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Abstract

Inertial Navigation System (INS) and Global Positioning
System (GPS) technologies have been widely used in a va-
riety of positioning and navigation applications. Because
the GPS and the INS complement each other, it is com-
mon practice to integrate the two systems. The advantages
of GPS/INS integration is that the integrated solution can
provide continuous navigation capability even during GPS
outages. It is well known that Kalman filtering is an opti-
mal real-time data fusion method for GPS/INS integration.
However, it has some limitations in terms of stability, adapt-
ability and observability. To solve this problem, we propose
to use the Bayesian Bootstrap Filtering (BBF) for GPS/INS
integration. Bootstrap filter is a filtering method based on
Bayesian state estimation and Monte Carlo method, which
has the great advantage of being able to handle any func-
tional non-linearity and system and/or measurement noise
of any distribution. Experimental result demonstrates that
the bootstrap filter gives better positions estimate than the
standard Extended Kalman filter (EKF).

Key words: GPS/INS integration, data fusion, Bayesian
Bootstrap Filtering, Extended Kalman filter.

1. Introduction

The global positioning system (GPS) has been exten-
sively used in navigation because of its accuracy and world-
wide coverage [1, 2]. It is well established that GPS can
provide accurate position, velocity and timing information
under good satellite signal tracking environments. The lim-
itations of GPS are related to the loss of accuracy in the

narrow-street environment, poor geometrical dilution on
precision (GDOP) coefficient and the multipath reflections.
So it is suitable to integrate the GPS with a different type
of navigation system in order to reach a greater autonomy.
From this point of view, the inertial navigation system (INS)
is ideal [3, 4]. INS can provide continuous position, veloc-
ity, and also orientation estimates, which are accurate for a
short term, but are subject to drift due to sensor drifts. The
integration of GPS and INS can overcome the shortcom-
ings of the individual systems, namely, the typically low
rate of GPS measurements as well as the long term drift
characteristics of INS. Integration can also exploit advan-
tages of two systems, such as the uniform high accuracy
trajectory information of GPS and the short term stability
of INS. There have been a number of recent approaches to
improving the performance of GPS/INS integration [5, 6,
7]. The Kalman filtering is an optimal real-time data fu-
sion method for GPS/INS integration [8, 9], it has some
limitations in terms of stability, adaptability and observabil-
ity, etc. Different integration filters have also been investi-
gated for example, the Extended Kalman Filter (EKF) [10,
11], the Quadratic Extended Kalman Filter (QEKF) [12],
the Unscented Kalman Filter (UKF) [13]. The EKF is the
traditional method for GPS/INS integration. Note that the
accuracy of integrated navigation solution is directly related
to the adequacy of the linearized error models. But for low
quality inertial devices, the EKF may be unstable or even
divergent [14] due to the large linearized errors. It is there-
fore highly desirable to have a solution that retains some
of these nonlinearities. In this paper, we propose to use the
Bayesian bootstrap filtering (BBF) [15, 16, 17] for GPS/INS
integration.
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The BBF is used in identification of hysteretic systems
with slip [18], target tracking [19, 20] satellite attitude
determination [21, 22, 23]. Bootstrap filter is a filter-
ing method based on Bayesian state estimation and Monte
Carlo method, which has the great advantage of being able
to handle any functional non-linearity and system and/or
measurement noise of any distribution. The BBF is inde-
pendent on the initial state and can avoid the divergence
problem, but its drawback is the heavy computational load
in the update stage. The idea of this filtering method is to
represent the required probability density function (PDF)
as a set of random samples, rather than as a function over
state space. As the number of samples becomes large, they
can effectively provide an accurate representation of the re-
quired PDF. Estimations of states can then be obtained di-
rectly from the samples. The paper is organized as fol-
lows. Section 2 presents a mathematical model of integrated
GPS/INS system. In the third section, a Bayesian bootstrap
filtering algorithm is described. Experimental results are
presented to demonstrate the accuracy of the proposed algo-
rithm in section 4. Finally, conclusions are made in section
5.

2. Mathematical model of integrated GPS/INS
system

In an INS, sensed accelerations and angular rates from an
Inertial Measurement Unit (IMU) are transformed into po-
sition, velocity and attitude by solving a set of differential
equations. GPS on the other hand delivers positions with
relatively low accuracy but with a bounded error. INS and
GPS have complementary properties and are therefore well
suited for integration. There are different modes of inte-
gration [24, 25]. In this work, a tightly coupled GPS/INS
system has been implemented [26]. This means primarily
that GPS pseudo-ranges are used as inputs to the navigation
filter rather than computed GPS positions.

2.1. State model

The state vector is composed of the INS error that is de-
fined as the deviation between the actual dynamic quanti-
ties and the INS computed values: &X = X − XINS .
The state model describes the INS error dynamic behavior
depending on the instrumentation and initialization errors.
It is obtained by linearizing the ideal equations around the
INS estimates as follow:

δX = f(X,U)− f(XINS , UINS) (1)

δX = �f(XINS , UINS)δX (2)

The state vector is usually augmented with systematic
sensor errors:

δX = (δr, δνn, δρ, ba, bg, b, d) (3)

where all the variables are expressed in the navigation frame
NED (North, East, Down).

• δr = (δφ, δλ, δh) is the geodetic position error in lati-
tude, longitude, altitude,

• δνN = (δνE , δνD) is the velocity error vector,

• δρ is the attitude (roll, pitch, yaw) error vector,

• ba and bg represent the accelerometers and gyroscopes
biases,

• b = cτr and d are respectively the GPS clock offset
and its drift. τr is the receiver clock offset from the
GPS time and c is the speed of light 3x108m/s).

For short-term applications, the accelerometers and gy-
roscopes can be properly defined as random walk constants
ba = ωa and bg = ωg . Note that the standard deviations of
the white noises ωa and ωg are related to the sensor quality.
The navigation solution also depends on the receiver clock
parameters b and d models as b = d+ωb and d = ωd, where
ωb and ωd are mutually independent zero-mean Gaussian
random variables [27]. For simplicity, denote asX (instead
of δX) the state vector. The discrete-time state model takes
the following form:

XINS,k+1 = AkXINS,k + νk (4)

where νk denote the dynamical zero-mean Gaussian
noise vector with associated covariance matrix Σν . The
coupling effects between the components ofXINS,k results
in a block diagonal matrix Ak whose elements are detailed
in many standard textbooks such as [27, chap. 6].

2.2 Measurement equation

The standard measurement of the GPS system is the
pseudo-range. This defines the approximate range from the
user GPS receiver antenna to a particular satellite. Conse-
quently, the observation equation associated to the ith satel-
lite can be defined as:

ρi =
�

(Xi − x)2 + (Yi − y)2 + (Zi − z)2 + b+ ωi (5)

where, i = 1, · · · , ns (recall that ns is the number of
visible satellites).
The vectors (x, y, z)T and (Xi, Yi, Zi)T are respectively

the positions of the vehicle and the ith satellite expressed in
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the rectangular coordinate system WGS-84 [27, chap. 4].
In addition to the measurement of the pseudo-distance, we
have also the measurement of delta-ranges. This latter char-
acterizes the Doppler measurement (speed of distancing or
approach of the visible satellites according to the respective
axes under which they are seen since the receiver). For the
ith satellite, we model the observation of the delta-ranges
by the following way:

Δρi = Ri + b+ λi (6)

where,

Ri =
(Xi − x)(Ẋ − ẋ) + (Yi − y)(Ẏ − ẏ) + (Zi − z)(Ż − ż)�

(Xi − x)2 + (Yi − y)2 + (Zi − z)2

(7)
The vectors and are respectively the speeds of the vehicle

and the ith satellite expressed in the rectangular coordinate
system WGS-84. The position and the speed of the vehicle
are transformed from the geodetic coordinate to the rectan-
gular coordinate system as follows:
The vectors (ẋ, ẏ, ż)T and (Ẋi, Ẏi, Żi)T are respectively

the speeds of the vehicle and the ith satellite expressed in the
rectangular coordinate system WGS-84. The position and
the speed of the vehicle are transformed from the geodetic
coordinate to the rectangular coordinate system as follows:




x = (N + hINS + δh)cos(λINS + δλ)cos(φINS + δφ)
y = (N + hINS + δh)cos(λINS + δλ)sin(φINS + δφ)
z = (N(1 − e2) + hINS + δh)sin(φINS + δφ)

(8)





ẋ = −(N + hINS + δh)(φ̇INS + δφ̇)sin(φINS + δφ)cos(λINS + δλ)

−(N + hINS + δh)(λ̇INS + δλ̇)cos(φINS + δφ)sin(λINS + δλ)

+(ḣINS + δḣ)cos(φINS + δφ)cos(λINS + δλ)

ẏ = −(N + hINS + δh)(φ̇INS + δφ̇)sin(φINS + δφ)sin(λINS + δλ)

+(N + hINS + δh)(λ̇INS + δλ̇)cos(φINS + δφ)cos(λINS + δλ)

+(ḣINS + δḣ)cos(φINS + δφ)sin(λINS + δλ)

ż = (N(1 − e2) + hINS + δh)(φ̇INS + δφ̇)cos(φINS + δφ)

+(ḣINS + δḣ)sin(φINS + δφ)
(9)

where,





δνN = (N(1 − e2) + hINS + δh)δφ̇+ φ̇INF δh

δνE = (N + hINS + δh)sin(φINS + δφ)δφ ˙λINF

+(N + hINS)cos(φINS + δφ)δλ̇+ cos(φINS + δφ)δh ˙λINS

δνD = −δḣ
(10)

and N = a/
√
1− e2sin2λ. The parameters a and e

denote the semi-major axis length and the eccentricity of
the earths ellipsoid. These expressions (Eq. 8, Eq. 9 and
Eq. 10) have to be substituted in (5) and (6) to obtain the
highly nonlinear measurement equation:

YGPS,k = g(XINS,k) + βk (11)

where βk˜ and YGPS,k = (ρ)1, . . . , ρ)n,Δρ)1, . . . ,Δρ)n)

is the pseudo-ranges and delta-ranges vector. In the
Bayesian bootstrap filter, it is not necessary that the mea-
surement noise βk must be the white Gaussian. Now we
can apply the bootstrap filter using the above state and mea-
surement models.

3 Bayesian bootstrap filter

Bootstrap filter is relatively new concept in filtering. The
advantage of bootstrap filter over Kalman and EKF is that
the system does not have to be linear and the noise in the
system can be non-Gaussian [15]. The Bayesian bootstrap
filtering approach is to construct the conditional probability
density function (PDF) of the state based on measurement
information [15, 16, 17]. The conditional PDF can be re-
garded as the solution to the estimation problem. We shall
briefly explain the recursive Bayesian estimation theory and
the Bayesian Bootstrap filter.

3.1 Recursive Bayesian Estimation

The discrete-time stochastic dynamical system model
can be described by the stochastic vector difference equa-
tion:

xk+1 = f(xk−1, wk)

where f : Rm×Rm → Rn is the system transition function
and wk ∈ Rm is a zero-mean noise process independent of
the system states. The PDF of wk is assumed to be known
as pw(wk). At discrete time, measurements are denoted by
yk ∈ Rm, which are related to the state vector via the ob-
servation equation:

yk = h(xk, νk) (12)

where h : Rn × Rr → Rp is the measurement function,
and νk ∈ Rr is the observation noise, assumed to be an-
other zero mean random sequence independent of both state
variable xk and the system noise wk.
The PDF of νk is assumed to be known as pv(νk). The

set of measurements from initial time step to step k is ex-
pressed as Yk = {yi}ki=1 = 1 . The distribution of the initial
condition x0 is assumed to be given by p(x0/Y0) = p(x0).
The recursive Bayesian filter based on the Bayes rule can

be organized into the time update state and the measurement
update stage. The time update state can be constructed as:

p(xk/Yk−1) =

�
p(xk/xk−1) × p(xk−1/Yk−1)dxk−1 (13)

where p(xk/Yk−1) is determined by f(xk−1, wk−1) and
the known PDF pw(wk−1).Then at time step k, a measure-
ment yk becomes available and may be used to update the
prior according to the Bayes’rule:

p(xk/Yk−1) =
p(yk/xk) × p(xk/Yk−1)�
p(yk/xk) × p(xk/Yk−1)

(14)

where the conditional PDF p(yk/xk) is determined from
the measurement model and the known PDF, pν(νk). The
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embodiment of the recursive Bayesian filter is very hard and
laborious work because closed form solutions of the equa-
tions (14) and (15) do not exist, or are difficult to find, there-
fore should be implemented numerically with high compu-
tational load.

3.2 Bayesian Bootsrap filter

From the recursive Bayesian filter the BBF algorithm can
be described as follow. The BBF is an algorithm for prop-
agating and updating the random samples from the pdf of
the state. Therefore, the BBF may be considered as an ap-
proximation to be the recursive Bayesian filter. Suppose we
have a set of random samples xk−1(i) : i = 1, ..., N PDF
p(x − k − 1/Yk−1). Here, N is the number of bootstrap
samples.
The filter procedure is as follows:

1. Prediction: Each sample from PDF p(xk−1/Yk−1) is
passed through the system model to obtain samples
from the prior at time step k:

xk(i) = f(xk−1(i), wk(i)), (15)

where wk(i) is a sample draw from PDF of the system
noise pw(wk) .

2. Update: On receipt of the measurement yk, evaluate
the likelihood of each prior sample and obtain the nor-
malized weight for each sample:

qi =
p(yk/x

∗
k(i))

N�
j=1

p(yk/x∗k(j))

(16)

This define a discrete distribution over xk(i) : i =
1 . . . , N , with probability mass qi associated with ele-
ment i. Now resample N times from the discrete dis-
tribution to generate samples {xk(i) : i = 1, . . . , N},
so that for any j, Probxk(j) = xk(i) = qi . The
above steps of prediction and update form a single it-
eration of the recursive algorithm. To initiate the al-
gorithm, N samples x1(i) are drawn from the known
initial PDF p(x1/Y0) = p(x1). These samples feed
directly into the update stage of the filter. We contend
that the samples xk(i) are approximately distributed
as the required PDF p(xk/Yk) . Repeat this procedure
until the desired number of time samples has been pro-
cessed. The basic algorithm is very simple and easy to
program. The re-sampling update stage is performed
by drawing a random sample ui from the uniform dis-
tribution over (0, 1]. The value x∗k(M) corresponding
to:

M−1�

j=0

qj < ui ≤
M�

j=0

qj (17)

where q0 = 0, is selected as a sample for the posterior.
This procedure is repeated for i = 1, . . . , N . It would
also be straightforward to implement this algorithm on

massively parallel computers, raising the possibility of
real time operation with very large sample sets. The
numberN depends on the dimension of the state space,
the typical overlap between the prior and the likelihood
p(yk/xk) and the required number of time steps [15].

4 Simulation results

The analysis of some simulations will enable us to eval-
uate the performance of the utilization of the BBF. Here, we
present two examples which illustrate the operation of the
bootstrap filter. Estimation performance is compared with
the standard EKF. The first example is an univariate nonsta-
tionary growth model taken from references [28, 29]. The
second is a navigation problem using GPS and INS systems.

4.1 Example1

Consider the following nonlinear model [28]:

xk = 0.5xk−1 + 25xk−1/(1 + x
2
k−1) + 8cos(1.2(k − 1)) + wk (18)

yk = x
2
k/20 + νk (19)

where wk and νk are zero-mean Gaussian white noise with
variances 10 and 1 respectively. This example is severely
nonlinear, both in the system and the measurement equa-
tion. Note that the form of the likelihood p(yk/xk) adds an
interesting twist to the problem. For measurement yk < 0
the likelihood is unimodal at zero and symmetric about
zero. However, for positive measurements the likelihood
is symmetric about zero with modes at ± (20yk)1/2 . The
initial state was taken to be x0 = 0.1 and Fig. 1 shows a
50 step realization of Eq. 19. The EKF and bootstrap filters
were both initialized with the prior PDF p(x0) = N(0, 2) .
Fig. 2 shows the result of applying the EKF to 50 measure-
ments generated according to Eq. 20. The true state is repre-
sented by a solid line, EKF mean is given as a dashed lines.
Fig. 3 shows the result of directly applying the bootstrap al-
gorithm of section 3.2 with a sample saze ofN = 500. The
dashed line gives the bootstrap estimate of posterior mean.
Fig. 4 shows, the posterior can be bimodal in this exam-
ple. At a couple of time steps, the actual state is just outside
these percentile estimates, and quite often it is close to one
of the limits. However, most of the time the actual state
is very close to the posterior mean and performance is ob-
viously greatly superior to the EKF. Running the bootstrap
filter with larger sample sets gave results indistinguishable
from Fig. 3, and this is taken as confirmation that our sam-
ple set size is sufficient. The relatively high system noise
probably accounts for the reasonable performance of the
basic algorithm using only 500 samples: the system noise
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automatically roughens the prior samples. Fig. 4 shows es-
timates of the posterior density from both the bootstrap filter
and the EKF at k = 34. The bootstrap PDF is a kernel den-
sity estimate [30] reconstructed from the posterior samples.
It has a bimodal structure, with the true value of x34 located
close to be larger mode. The Gaussian PDF from the EKF
is remote from the true state value at this time step.

Fig. 1. 50 point realization of Eq. 19.

Fig. 2. EKF estimate of posterior mean.

4.2 Example 2

The kinematics data used were generated by SatNav
Toolbox for Matlab created by GPSoft. A GPS-INS sim-
ulation can be divided into three parts:

• Trajectory: the vehicle dynamics is simulated accord-
ing to position-velocity- acceleration model.

• INS data: the INS estimates of the vehicle dynam-
ics are then computed for inertial sensors with an
accelerometer bias of 750g and a gyroscope bias of
3deg/h.

• GPS data: the pseudo-ranges and delta-ranges corre-
sponding to the visible satellites from the vehicle are

Fig. 3. Bootstrap filter estimate of posterior
mean.

Fig. 4. Estimated posterior PDF at time step
34.

evaluated (the standard deviations of the GPSmeasure-
ments noises are chosen as σ = 10 for pseudo-range
and σλ = 5 for delta-range).

The performance of the BBF is studied for the estima-
tion of latitude-drift, longitude-drift, altitude-drift and
velocities-drifts. It should be noted that the number
of particles is fixed at 2000. The figures (Fig. 5 to
Fig. 9) represent respectively the actual (solid line)
and estimations (dashed line) of latitude-drift (meter),
longitude-drift (meter), altitude drift (meter), north-
velocity-drift (meter/second) and down-velocity-drift
(meter/second) according to temps (second). Note that
the INS drifts reach about a couple of kilometers for
simulation duration of 1200 seconds. These figures
show the good tracking performance of the BBF: aver-
age error between the actual and estimated drops below
3 meter in position and 2 meter/second in velocity.

The results obtained with the EKF and the BBF are com-
pared for simulation duration of 12000 second. For each
method, the horizontal positioning root mean square error
and the horizontal velocity root mean square error are com-
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peted from 100 Monte Carlo runs. Fig. 10 and Fig. 11
shows the results obtained with the EKF (solid line) and
BBF (dashed line). In Fig. 10, we note that the both filters
have the same precision. It is due to the dynamics errors
which are reasonable (where the local linearization is pos-
sible). However, in Fig. 11 the precision of the BBF is
relatively better than the EKF. It should be noted that on the
100Monte Carlo runs, the EKF diverged five times whereas
the BBF diverged just once. Finally a complete GPS signal
outage of 50 seconds was introduced within the GPS data
and both filters were used to predict the INS dynamic, dur-
ing this period. We simulated GPS outages over time in-
tervals: T1 = [50, 60], T2 = [150, 160], T3 = [200, 210],
T4 = [300, 310] and T5 = [350, 360]. The root mean square
errors of the two methods in this period are compared in
Tab. 1. Time is computation time using Matlab in our im-
plementation. The BBF needs more computing time than
the EKF.

5 CONCLUSIONS

This paper studied a Bayesian Bootstrap Filter (BBF)
algorithm to GPS/INS integration system. This filter has
show interesting results for the proposed application. A
comparison with other estimation strategies (such as the
EKF) is currently under investigation. In the simulation
results, we showed that the BBF can be an alternative so-
lution to the classical EKF to solve the nonlinear GPS/INS.
It was also shown that in the presence of GPS outage the
BBF gives the better results than the EKF. The results show
that integrated system can contribute to high-precision po-
sitioning in terms of performance. A comparison in criti-
cal situations with real data (such as loss of observability
or presence of multipath) is currently under investigation in
the future researches.
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