
S.Praveen Kumar et al., International Journal of Information Systems and Computer Sciences, 2(4), July - August 2013, 14 - 19

14

 AN ADVANCED TECHNIQUE FOR RAPID DATA PROCESSING

 IN CLOUD COMPUTING USING X-QUERY

S.Praveen Kumar Dr. K.Singh
spkmtech@gmail.com, karansinghgbu@gmail.com,
Dept Of IT,GIT, School Of Information and Communication Technology,
GITAM UNIVERSITY Gautam Buddha University

ABSTRACT

XQuery was designed as a query language for XML data.
The goal was to provide the expressive power of a query
language like SQL and to support XML-specific operations
such as navigation in hierarchical data. From the very
beginning, an important feature of XQuery has been the
capability to process untyped data. It can be concluded that
XQuery tries to combine the features of existing
programming languages like SQL, Java, or even PHP.
XQuery allows to implement sophisticated applications in a
single tier and with a single uniform technology, thereby
avoiding impedance mismatches and improving flexibility
and customizability. Like SQL, XQuery supports declarative
queries and updates and is able to specify bulk queries and
updates which are best executed inside a database. XQuery
provides a special kind of architectural flexibility in the sense
that XQuery runs on all application tiers. It runs in the
database layer as it has been implemented by all major
database vendors as part of their database products.
Furthermore, XQuery runs in the middle-tier

Keywords: X-Query, Cloud Computing, Database, Xml.

1.CLOUD DATABASES

Massive growth in digital data, changing data storage
requirements, better broadband facilities and Cloud
computing led to the emergence of cloud databases .Cloud
Storage, Data as a service (DaaS) and Database as a service
(DBaaS) are the different terms used for data management
in the

Cloud. They differ on the basis of how data is stored and
managed. Cloud storage[1] is virtual storage that enables
users to store documents and objects .It is evident that
storage plays a major part in the data center and for cloud
services. The storage virtualization plays a key part in the
dynamic infrastructure attribute of Cloud Computing.

Currently Cloud platforms have very little support for
database design related virtualization enhancements. But in
future designing databases specific for Cloud especially for
private clouds in large enterprises is a sure possibility. In
this context the distributed databases are important when
you design database applications which need to be
delivered using Cloud platform. Cloud database has both
financial and security advantages over traditional storage
models.

SQL (commonly expanded to Structured Query Language)
is the most popular computer language used to create,
modify, retrieve and manipulate data from relational
database management systems. The language has evolved
beyond its original purpose to support object-relational
database management systems.

GQL has some similarities with SQL but has very limited
query expressions in order to provide for scalable processing.
Big Integrator can process queries to such data sources with
limited back-end query languages support. The absorber and
finalizer for big table data sources know the limitations of
GQL and will pre and post-process those operations that
cannot be processed by the data sources. For this, Big
Integrator generates integrating execution plans containing
calls to relational databases, big table data stores, and local
operators. The Big Integrator system provides query
capabilities over combined cloud-based and relational
databases.

Figure 1: Big Integrator Architecture

 ISSN 2319 – 7595

Volume 2, No.4, July – August 2013
International Journal of Information Systems and Computer Sciences

Available Online at http://warse.org/pdfs/ijiscs01242013.pdf

S.Praveen Kumar et al., International Journal of Information Systems and Computer Sciences, 2(4), July - August 2013, 14 - 19

15

In some of the databases[2] xml data is stored and retrieved
much more than the normal textual data. Fetching xml data
by using sql commands is typical and sophisticated. We use
a language called XQuery programming language in order
to fetch the xml data specifically.

Figure 2: Big table wrapper Architecture

XML is useful because it reduces cost by increasing the
flexibility of data management in various ways.
Technically, XML is a universal syntax to serialize data. It
is universal for two reasons. First, XML is platform-
independent; i.e., XML works on all hardware and
operating systems. Second, XML is based on UNICODE so
that it supports all languages and alphabets. The first kind
of flexibility XML provides is to dissociate schema from
data. This way, data can exist first and schema can be
added later in a pay-as-you-go manner.

The second kind of flexibility arises because XML is able
to represent a large spectrum of data, from totally
unstructured, semi structured to totally structured data.
Furthermore, XML is able to represent data, meta-data, and
even code that operate on the data and meta-data. This kind
of flexibility has, for example, made XML the data format
of choice for configuration data.

All these advantages have led to a wide adoption of XML;
clearly, XML is here to stay. However, XML is also
heavily criticized and many application developers avoid
the use of XML whenever they can. First, XML is
perceived to be slow, big, and clumsy. That is, XML data is
typically much larger than the equivalent data represented
in a proprietary format.

As for XML, the goal of XQuery is to reduce cost. What
XML is for the representation of data, XQuery is for the
processing of data and development of data-intensive
applications . Again, the magic lies in increased flexibility.
The first kind of flexibility provided by XQuery is that
XQuery operates on any kind of data. Naturally, XQuery is
able to process XML data. However, as stated in the
previous section, XQuery is just as well able to process
JSON, EDIFACT, CSV, or data stored in a relational
database. The XQuery processing model specifies that

XQuery expressions operate on instances of the XDM data
model and these instance can be generated from any kind
of data source. Secondly, XQuery inherits all the flexibility
provided by XML.

XQuery provides a special kind of architectural flexibility
in the sense that XQuery runs on all application tiers.
XQuery runs in the database layer as it has been
implemented by all major database vendors as part of their
database products

2..INTRODUCTION

XQuery is more than ten years old. Its origins go back to
the QL 1998 workshop held in Boston. Even though the
W3C only recently released the XQuery 1.0
recommendation, the first public working drafts were
published in 2001.

Originally, XQuery was designed as a query language for
XML data. The goal was to provide the expressive power
of a query language like SQL and, in addition, to support
XML-specific operations such as navigation in hierarchical
data. From the very beginning, an important feature of
XQuery has been the capability to process untyped data.
Furthermore, XQuery[3] has been designed to support the
processing of data on the fly or of data stored in the file
system; it is not necessary that the data be stored in a
database.

A recent trend which potentially changes the adoption of
XQuery is that XQuery is being extended by a number of
additional features. These features go beyond message
transformation and XML query processing for which
XQuery was initially designed. Furthermore, the XQuery
Scripting Facility and extended features such as the
processing of windows for streaming data are under
development with all these extensions. The purpose of this
paper is to revisit the advantages of XQuery and clarify
some of the myths about XQuery which were created in the
early days of XQuery when indeed XQuery was just a
query language.

The goal of XQuery is to reduce cost. What XML is for the
representation of data, XQuery is for the processing of data
and development of data-intensive applications . Again, the
magic lies in increased flexibility. The first kind of
flexibility provided by XQuery is that XQuery operates on
any kind of data. Naturally, XQuery is able to process
XML data. However, XQuery is able to process JSON,
EDIFACT, CSV, or data stored in a relational database.
The XQuery processing model specifies that XQuery
expressions operate on instances of the XDM data Model
and these instance can be generated from any kind of data

S.Praveen Kumar et al., International Journal of Information Systems and Computer Sciences, 2(4), July - August 2013, 14 - 19

16

and from any kind of data source. Secondly, XQuery
inherits all the flexibility provided by XML.

XQuery provides a special kind of architectural flexibility
in the sense that XQuery runs on all application tiers.
XQuery runs in the database layer as it has been
implemented by all major database vendors (e.g., IBM,
Microsoft, and Oracle) as part of their database products.

One particularly valuable advantage of XQuery is that
XQuery makes it much easier to customize enterprise Web
applications. The same application code can be applied to
data in different schemas by using XQuery’s flexible data
model and the “schema-later” approach of XML. For
instance, if one variant of the application added a field to a
specific business object, then all the existing code is still
applicable to the extended (as well as the original) business
object. As a result, XQuery and XQuery database are
naturally multi-tenant and do not require heavy weight-
lifting as is necessary to implement multi-tenancy in
relational database systems.

A second advantage of implementing a whole application
in XQuery in a single tier is that code for, say, error
handling and checking of integrity constraints need not be
duplicated across tiers.

Like XML, XQuery is conceived by many to be slow and
complicated. One of the goals of the authors of this paper is
to address these concerns by building high performance
XQuery processors and by providing best practices and
examples that demonstrate the power and usefulness of
XQuery as a programming tool.

XQuery is a family of recommendations of the W3C. It
extends XPath and was co-designed with XSLT 2.0. As a
formula, XQuery can be characterized as follows:

XQuery = Query + Update + Fulltext +
Scripting + Streaming + Libraries

XQuery is worth comparing to other programming
languages. Database languages such as SQL typically cover
the “Query”, “Update”, and potentially the “Fulltext” and
“Streaming” aspects. General purpose programming
languages like Java or C# cover the “Scripting” and
“Libraries” aspects. XQuery does it all.

One noticeable omission in the XQuery family is a data
definition language (DDL) which allows the specification
of integrity constraints, the declaration of schemas, and the
definition of a physical database design with indexes. SQL,
obviously, provides such a DDL and such a DDL is also
needed for XQuery applications.

In summary, it can be concluded that XQuery tries to
combine the features of existing programming languages
like SQL, Java, or even PHP. In this way, XQuery allows
to implement sophisticated applications in a single tier and
with a single uniform technology, thereby avoiding
impedance mismatches and improving flexibility and
customizability. Like SQL, XQuery supports declarative
queries and updates; XQuery is able to specify bulk queries
and updates which are best executed inside a database.

3. .X-QUERY PROCESSING TECHNIQUES

Architecture of an XQuery Processor
The XQuery specification specifies a processing model to
evaluate XQuery programs. This processing model
prescribes particular operations and interactions, but does
not specify how to implement them.

Figure 1 gives a generic architecture that most XQuery
processors have adopted. This architecture is also related to
the architecture used by most query processors of relational
database systems and compilers/runtime systems of general
purpose programming languages.

Implementation Variants

Figure 3: Representing Query Process in Big Integrator

This section gives an overview of implementation variants
of theindividual components of an XQuery processor and
outlines thecurrent best practices. XQuery canbe used in a
wide spectrum of scenarios with varying requirementsand
thus different design decisions. In general, most
implementationscan be classified in one of the following
three categories:lightweight, full, or relational. Lightweight
implementations aretypically used for ad-hoc

S.Praveen Kumar et al., International Journal of Information Systems and Computer Sciences, 2(4), July - August 2013, 14 - 19

17

transformations, embedding in other platformsor scripting.
Full implementations are often used in the contextof native
XML databases and are more concerned about
complianceand index usages, whereas relation engines are
XQuery implementationsbased on relational databases. Of
course, this classificationmight not fit for all
implementations, but it demonstrateswell the design space
of implementations.

Given their more traditional (database) workloads, full
implementationstypically prefer to use multiple stages and
separate representationsof logical and physical plans.
Again, rule-based optimization is common practice in this
category of implementations.Furthermore, full XQuery
implementations provideschema support, as annotating the
query plan with schema-derivedinformation allows for
optimizations such as general comparisonrewrites.
Giventhe complexity of XML Schema, almost all
implementations try to build on top of an existing library.
Schema information is particularly important in this
regards, hencealmost all relational implementations rely on
it and thus providethe necessary support. An extended
version of the relational algebrais typically used as logical
representation. The extension ismade for the XQuery
specific operators such as path expressions.Stating those
expressions explicitly simplifies the optimization
process.Even though relational implementations try to use
their existingcost-based optimizer, the relevant cost models
for XQuery havenot yet reached a sufficient degree of
maturity. Therefore, even forrelational implementations,
most of the XQuery-specific optimizationsare still
overwhelmingly rule-based instead of cost-based.

4. OPTIMIZATIONS

Standard XQuery-specific optimizations include join
detection, constant folding, avoiding duplicate elimination,
document orderingand node identifier operations[4]. Join
detection allows replacing nested-loop joins (implied by the
XQuery syntax and the ordering constraints) by more
efficient join algorithms, which is particularly important for
large data sets. Constant folding allows pre-computation of
partial results and simplification of expressions.
Duplicate elimination and document ordering are implied
by the orderednature of XDM and the semantics of many
expressions, mostprominently path and set expressions.
Since their implementationstend to be expensive and
pipeline-breaking, it is therefore importantto only
instantiate them when absolutely necessary. Since
theytypically rely on XDM node identifiers, eliminating
them also helps in avoiding to generate node identifiers,
which is one of the mostexpensive operations at the store
level.

Other notable optimizations are the elimination of non-
forward axes (parent, pre-sibling etc.) of path expressions
and optimizations regarding general comparison. Using
only forward axes allows tremendous simplifications and
optimizations for the store, in particular enabling streaming
execution of data accesses. Optimization regarding general
comparison is one of the most performancecriticalfactors.
Given the syntax of XQuery, users tend to write general
comparisons (e.g, =, <, <=) even though a simple
comparision (e.g., eq, lt, gt) would have been sufficient.
General comparisons are expensive in two ways:
Expressing the type castingand existential quantification
required by the semantics of generalcomparison leads to
complex implementations that can cost up toorders of
magnitudes more than simple values expressions. In
addition ,general comparison is neither transitive nor
reflexive, thusprohibiting many other optimizations and
complicating the use ofindexes. XML Schema often
provides the information needed torewrite general
comparisons into value comparisons.

5. RUNTIME

Runtime implementations differ mainly in the following
techniques ,independent of the targeted use-case: iterator
model (pull vs. push), runtime operators (relational vs.
XQuery expressions),and internal data model
representation (tokens vs. items).Iterator Model. Most
runtime implementations follow a pullbased iterator model.
Iterators allow for lazy evaluation and streaming execution,
so that the runtime [5] can dealwith recursive function calls
and data streams - also infinite datain the case of stream
queries. Since materialization of intermediate results is
avoided, the required memory footprint for processingis
minimized. Unfortunately, the depth and nesting of
XQueryoperator trees often cause bad cache behavior and a
high numberof function calls between iterators. This is
particularly bad if afine-grained internal data
representation, such as tokens, is used in combination with
a lazily evaluated iterator model.Therefore some engines
forego the iterator model and compilethe code into native
code or their own virtual machine code. Consequently,
such runtimes are rather pushbasedand apply a single
operation at the time on the whole inputdata set before they
forward the complete result to the next operations.

Such an approach increases the cache locality and better
utilizesthe pipeline architecture of modern CPUs. On the
other hand,this requires materializing the intermediate
results, thus increasingthe memory footprint and
prohibiting lazy evaluation. Saxon is anexample for an
engine positioned between those extremes: It
partlycompiles the iterator tree into Java code and mixes
push and pulldepending on optimization heuristics. Oracle
also performs thismixture of push and pull, using different
operator implementationsfor different requirements.

S.Praveen Kumar et al., International Journal of Information Systems and Computer Sciences, 2(4), July - August 2013, 14 - 19

18

Internal Data Model: Finally, the internal data model
representation ,i.e. the representation of the smallest object
transferred between the operators, varies from items to
tokens.The item representation is closest to the
XQueryData Model. Items may represent a [6]singleatomic
value such as a string or even a complete XML
tree/document, whereas tokens are of smaller granularity
and can becompared to (typed) events generated by a SAX
parser. Althoughtokens are fast to generate by a suitable
parser and allow for lazyevaluation even inside an XML
item, they often require invokingevery iterator several
times to produce the content of single item of the result set.
Hence, a more coarse-grained model, such as items,is often
superior to tokens, reducing the required amount of
functioncalls to generate a result.

6..GENERAL RUNTIME OPTIMIZATIONS

Independent of the choiceof the internal representation, the
iterator model and the runtimeoperators, the optimizations
of general comparison, numericaloperations and FLWOR
expressions are applicable to all architectures :As for the
compiler, general comparison is also an issue insidethe
runtime. The optimizer is often not able to substitute
generalcomparison by value comparison. As mentioned
before, generalcomparison is especially complex because
of the applied rules specified in the specification. Thus,
spending time to optimize the general comparison quickly
pays off. The standard approach is tooptimize the
implementation for the common case, i.e, a simple value
comparison, with exceptions and fall-back mechanisms
forthe less likely truly general comparison situation.

General Design Principles. Certain methods and aspects are
common for all types of stores. First of all, since XDM
mandatesthat all nodes must have a way to identify them,
implementationsof node identifiers need to be provided. It
is now common practice to also express structural
constraints such as document order and parent/child-
relationships in the node identifiers to simplify
pathexpressions, set operations, duplicate elimination and
document ordering. For updatable stores, Ordpath is the
state-of-the-art method, for read-only stores Dewey IDs are
used, which bothencode the document structure in a
compact way. Therefore, all operationrequiring structural
constraints can be supported efficiently.

Generating and maintaining node identifiers is expensive,
both interms of computational cost and memory overhead.
As outlinedabove, in many use cases, an optimizer can
decide to avoid generatingthem.Furthermore, the store is
responsible for generating the internaldata representation of
XDM. Parsing and object creation have beendetermined as
the major cost drivers. This is of particular concernif only
fragments of the documents are needed and/or in the case

ofone-time transformations and streaming. Hence,
document projection, comparable to projection push-
downs, is one method tospeed up the processing of
document parsing and at the same time minimizing the
work for the runtime as much as possible. In the same
region of optimizations regarding the store is theuse of
object pools and dictionaries for namespaces, elements
andstrings. The latter allows performing comparisons based
on pointers instead of, for example, the string
representation for elementnames.

Usage-specific Implementations: The main
differentiatorsfor storage implementations are the usage
scenarios and the supportedfunctionality. Since several
XQuery engines will cover arrange of usage scenarios and
functionalities, they provide multipledifferent store
implementations, and choose the most appropriateone
depending on the required workload.

Among the different sets of supported functionality, the
differencebetween read-only and updatableXDM stores is
most important: updatablestores need to provide facilities
to support snapshot semanticsrevalidation support iftyped
XDM is used, updatable node identifiers and thepossibility
to push the XDM updates to external data.Beyond
updateable/non-updateable, the store implementations can
be categorized in several dimensions: First, stores can be
dividedinto in-memory and persistentstores. Second, the
storing techniquecan be roughly grouped into binary XML
stores relational edge-stores, andhybrid relation/XML
binary stores. The storing techniquesitself may be split
according to the various ways of shreddinginto relational
tables or the different XML binary encodings. Comparing
all these approaches is beyond the scopeof this paper.

Indexing: Indexes play a similarly important role for
XQuery asfor SQL engines. However, data types and
general comparisonoften complicate the use of indexes in
queries, especially temporaryad-hoc indexes. It is therefore
essential to have a clean indexinterface to provide the
necessary information for such optimizations.Three types
of indexes are important for XQuery: structural,value and
full-text indexes. While full-text indexes are rarely
implemented, structural and value indexes can be found in
most implementations. Value indexes particularly vary in
the way they arecreated. An approach implemented in
XQRL indexes certain pathexpressions, thus creating one
value index perpath. Alternatively , e.g., in DB2,
structural and value indexes are combined. For the actual
index structure hash tables or B-Trees are the common
approaches.

REFERENCES

[1]. Cloud Computing & Databases by Mike Hogan, CEO
ScaleDB Inc.

S.Praveen Kumar et al., International Journal of Information Systems and Computer Sciences, 2(4), July - August 2013, 14 - 19

19

[2]. Minpeng Zhu and Tore Risch “Querying Combined
Cloud-Based and Relational Databases”.
[3]. XQuery Reloaded by Roger BamfordVinayakBorkar
Matthias Brantner Peter M. Fischer.
[4]. International Journal of Database Management
Systems (IJDMS), Vol.3, No.1, Information Retrieval
Using Xquery Processing Techniques by E.J.Thomson
Fredrick1 And G.Radhamani.
[5]. Implementing an interpreter For fuzzy xquery language
Pannipa sae ueng1, wiphadawettayaprasit.
[6]. Fuzzy Logic Based XQuery operations for Native
XML Database Systems by E.J.Thomson Fredrick and
Dr.G.Radhamani

