
Akhil Gokuldas et al., International Journal of Networks and Systems, 8(3), April - May 2019, 1 - 4

1


ABSTRACT

A kernel is the foundational layer of an operating system
(OS). It functions at a basic level, communicating with
hardware and managing resources, such as RAM and the
CPU. A kernel module is a code that can be loaded into the
kernel image at will, without requiring users to rebuild the
kernel or reboot their computer. Modular design ensures that
you do not have to make a monolithic kernel that contains all
code necessary for hardware and situations. We are planning
to implement additional kernel modules that will introduce
new features as well as supplement some of the existing
features. Pausing, auto-shutdown programs, limit
background processes, kill not responding processes are the
feature we are going to work on.

Key words : Kernel Modules, Linux kernel, Process
Management , Pausing File transfer.

1. INTRODUCTION

In the present technology driven world we are constantly
searching for innovations for continual development of
systems to cope up with the rising competition and trends.
Here in the software the scenario, the competition is very
tough accounting for the rapid changes and updates involved
with software. We’ve decided to pool in our efforts to develop
4 Linux kernel modules to further supplement the
functionality of the Linux Open Source operating system.
Through our humble efforts we aim to increase the usability of
open source software in the open market henceforth aiding
it’s popularity and use among the general public as well.
Linux operates in two modes–the Kernel mode (kernel space)
and the User mode (user space). The kernel works in the
highest level (also called supervisor mode) where it has all the
authority, while the applications work in the lowest level
where direct access to hardware and memory are prohibited.
Keeping in line with the traditional Unix philosophy, Linux

transfers the execution from user space to the kernel space
through system calls and the hardware interrupts. The Kernel
code executing the system call works in the context of the
process, which invokes the system call. As it operates on
behalf of the calling process, it can access the data in the
processes address space. The kernel code that handles
interrupts, works to the processes and related to any particular
process.

1.1 Linux Kernel Modules

The Linux kernel is a monolithic kernel. It is one single large
program where all the functional components of the kernel
have access to all of its internal data structures and routines.
The alternative to this is the micro kernel structure where the
functional pieces of the kernel are broken out into units with
strict communication mechanism between them. This makes
adding new components into the kernel, via the configuration
process, rather time consuming. The best and the robust
alternative is the ability to dynamically load and unload the
components of the operating system using Linux Kernel
Modules. The Linux kernel modules are piece of codes, which
can be dynamically linked to the kernel (according to the
need), even after the system boots up. They can be delinked
from the kernel and removed when they are no longer needed.
Mostly the Linux kernel modules are used for device drivers
or pseudo-device drivers such as network drivers or file
system. When a Linux kernel module is loaded, it becomes a
part of the Linux kernel as the normal kernel code and
functionality and it posses the same rights and responsibilities
as the kernel code.

1.2 Life cycle of Linux kernel module

The life cycle of a module starts with the initmodule(). The
task of init module is to prepare the module for later
invocation. The module is registered to the kernel and
attaches its data-structures and functionality to the kernel.
The kernel-defined external functions are also resolved. The

Linux Kernel Modules

Akhil Gokuldas1, Akhileswar V2, Akshay Babu3, Jishnu Prakasan4, Mahalingam P R5
 Muthoot Institute Of Technology and Science(MITS), India

1 akhilgokuldas11@gmail.com
2 aakkhhil79@gmail.com

3 akshaybabu3575@gmail.com

4 jishnukprakash.98@gmail.com
 5 mahalingampr@mgits.ac.in

 ISSN 2319 - 5975
Volume 8, No.3, April - May 2019

International Journal of Networks and Systems
Available Online at http://www.warse.org/IJNS/static/pdf/file/ijns01832019.pdf

https://doi.org/10.30534/ijns/2019/01832019

Akhil Gokuldas et al., International Journal of Networks and Systems, 8(3), April - May 2019, 1 - 4

2

life cycle of the module ends with cleanupmodule(). It ‘de
registers’ the module functionality from the kernel. We shall
later take a more detailed look at the life cycle of the
module.[5]

2. PROPOSED PROJECT

A kernel module is a code that can be loaded into the kernel
image at will, without requiring users to rebuild the kernel or
reboot their computer. Modular design ensures that you do not
have to make a monolithic kernel that contains all code
necessary for hardware and situations. Common kernel
modules are device drivers, which directly access computer
and peripheral hardware
Features : Our aim is making the Linux operating system
more useful and competing in the international market by
adding useful features to it and supplement its usability and
reliability above other open source and proprietary operating
systems. We are aiming to implement additional kernel
modules which will introduce new features as well as
supplement some of the existing ones.

2.1 Pausing Feature

Linux does not have the inbuilt feature to pause the transfer of
data within the system and between its externally connected
memory storage while transferring files, we aim to implement
this pausing feature that will enable users to pause the
ongoing data transfer and resume it whenever they require, in
accordance with their convenience. The same can be extended
to any other running processes or programs.

2.2 Programs auto shutdown feature

This feature aims to detect programs that will cause system
failure by utilizing system resources to a very large extent. An
algorithm will be put in place to determine the rate of growth,
running time and priority of all user run programs and try to
terminate those with the potential of causing trouble after
warning the user.

2.3 Limiting background processes

This feature aims to facilitate user the option to decide the
maximum number of allowed background processes at any
given time. If more processes are attempted to run during this
time the user will be prompted to close any of the existing
processes before he can continue.

2.4 Slow running processes/Not responding

In this feature the user will be alerted about any slow running
process or not responding processes through a pop up
dialogue box informing the same so that the user will be
prompted to close that program/process or allow Linux to

search for an online solution to the same. Like software,
hardware is a collective term. Hardware includes not only the
computer proper but also the cables, connectors, power supply
units, and peripheral devices such as the keyboard, mouse,
audio speakers and printers.

3. PROPOSED WORK

3.1 Objectives
The main objectives of the proposed project are:
1. To supplement the growth of the open source Linux
operating system.
2. Avoid rebuilding the entire kernel in the event of adding
new module.
3. Avoiding the rebooting of the device for loading new
modules.
4. Saving the RAM space by loading the module run-time
when required, like hot plugging drivers when device is
connected.
5. A bug in driver which is compiled as a part of kernel will
stop system from loading, whereas module allows systems to
load. So we can know which module caused it.

3.2 Proposed Solution

We can tackle all of the above mentioned objectives with the
help of kernel modules. As we go on to bring about new
features in our operating system with the implementation of
kernel modules which can be loaded into the Linux kernel
image at will, this will negate all the above mentioned issues
in a similar manner.

4. PROJECT DESIGN

Modules : Refer figure 1

4.1 Pausing Module

The Linux OS does not have the inbuilt feature to allow a user
to pause the transfer of data either within the different
locations in the system or between an externally connected
storage device and the system. The pausing feature we are
going to implement is structured as a kernel module and it
will provide the user inbuilt ability to pause and resume data
transfer within the system or between two systems as per their
convenience. When the transfer is paused the user may
disconnect the externally connected storage device and
reconnect it whenever possible and can still resume the data
transfer from the point where it was paused in the first place.
Refer figure 2.[1]

4.2 Module to handle Not responding processes

Each process has its own identity and requirements. They can
only work if those requirements are met. Sometimes they are
no met and there could even races for resources. These
situations lead to deadlocks, slow running as well as not

Akhil Gokuldas et al., International Journal of Networks and Systems, 8(3), April - May 2019, 1 - 4

3

responding processes. Such processes will have to identified
and handled before they could affect the system performance
and crash the system. This module discusses the possibility of
a handler by regular monitoring implemented as a Linux
kernel module. Refer figure 3.[4]

 Figure 1: Architecture Design of Linux Kernel Modules

 Figure 2: Module to Handle Pausing Feature

4.3 Module to auto-shutdown programs

The programs which use system resources extensively can
cause problems in smooth running of the system. Especially
on a system with limited resources, it can be a major problem.
In an environment where multiple programs are running at
the same time all the programs get affected by this. This
feature aims to detect programs that will cause system failure
by utilizing system resources to a very large extent. An
algorithm will be put in place to determine the rate of growth,
running time and priority of all user run programs and try to
terminate those with the potential of causing trouble after
warning the user. Refer figure 4.[2]

4.4 Module to limit background processes

This module’s function is to limit the number of background
processes to a value set by the user. Task vector contains all
the data about processes. It is arranged as a linked list. Each
element of the list contains the data of a single process. It is
usually the task_struct data structure. Module interacts with

the kernel to draw information on processes. It checks
whether the number of background processes have exceeded
the limit set by the user. If yes, it notifies the handler about the
event. Handler takes the necessary action to kill or suspend
the process. Otherwise, the process will not be intervened and
the module continues to monitor coming processes. Refer
figure 5.[3]

 Figure 3: Module To Handle Not Responding Processes

 Figure 4: Module to Auto Shut Down Processes

 Figure 5: Module to Limit Background Processes

5. CONCLUSION

We are implementing the above mentioned functionalities as
kernel modules. After adding these modules, the Linux OS
will be enhanced for the user. Kernel modules are loaded by
“insmod” command. The “lsmod” command can be used to
list all the modules currently installed. Now if the user wants
to go back to the standard OS, he/she can remove the module
using “rmmod” command. When transferring data to or from
an external storage device like a hard disk, USB or DVDs, the
user will be able to pause the data transfer using the kernel
module functions. The user will be able to restrict the
background processes by a predefined limit. It can make the
system invulnerable to fork bomb attacks or any other
malicious code which infinitely create processes.

Akhil Gokuldas et al., International Journal of Networks and Systems, 8(3), April - May 2019, 1 - 4

4

REFERENCES

1. Tushar B. Kute and Kabita Ghosh ”Portable storage
 device management in linux”, Computer Science &
 Engineering: An International Journal(CSEIJ), Vol. 4, No.4,
 August 2014.
2. G.Keerthi, Dr.R.China Appala Naidu ”New approach of
 scheduling algorithms in linux os with goodness
 function”, International journel of computer science and

 information technologies Vol 6, 2006.
3. ZDENEK SLANINA, VILEM SROVNAL ”Process
 Monitoring in Operating System Linux” Department of
 Measurement and Control VSB Technical University of
 Ostrava 17. listopadu 15, 708 33 Ostrava-Poruba CZECH
 REPUBLIC.
4. Henrique Weber, Marco A. Z. Alves, Philippe O. A.
 Navaux Parallel and Distributed Processing Group,
 ”Evaluating Process Scheduling on Linux Operating
 System” Informatics Institute, Universidade Federal do
 Rio Grande do Sul Brasil.
5. Nirav Trivedi, Himanshu Patel, Dharmendra Chauhan,
 “Fundamental Structure of Linux Kernel based Device
 Driver and Implementation on Linux Host Machine”,
 International Journal Of Applied Information
 System(IJAIS), Foundation Of Computer Science FCS,
 New York, USA, Volume 10-No:4, January 2016.

