HEURISTIC APPROACH FOR BICRITERIA IN TWO STAGE OPEN SHOP SCHEDULING PROBLEM

Deepak Gupta ${ }^{1}$, Pooja Sharma ${ }^{2}$
${ }^{1}$ Prof. \& Head, Dept. of Mathematics, ${ }^{2}$ Research Scholar, Dept. of Mathematics
Maharishi Markandeshwar University, Mullana, Ambala, India
${ }^{1}$ guptadeepak2003@yahoo.co.in
${ }^{2}$ sharmapooja4988@gmail.com

Abstract

This Paper is an attempt to obtains an optimal solution for minimizing the bicriteria so as to minimize the total rental cost of the machines subject to obtain the minimum makespan for n -jobs 2 machines open shop scheduling problem in which the processing times of machines are given.Numerical illustration is given to justify the proposed algorithm.

Keywords: Open shop scheduling, Rental policy, Processing time, Latest time, Utilization time, elapsed time.

1. INTRODUCTION

Scheduling is one of the optimization problem found in real industrial content for which several heuristic procedures have been successfully applied. Scheduling is a form of decision making that plays a crucial role in manufacturing and service industries. It deals with allocation of resources to tasks over given time periods and its goal is to optimize one or more objectives. Flow shop scheduling problem has been one of the classical problem in production scheduling since Johnson [12] proposed the well known Johnson's rule in the two stage flow shop makespan scheduling problem. The work was developed by Jackson J.R [13], Smith [16], Maggu and Das [15], Yoshida and Hitomi [17], D.Rebaine [6],Chandasekharan [4], Anup [1]and Gupta Deepak [8] by considering various parameters such as Transportation time, Breakdown Interval,setup time, Weightage etc.Open shop scheduling differ from flowshop scheduling in the sense that there are no restriction placed on the order of the machines i.e, operations can be performed in any order first machine to second machine or second machine to first machine and not known in the advances. Hence the order of the machines can be selected arbitrarily. Maggu P.L and Harbans lal [14] introduced the concept of $n * 2$ Open shop scheduling problem including job-block criteria.Gupta Deepak and Singh T.P [7] have studied two stage Open shop scheduling problem to minimizing the idle time of the machines in
which processing time are associated with their respective probabilities including job block criteria. further work was extended by gupta Deepak and renuka [11] by associated transportation time and weightage of jobs.

Recently Scheduling, so as to approximate more than one criterion received considerable attension. The bicriteria scheduling problems are motivated by the fact that they are meaningful from practical point of view. The bicriteria scheduling problems are generally divided into three classes. In the first class, the problem involved minimizing one criterion subject to the constraint that the other criterion to be optimed. In the second class, both criteria are considered equally important and problem involves finding efficient schedules. In third class, both criteria are weighted differently and an objective function as the sum of the weighted function is defined. The problem considered in this paper belong to the first class.Chandrasekhran Rajendra [4]introduced the concept "two stage flowshop scheduling problem with bicriteria". This work was extended by Bagga P.C \& Bhambani. A[3], Chakarvarthy K \& Rajendra C [5], Gupta.D \& Singh T.P[7], Gupta.D \& Sharma.S [8] by considering various parameters.In this present paper we have developed a new heuristic algorithm which gives minimum possible rental cost while minimizing total elapsed time simultaneously in two stage open shop scheduling problem.

2. PRACTICAL SITUTION

Open shop scheduling problems arise in several industrial situations. For example, consider a large aircraft garage with specialized work-centers. An airplane may require repairs on its engine and electrical circuit system. These two tasks may be carried out in any order but it is not possible to do these tasks on the same plane simultaneously. Other applications of open shop scheduling problems are in automobile repair, quality control centers, semiconductor manufacturing, teacher-class assignments, examination scheduling, and satellite communications etc. In the era of globalization or global uncertainties, to meet the challenges of the business, one does not always have enough funds to invest in
advanced machines to update the technology. Under such circumstances the machines has to be taken on rent. Rental of machines is an affordable and quick solution for having the equipment and up gradation to new technology

3. NOTATION

S	:Sequence of jobs 1,2,3,....,n
M_{j}	:Machine, $\mathrm{j}=1,2,3$.
A_{i}	: Processing time of $\mathrm{i}^{\text {th }}$ job on machine A
B_{i}	:Processing time of $\mathrm{i}^{\text {th }} \mathrm{job}$ on machine B
C	:Rental cost per unit time of machine j
$\mathrm{CT}\left(\mathrm{S}_{\mathrm{K}}\right)$:Total completion time of the jobs for sequence S_{K}
$\mathrm{CT}\left(\mathrm{S}_{\mathrm{K}}\right.$)	: Total completion time of the jobs for sequence S_{K},
$\mathrm{L}_{2}\left(\mathrm{~S}_{\mathrm{k}}\right)$:Latest time when second machine is taken on rent for sequence S_{K}
$\mathrm{L}_{2}\left(\mathrm{~S}_{\mathrm{K}}\right)$:Latest time when second machine is taken on rent for sequence S_{K},
$\mathrm{U}_{2}\left(\mathrm{~S}_{\mathrm{K}}\right)$:Utilization time of second machine for sequence S_{K}
$\mathrm{U}_{2}\left(\mathrm{~S}_{\mathrm{k}}{ }^{\prime}\right)$:Utilization time of second machine for sequence S_{K},
$\mathrm{R}\left(\mathrm{S}_{\mathrm{K}}\right)$:Rental cost for sequence S_{K}
$\mathrm{R}\left(\mathrm{S}_{\mathrm{K}}\right)$:Rental cost for sequence S_{K},

4. RENTAL POLICY

The machines will be taken on rent as and when they are required and are returned as and when they are no longer required.

5. PROBLEM FORMULATION

Let n jobs $1,2, \ldots \ldots, \mathrm{n}$ be processed on two machines M_{1} and \mathbf{M}_{2} in any order i.e. the jobs will be processed first on M_{1} and then on M_{2} or first on M_{2} and then on M_{1} under the specified rental policy. Let A_{i} be the processing time of $i^{\text {th }}$ job on machine M_{1} and B_{i} be the processing time of $i^{\text {th }}$ job on machine M_{2} Our aim is to find the optimal or near optimal sequence $\left\{\mathrm{S}_{\mathrm{K}}\right\}$ of the jobs which minimizing the rental cost of machines.

Tableau-1

Jobs	Machine $\mathbf{M}_{\mathbf{1}}$	Machine $\mathbf{M}_{\mathbf{2}}$
i	A_{i}	B_{i}
1	$\mathrm{~A}_{1}$	$\mathrm{~B}_{1}$
2	$\mathrm{~A}_{2}$	$\mathrm{~B}_{2}$
3	$\mathrm{~A}_{3}$	$\mathrm{~B}_{3}$
-	-	-
n	A_{n}	B_{n}

Mathematically, the problem is stated as: Minimize
$\mathrm{R}\left(\mathrm{S}_{\mathrm{K}}\right)=\sum_{i=1}^{M} A_{\mathrm{i}}\left(\mathrm{S}_{\mathrm{K}}\right) \times \mathrm{C}_{1}+\mathrm{U}_{2}\left(\mathrm{~S}_{\mathrm{K}}\right) \times \mathrm{C}_{2}$
Subject to constraint: Rental Policy (P).
Our objective is to minimize rental cost of machines while minimizing the utilization time.

6. ASSUMPTION

1. Two jobs cannot be processed on a single machine at a time.
2. Jobs are independent to each other.
3. Per-emption is not allowed i.e. once a job started on a machine, the process on that machine cannot be stopped unless the job is completed.
4. Let n jobs be processed through two machines M_{1} and M_{2} in order $\mathrm{M}_{1} \rightarrow \mathrm{M}_{2}$ and in order $\mathrm{M}_{2} \rightarrow \mathrm{M}_{1}$.
5. Machine break down is not considered.

7. ALGORITHM

Step1:For order $\mathbf{M}_{\mathbf{1}} \rightarrow \mathbf{M}_{\mathbf{2}}$

Construct a Set S_{A} of all processing time A_{i} where $A_{i} \leq B_{i}$ and Set S_{A}^{\prime} of all processing time A_{i} where $A_{i} \geq B_{i}$.
Step 2: Let S_{1} denote a sub optimal sequence of jobs corresponding to non-decreasing time in set S_{A},Similarly $\mathrm{S}_{\mathrm{I}}{ }^{\prime}$ corrosponding to set $\mathrm{S}_{\mathrm{A}}{ }^{\prime}$.
Step 3: The augmented ordered sequence $S_{K}=\left(S_{1}, S_{1}{ }^{\prime}\right)$ are optimal/or near optimal sequence for processing the jobs on machine M_{1} which given the minimum rental cost for given problem.

Step 4: For order $\mathbf{M}_{\mathbf{2}} \rightarrow \mathbf{M}_{1}$

Construct a Set S_{B} of all processing time B_{i} where $B_{i} \leq A_{i}$ and Set $S_{B}{ }^{\prime}$ of all processing time B_{i} where $B_{i} \geq A_{i}$.
Step 5: Let S_{2} denote a sub optimal sequence of jobs corresponding to non-decreasing time in set S_{B},Similarly $S_{2}{ }^{\prime}$ corrosponding to set $S_{B}{ }^{\prime}$.
Step 6: The augmented ordered sequence $S_{K}{ }^{\prime}=\left(S_{2}, S_{2}{ }^{\prime}\right)$ are optimal/or near optimal sequence for processing the jobs on machine M_{2} which given the minimum rental cost for given problem.
Step 7: Prepare in-out table of sequence $S_{K}=\left(S_{1}{ }^{\prime} \mathrm{S}_{1}{ }^{\prime}\right)$ $\operatorname{andS}_{\mathrm{K}}{ }^{\prime}=\left(\mathrm{S}_{2}, \mathrm{~S}_{2}{ }^{\prime}\right)$ in the order $\quad \mathrm{M}_{1} \rightarrow \mathrm{M}_{2}$ and $\quad \mathrm{M}_{2} \rightarrow \mathrm{M}_{1}$ respectively.
Step 8: Compute the total completion time $\mathrm{CT}\left(\mathrm{S}_{\mathrm{K}}\right)$ and $\mathrm{CT}\left(\mathrm{S}_{\mathrm{K}}{ }^{\prime}\right)$ by computing in-out table for sequence S_{K} and $\mathrm{S}_{\mathrm{K}}{ }^{\prime}$ respectively.
Step 9: Calculate latest time at which second machine is taken on rent as follow:

$$
\begin{aligned}
& \mathrm{L}_{2}\left(\mathrm{~S}_{\mathrm{K}}\right)=\mathrm{CT}\left(\mathrm{~S}_{\mathrm{K}}\right)-\sum_{i=1}^{n} B_{i} \\
& \mathrm{~L}_{2}\left(\mathrm{~S}_{\mathrm{K}}^{\prime}\right)=\mathrm{CT}\left(\mathrm{~S}_{\mathrm{K}}^{\prime}\right)-\sum_{i=1}^{n} A_{i}
\end{aligned}
$$

Step 10: Prepare in-out table for sequence S_{K} and S_{K} ' having latest time on second machine is $\mathrm{L}_{2}\left(\mathrm{~S}_{\mathrm{K}}\right)$ and $\mathrm{L}_{2}\left(\mathrm{~S}_{\mathrm{K}}{ }^{\prime}\right)$ respectively.
Step 11: Compute utilization time $\mathrm{U}_{2}\left(\mathrm{~S}_{\mathrm{K}}\right)$ and $\mathrm{U}_{2}\left(\mathrm{~S}_{\mathrm{K}}{ }^{\prime}\right)$ of second machine as follow:

$$
\begin{aligned}
& \mathrm{U}_{2}\left(\mathrm{~S}_{\mathrm{K}}\right)=\mathrm{CT}\left(\mathrm{~S}_{\mathrm{K}}\right)-\mathrm{L}_{2}\left(\mathrm{~S}_{\mathrm{K}}\right) \\
& \mathrm{U}_{2}\left(\mathrm{~S}_{\mathrm{K}}{ }^{\prime}\right)=\mathrm{CT}\left(\mathrm{~S}_{\mathrm{K}}{ }^{\prime}\right)-\mathrm{L}_{2}\left(\mathrm{~S}_{\mathrm{K}}{ }^{\prime}\right)
\end{aligned}
$$

Step 12: Find rental cost for sequence S_{K} and S_{K} ' as follow:

$$
\begin{aligned}
& \mathrm{R}\left(\mathrm{~S}_{\mathrm{K}}\right)=\sum_{i=1}^{n} A_{\mathrm{i}}\left(\mathrm{~S}_{\mathrm{K}}\right) \times \mathrm{C}_{1}+\mathrm{U}_{2}\left(\mathrm{~S}_{\mathrm{K}}\right) \times \mathrm{C}_{2} \\
& \mathrm{R}\left(\mathrm{~S}_{\mathrm{K}}{ }^{\prime}\right)=\sum_{i=1}^{M} B_{\mathrm{i}}\left(\mathrm{~S}_{\mathrm{K}}{ }^{\prime}\right) \times \mathrm{C}_{2}+\mathrm{U}_{2}\left(\mathrm{~S}_{\mathrm{K}}{ }^{\prime}\right) \times \mathrm{C}_{1}
\end{aligned}
$$

Where C_{1} and C_{2} are the rental cost per unit time of machine M_{1} and M_{2} respectively.

Deepak Gupta et al., International Journal of Science and Advanced Information Technology, 2 (4), July - August 2013, 27-30

8. NUMERICAL ILLUSTRATION

Consider 5 jobs and 2 machines open shop problem to minimize the rental cost. The Processing time of these jobs are giveb as follow. Rental cost per unit time for machine M_{1} and M_{2} are 10 and 15 respectively.

Tableau-2

Jobs	Machine $\mathbf{M}_{\mathbf{1}}$	Machine $\mathbf{M}_{\mathbf{2}}$
i	A_{i}	B_{i}
1	22	18
2	28	30
3	32	16
4	17	21
5	20	25

Our objective is to obtain optimal schedule and order to minimize total elapsed subject to minimize the total rental cost of the machines, under the rental policy P.

SOLUTION:

For order $\mathbf{M}_{1} \rightarrow \mathbf{M}_{\mathbf{2}}$
Tableau-3

Jobs	Machine $\mathbf{M}_{\mathbf{1}}$	Machine $\mathbf{M}_{\mathbf{2}}$
i	A_{i}	B_{i}
1	22	18
2	28	30
3	32	16
4	17	21
5	20	25

As per step 1:

Construct a set S_{A} and S_{A},

$$
S_{\mathrm{A}}=\{28,17,20\}
$$

$$
\mathrm{S}_{\mathrm{A}}^{\prime}=\{22,32\}
$$

As per step 2:

$S_{1}=\{4,5,2\}$
$S_{1}{ }^{\prime}=\{1,3\}$

As per step 3

Augmented ordered sequence $S_{K}=\{4,5,2,1,3\}$
As per step 7:
In-out table of sequence S_{K} for order $\mathrm{M}_{1} \rightarrow \mathrm{M}_{2}$ as follow in table-4

Tableau-4

Jobs	Machine $\mathbf{M}_{\mathbf{1}}$	Machine $\mathbf{M}_{\mathbf{2}}$
4	$0-17$	$17-38$
5	$17-37$	$38-63$
2	$37-65$	$65-95$
1	$65-87$	$95-113$
3	$87-119$	$119-135$

As per step 8 and 9:

Total completion time for sequence S_{K} is $\mathrm{CT}\left(\mathrm{S}_{\mathrm{K}}\right)=135$
Latest time at which second machine is taken on rent for sequence S_{K}

$$
\begin{gathered}
\mathrm{L}_{2}\left(\mathrm{~S}_{\mathrm{K}}\right)=135-110 \\
=25
\end{gathered}
$$

As per step 10:

In- out table for sequence S_{K} having latest time on second machine is 25 as follow in Table-5

Tableau-5

Jobs	Machine $\mathbf{M}_{\mathbf{1}}$	Machine $\mathbf{M}_{\mathbf{2}}$
4	$0-17$	$25-46$
5	$17-37$	$46-71$
2	$37-65$	$71-101$
1	$65-87$	$101-119$
3	$87-119$	$119-135$

As per step 11 and 12:

Utilization time of second machine for sequence S_{K}

$$
\begin{gathered}
\mathrm{U}_{2}\left(\mathrm{~S}_{\mathrm{K}}\right)=135-25 \\
=110
\end{gathered}
$$

Rental cost $R\left(S_{K}\right)=119 \times 10+110 \times 15$

$$
=2840
$$

Total Elapsed time $=135$

Order $\mathbf{M}_{\mathbf{2}} \rightarrow \mathbf{M}_{\mathbf{1}}$

Tableau-6

Jobs	Machine $\mathbf{M}_{\mathbf{2}}$	Machine $\mathbf{M}_{\mathbf{1}}$
i	B_{i}	A_{i}
1	18	22
2	30	28
3	16	32
4	21	17
5	25	20

As per step 4 and 5:

$$
\begin{array}{cc}
\text { Construct a set } S_{B} \text { and } S_{B} ’ \\
S_{B}=\{18,16\} & S_{B}^{\prime}=\{30,21,25\} \\
S_{2}=\{3,1\} & S_{2}{ }_{2}^{\prime}=\{4,5,2\}
\end{array}
$$

As per step 6:
Augmented ordered sequence $\mathrm{S}_{\mathrm{K}}{ }^{\prime}=\{3,1,4,5,2\}$
As per step 7:
In-out table of sequence S_{K} ' for order $\mathrm{M}_{2} \rightarrow \mathrm{M}_{1}$ as follow in table-7

Tableau-7

Jobs	Machine $\mathbf{M}_{\mathbf{2}}$	Machine $\mathbf{M}_{\mathbf{1}}$
3	$0-16$	$16-48$
1	$16-34$	$48-70$
4	$34-55$	$70-87$
5	$55-80$	$87-107$
2	$80-110$	$110-138$

As per step 8 and 9:

Total completion time for sequence $\mathrm{S}_{\mathrm{K}}{ }^{\prime}$ is $\mathrm{CT}\left(\mathrm{S}_{\mathrm{K}}{ }^{\prime}\right)=138$
Latest time at which second machine is taken on rent for sequence S_{K} '

$$
\begin{gathered}
\mathrm{L}_{2}\left(\mathrm{~S}_{\mathrm{K}}{ }^{\prime}\right)=138-119 \\
=19
\end{gathered}
$$

As per step 10:

In- out table for sequence S_{K} ' having latest time on second machine is 19 as follow in table-8

Deepak Gupta et al., International Journal of Science and Advanced Information Technology, 2 (4), July - August 2013, 27-30

Tableau-8

Jobs	Machine $\mathbf{M}_{\mathbf{2}}$	Machine $\mathbf{M}_{\mathbf{1}}$
3	$0-16$	$19-51$
1	$16-34$	$51-73$
4	$34-55$	$73-90$
5	$55-80$	$90-110$
2	$80-110$	$110-138$

As per step 11 and 12:
Utilization time of second machine for sequence S_{K},

$$
\begin{aligned}
& \mathrm{U}_{2}\left(\mathrm{~S}_{\mathrm{K}}{ }^{\prime}\right)=138-19 \\
& =119
\end{aligned}
$$

Rental cost $\mathrm{R}\left(\mathrm{S}_{\mathrm{K}}{ }^{\prime}\right)=110 \times 15+119 \times 10$

$$
=2840
$$

Total elapsed time $=138$
Total rental cost when the order is from M_{1} to M_{2} for the sequence $(4,5,2,1,3)$ is 2840 units and total elapsed time $=135$ and when order M_{2} to M_{1} for sequence $(3,1,4,5,2)$ rental is 2840 and total elapsed time is 138 . Hence order M_{1} to M_{2} is optimal order which minimize total elapsed time and rental cost simultaneously.

9. REMARKS

1. Operations can be performed in any order first machine to second machine or second machine to first machine and not known in the advances.
2.The work may further be exrented for n jobs 3 machines open shop problem.
3.The study can further be extended by considering various parameters such as transportation time, job-block, setup time, breakdown intervals etc

REFERENCES

1.Anup (2002), "On two machine flow shop problem in which processing time assumes probabilities and there exists equivalent for an ordered job block", JISSOR, Vol. XXIII No. 1-4, pp. 41-44.
2.Bagga P C (1969), "Sequencing in a rental situation", Journal of Canadian Operation Research Society, Vol.7, pp.152-15.
3.Bagga, P.C.\& Bhambani, A.(1997), "Bicriteria in flow shop scheduling problem", Journal of Combinatorics, Information and System Sciences 22, 63-83.
4.Chandrasekharan Rajendran (1992), "Two Stage flow shop scheduling problem with bicriteria", Operational Res. Soc , 43(9), 871-884.
5.Chakarvarthy K. \& Rajendrah, C.(1999), "A heuristic for scheduling in a flow shop with bicriteria of makespan and maximum tardiness minimization", Production Planning \& Control, 10 (7), 707-714.
6.D. Rebaine, V.A. Strusevich(1998), "Two-machine open shop scheduling with special transportation times", CASSM R\&D Paper 15, University of Greenwich, London, UK.
7.Gupta Deepak, Singh T.P et.al(2005), "On job block open shop scheduling, the processing time associated with probability "J. Indian Soc. Stat. Opers. Res. Vol.XXVI,No.1-4.pp. 91-96.
8.Gupta, D., Singh, T.P. \& Kumar, R.(2007), "Bicriteria in scheduling under specified rental policy, processing time associated with probabilities including job block concept", Proceedings of VIII Annual Conference of Indian Society of Information Theory and Application (ISITA), 22-28.
9.Gupta, D.\& Sharma, S.(2011), "Minimizing rental cost under specified rental policy in two stage flow shop, the processing time associated with probabilities including break-down interval and job - block criteria", European Journal of Business and Management 3(2), 85-103.
10.Gupta D,Sharma S, Seema and Shefali (2011), "Bicriteria in $n \times 2$ flow shop scheduling under specified rental policy ,processing time and setup time each associated with probabilities including job-block", Industrial Engineering Letters, 1(1), 1-12.
11.Gupta D, Renuka and Singla P(2012), "A Heuristic Approach For Two Stage Open Shop Scheduling With Transportation Time And Weightage Of jobs Including Job Block Criteria,the Processing Time Associated with Probabilities",International journal of scientific and Research publications,ISSN-2250-3153,vol-2, issue 7.
12.Johnson, S.M.(1954), "Optimal two and three stage production schedule with set up times included", Naval Research Logistics Quart. 1(1), pp.61-68.
13.Jackson, J. R. (1956), "An extension of Johnson's results on job scheduling", Nav. Res. Log. Quar., 3, pp 201203
14. Maggu P.I. and harbans lal (1989) "on job block open shop scheduling problem" PAMS Vol XXIX-pp- 45-51.
15.Maggu P.L. and Das G., "Equivalent jobs for job block in job scheduling", Opsearch, Vol 14, No.4, (1977), 277281.
17.Smith, R.D.\& Dudek, R.A.(1967) "A general algorithm for solution of the N-job, M-machine scheduling problem", Operations Research 15(1), 71-82.
18. Yoshida and Hitomi (1979), "Optimal two stage production scheduling with set up times separated. AIIE Transactions", Vol . II, 261-263

