 

the network performance can be obtained by testing over a 
larger number of images corrupted by Gaussian noise. The 
results are summarised in a graph in Figure 21, where the 
network responses with respect to standard deviation of the 
Gaussian noise over 10 images have been summed up. 
These tests were carried out on progressively increasing 
standard deviations until the network was found to give zero 
values consistently over the most of the ten images. 
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Figure 21: Variation of network performance with Gaussian noise 

 
It is common practice to perform low pass filtering to 

reduce Gaussian noise in an image. A similar test 
methodology was used as described above to assess the 
performance of the network when a 3x3 equally weighted 
averaging filter is used prior to the application of the 
network. The graph in Figure 22 shows the sum of the 
network performance as a result of applying Gaussian noise 
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distributions with different standard deviations. From these 
two graphs (with and without averaging), it is clear that 
averaging contributes to a better network performance. For 
example, if a threshold of 0.7 for the network performance 
is used to accept a location as a feature, then over the 10 
images, a value of 7 can be used to decide the point where 
the performance of the network degrades to unacceptable 
levels, although from the results obtained, the network 
behaved in a non-monotonic manner as described before. 
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Figure 22: Variation of network performance with Gaussian noise and 

averaging filter 
 

Still for sake of comparison, with averaging, a sum of 7 
corresponds to a standard deviation between 0.003 and 
0.004 whereas without averaging, it is between 0.001 and 
0.0015. Another way to assess the network performance is to 
look for the range of standard deviations over which all of 
the ten responses were above 0.7. For the case without 
averaging, the last standard deviation value at which all the 
images gave correct localisation and high enough net 
response (> 0.7) is 0.0007 as the network failed to give any 
value at one of the images at 0.0008 standard deviation. 

 
On the other hand, with averaging, the last standard 

deviation at which the responses for all the ten images are 
correct is 0.0012, with a value of 0.46 obtained for one of 
the images at 0.0014 standard deviation. Since averaging is 
found to have a definite improvement in the network 
performance, it can be effectively applied as a pre-
processing step. Furthermore, based on a visual inspection 
of the images shown in Figure 20, the levels of Gaussian 
noise at which the performance of the network with 
averaging experiences significant degradation will not be 
encountered in practice with a camera of reasonable quality, 
so the performance of the network in the presence of 
Gaussian noise can be validated to be satisfactory. 
 
 
 

2.3 Ear Tragus Extraction 
 

The same methodology was adopted for ear tragus 
extraction as for the eye corner extraction, with the use of 
the PNN as a classifier and Gabor masks for feature 
extraction. Normalisation was achieved by dividing by the 
root mean square magnitude of the Gabor responses. 
However, during the training set collection, it became 
evident that the ear structure varies considerably more from 
subject to subject than the eye corner. The variation occurs 
in size, shape and complexion of skin. With the variation in 
the size of the ear structure and due to the fact that the 
FERET database [38, 39] was used for the initial training 
and testing where the images have large variations in scale, 
scaling was applied to make sure the chosen 31x31 window 
contained the ear tragus, the anti-tragus and the valley 
linking these two (Figure 23). 
 

 
Figure 23: General outside ear anatomy and desired ear structure to 

appear in 31x31 window [38, 39] 
 

Scales of 1, 0.9, 0.8, 0.7 and 0.6 were used during 
collection of the training set; for a given image, the 31x31 
window containing the desired ear structures was saved as a 
training sample. Samples where this structure did not 
appear were also collected and used as true negatives in the 
training set. On the other hand, tests on the CAS-PEAL 
database [40] did not necessitate any scaling to fit the ear 
structure inside the 31x31 region as described later. 
 

2.3.1 Experimental Results 
 

The first training was done on 100 profile images from 
the FERET database [38, 39], followed by tests on 90 
samples not used during training. A detection rate of 76% 
was achieved under a similar criterion of 3 pixels margin 
from the reference position. The false negative samples were 
collected and added to the training set for the next training 
phase. The PNN was trained on the new training set and the 
false positives collected during subsequent testing. The 
trained neural network was tested over 181 face samples not 
used for training, out of which 169 were successful (93% 
detection rate). The improvement in detection rate can be 
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attributed to the inclusion of more shape variations of the 
ear in the training samples. Further inclusion of false 
negatives and training over more samples is expected to 
further improve the accuracy. Figure 24 shows output 
samples for the ear tragus extraction. 
 

 
Figure 24: Examples of Ear Tragus Extraction Results [38, 39] 

 
The highest response over the different scales was chosen 

to be the one defining the location of the ear tragus. The 
performance of the network for images used from the 
FERET database is likely to be hampered due to the large 
changes in the scale of the images. Compared to the 
performance of the PNN-Gabor features method on outer 
eye corner extraction on the same images from the FERET 
database, it can be concluded that the use of different scales 
definitely improved the performance of the network, and as 
pointed out earlier, the profile images were close to the 
correct orientation, so scaling helped to make the network 
invariant to scale changes. 
 

The results obtained from the FERET database on 
intermediate 45 degrees views are presented next. As 
mentioned earlier, choosing images from the FERET 
database that are taken close to or at 45 degrees proved to be 
much harder than for the frontal or profile view. The ear 
tragus extraction has been done over several scales, so the 
resultant degradation would be mainly due to rotation. The 
initial training set was built from 100 face images given in 
the intermediate view termed as the Left 45 degrees category 
in the FERET database. 

 
A similar procedure was used to generate the Gabor 

feature vector consisting of 1800 element for each image, 
and from the 100 samples, the resulting feature space was 
analysed by PCA. From the eigenvalue spectrum, the 
minimum number of dimensions found was 17; 25 
dimensions were selected to form the basis of the reduced 
feature space. The trained PNN was tested with the 
remaining 81 images in that category in which the ear was 
not occluded by hair. 59 of these gave a positive detection, 
representing about 73% detection rate. The false negatives 

from these 81 images were used in the next training phase 
to augment the training set. 

 
With 19 dimensions obtained as the minimum to use, 25 

dimensions were again retained. Testing was then done on 
mirrored images from the Right 45 degrees category. Out of 
150 images, 122 gave satisfactory results, representing a 
detection rate of 82%. So compared to the results obtained 
with the outer eye corner extraction in the intermediate 
view, the better performance can be attributed to the 
compensation for scaling, but the lower performance as 
compared to extraction from the profile view can be 
explained by the changes in rotation involved. 
 

As pointed out earlier, the CAS-PEAL face database uses 
a camera arrangement where rotation and scale can be 
adequately constrained. 150 images were used to collect ear 
tragus windows without any scaling applied since the 
desired ear structure were contained in the 31x31 window 
sizes. PCA was applied on the magnitude of the Gabor 
response obtained over the same number of scales and 
orientations. The minimum number of dimensions required 
was 17; 20 dimensions were retained. The trained network 
was tested on 156 face images not used as part of training 
for which a detection rate of 99% was obtained. This again 
shows the ability of the chosen approach to localise the 
desired landmarks for adequately constrained scale and 
rotation images. 

 

3 DISCUSSION AND CONCLUSION 
The general theme of this paper has been the testing of a 

Polynomial Neural Network (PNN) classifier with Gabor 
features as input vector for the extraction of the ear tragus 
and eye corners. The tests performed in the presence of 
illumination variations showed the importance of having 
images occupying a dynamic range with no significant 
number of pixels having intensity values close to saturation 
or black level clipping. Having a normally lit image gives 
the possibility to use image enhancement techniques to 
correct for a dark or bright image for improving the network 
performance. For example, the intensity range obtained 
from the assessment of the network tolerance to illumination 
variation was 60 to 160. Gamma correction can thus be 
applied to shift the intensity distribution of the image so that 
the mean intensity lies between 60 and 160. Tests with this 
algorithm has shown an improvement in performance. 
 

The design of the Gabor filter set attempted to balance the 
trade-off between the size of the feature set and coverage of 
the filter envelope. Although a coverage of two standard 
deviations of the Gaussian envelope is ideal to minimise the 
‘ringing effect’ due to sharp cut-off, it was seen that with a 
15x15 feature window, it placed the maximum spatial 
frequency in close proximity to the Nyquist frequency of 0.5 
per pixel. So a maximum frequency of 0.25 per pixel was 
chosen, with the next scale having a frequency of 0.125 per 
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pixel, which meant that some ‘ringing’ was present in the 
mask for the lower frequency. The use of PCA to reduce the 
feature set is likely to suppress any detrimental effect caused 
by the ringing. 
 

Based on the results obtained with the proposed PNN 
classifier for the ear tragus and eye corner extraction in 
different views, it can be qualified as a powerful feature 
detector. The detection rates achieved parallels the results 
obtained for face detection using Gabor features and PNN by 
Huang et al. [19] where a detection rate of 100% was 
obtained over 270 images containing a single face with a 
simple background. 

 
For more complex images consisting of clutter and 

multiple faces, Huang et al. obtained a detection rate of 
86%. Further tests can be performed with larger sizes of the 
feature window e.g. 20x20, 25x25 in combination with 
different sized Gabor masks to assess the effect on the 
performance of the classifier. The results obtained for the 
eye corner extraction compare favourably with other feature 
detectors, while the results obtained for the ear tragus 
extraction represent, to our knowledge, the first of its type. 
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