
 International Journal of Information Systems and Computer Sciences, Vol.7. No.1, Pages : 16-22 (2017)
 Special Issue of ICSIC 2017 - Held during 23-24 September 2017 in Amman Arab University, Amman-Jordan
 http://www.warse.org/IJISCS/static/pdf/Issue/icsic2017sp16.pdf

16

ISSN 2319-7595

Dynamic Service Oriented Architecture
Quality of Service Driven

Prof. Khalid Kaabneh Dr. Hassan Tarawneh Dr. Issam Al-Hadid
Department of Computer Science,
College of Computer Science and

Informatics.
Amman Arab University

kaabneh@aau.edu.jo

Department of Mobile Computing,
College of Computer Science and

Informatics.
Amman Arab University

hassan@aau.edu.jo

Department of Business
Information Technology, College of

Information Technology.
Jordan University
i.hadid@ju.edu.jo

Abstract--Service-oriented architecture (SOA)
middleware has emerged as a powerful and popular
distributed computing paradigm due to its high-level
abstractions for composing systems and encapsulating
platform-level details and complexities. Control of some
details encapsulated by SOA middleware is necessary,
however, to provide managed quality-of-service (QoS)
for SOA systems that require predictable performance
and behavior. This paper presents a policy-driven
approach for managing QoS in SOA systems called QoS
Enabled Dissemination (QED). QED includes services
for (1) specifying and enforcing the QoS preferences of
individual clients, (2) mediating and aggregating QoS
management on behalf of competing users, and (3)
shaping information exchange to improve real-time
performance. We describe QED’s QoS services and
mechanisms in the context of managing QoS for a set of
Publish-Subscribe-Query information management
services. These services provide a representative case
study in which CPU and network bottlenecks can occur,
client QoS preferences can conflict, and system-level
QoS requirements are based on higher level, aggregate
end-to-end goals. We also discuss the design of several
key QoS services and describe how QED’s policy-driven
approach bridges users to the underlying middleware
and enables QoS control based on rich and meaningful
context descriptions, including users, data types, client
preferences, and information characteristics. In
addition, we present experimental results that quantify
the improved control, differentiation, and client-level
QoS enabled by QED.

Keywords-- Service Oriented Architecture, Quality of
Service, Information Management.

I. INTRODUCTION

Web services technology increasingly has been
used to develop the new software systems’ era, by
moving from module implementation to unit
composition, which is the base of the Service
Oriented Architecture (SOA). Mariani [1] stated

“Customers demand for high quality systems that
typically require a large amount of time to be
developed and must be released in stable versions”.

Web service technology can reduce the time to
market, as well as the Quality of Service (QoS)
according to the Service Agreement Level (SAL)
must be provided by the service providers that can
gain the clients’ reputation and increase the market
share. The Quality of Service (QoS) of a Web Service
may be affected either because of internal changes or
because of workload fluctuations. Guaranty the
Quality of service requirements (availability,
accessibility, integrity, reliability, throughput, latency,
Security). Yu and Lin [2] proposed a method that
promises to offer a better quality of service; it uses
QoS constraints to choose the service and binds it.
SOA consists of 3 levels [3, 21, 13],:
1- Service Level: Web services are the base of the

Service Oriented Architecture, so we need a
mechanism to make sure that these units provide
the expected behavior.

2- Communication level: the traffic between Web
service providers and requesters.

3- Flow Level (Business Process Execution): the
Web Service business process execution.
Ben Halima et al. [3] proposed an architectural

framework for monitoring and analysis of Web
Services’ QoS driven by models for QoS analysis.
Their suggested framework used to monitor and
analysis the SOAP messages between Web services.
Figure 1, shows their architectural framework applied
to a food shop scenario.

 International Journal of Information Systems and Computer Sciences, Vol.7. No.1, Pages : 16-22 (2017)
 Special Issue of ICSIC 2017 - Held during 23-24 September 2017 in Amman Arab University, Amman-Jordan
 http://www.warse.org/IJISCS/static/pdf/Issue/icsic2017sp16.pdf

17

ISSN 2319-7595

Fig 1. Details of QoS Architectural Framework Applied to the Food

Shop Scenario

Figure 2, shows the overall monitoring result of the
Web service using a self-healing proposed framework
by Ben Halima et al. [4], The Figure shows that both
curves are similar and the overload of monitors is
negligible for less than 50 concurrent clients. For the
largest requester’s number (500) curve shows
monitoring overload and its effect on the response
time of web services.

Fig 2. Overload of Monitoring.

II. QUALITY OF SERVICE DRIVEN

Web services’ QoS is the factor for the success of
service provides, which is related to Web services’
functional and non-functional requirements; Verifying
that the expected behavior has been delivered

There are number of Web service QoS
characteristics that can be considered [5, 6, 7, 8, 15,
19, 20], shown in table 1.

Table 1: Web Service QoS Characteristics

Parameter Description
Performance A set of factors defining the

productivity of a service:
throughput, latency;

- Throughput: number of
requests that can be
addressed in a given
time-frame.

- Latency: round-trip time
of a request and its
response.

Capacity The limit of concurrent requests
for guaranteed performance.

Execution cost Cost The amount of money for a
single service execution.

Compensation
rate

A percentage of the execution
price that is refunded when the
service provider cannot deliver
the ordered commodity.

Penalty A percentage of the original price
service requesters need to pay to
the provider When he/she wants
to cancel the committed service or
the ordered item.

Availability A set of metrics that characterize
availability of a service:
availability rate, mean time to
repair, mean time between
failures; how long a given service
remains unavailable after
occurrence of a failure.

Accessibility Ability of a service to process a
given request. The service can be
available but not accessible if, for
example, the hosting server is
overloaded.

Network factors

A set of factors characterizing a
communication network: network
delay, delay Variation, packet
loss.

Reliability Reflects the ability of a service to
keep operating over time,
characterized by
availability/accessibility and
successful execution rate, and
guarantee the promised or
negotiated qualities of service, i.e.
a percentage of successful
executions with respect to all
executions.
according to Mani and Nagarajan
[22]

“Reliability is the quality aspect of
a Web service that represents the
degree of being capable of
maintaining the service and
service quality.[...] reliability
refers to the assured and ordered
delivery for messages being sent
and received by service
requestors and service

 International Journal of Information Systems and Computer Sciences, Vol.7. No.1, Pages : 16-22 (2017)
 Special Issue of ICSIC 2017 - Held during 23-24 September 2017 in Amman Arab University, Amman-Jordan
 http://www.warse.org/IJISCS/static/pdf/Issue/icsic2017sp16.pdf

18

ISSN 2319-7595

providers.”

Scalability The ability to process more
operations in a given period.

Accuracy The degree of conformity of the
result produced by a service to an
accepted standard value, or ideal
value.

Exception
handling

Specifies how a Web service
handles exceptions.

Robustness Reflects the ability of a service to
function in the presence of
invalid, incomplete or conflicting
inputs.

Completeness The discrepancy between
specified and implemented
features.

Security A set of factors reflecting the
trustworthiness of the service;
Used to Guarantee exchanged
messages confidentiality, non-
repudiation, and encryption.

Privacy Refer to the control of the
personal data of a requester (ex.
storage period, cases of
disclosure).

Reputation

The average rate of service
reported by clients can be
considered as a trust measure to
this service.

III. PROPOSED ARCHITECTURE

Our proposed architecture provides the Self-Healing
capabilities base on three levels; Service, Flow, and
communications levels. The following are the
performance evaluation parameters for the proposed
architecture using the QoS driven parameters in
presence of the three levels Self-Healing:
The QoS parameters for the Service level (Web
Service with Self-Healing Agent) are:
1- Execution Price: the fee that the Web service

requester has to pay for invoking a Web service
operation. it can be inquired by the requester or
advertised by service providers; Ep(ws, op)
 Ep: Web service’s execution price

 ws: invoked Web service
 op: invoked Web service operation

2- Execution Time: the time in seconds

between the moment when the request is
sent by requester to a Web service and when
the result of the request is received;

Et(ws, op) + Tt(ws, Req) + Tt(ws, Resp) ,
calculated using Equation 1.
 Et(ws, op): execution time needed by the

Web service to process an operation.
 Tt(ws, Req): transmission time needed

for the request to reach the Web service.
 Tt(ws, Resp): transmission time needed

by the Web service response to reach
the requester.

3- Internal Execution Time: the time in seconds
between the moment when the request is
received by a Web service and when the
result of the request is sent; Et(ws, op),
calculated using Equation 2.
 Et(ws, op): execution time needed by the

Web service to process an operation.
4- Reliability: the ability of a Web service to

keep operating over time; measured by the
number of failures per month/Year ;Rel(ws)
= F(ws)/t
 Rel(ws): Web service’s reliability
 F(ws): number of Web service’s failures
 t: period of time day, month, year, etc…)

5- Throughput: the amount of requests that can
be processed by a Web service in a specific
period of time; Thr(ws) = N(ws)/t.
 Thr(ws): throughput of the Web

service
 N(ws): number of Web service’s successful

invocations
 t: specific period of time (day, month, year, etc…)

6- Availability: the probability that a Web
service is available and ready to use;
Av(ws) = 1 – ((Rej(ws, Req) + F(ws)) / K)

 Av(ws): Web service’s
availability

 Rej(ws, Req): Web
service’s rejected requests

 F(ws): Number of Web service’s
failures

 K: total number of
requests

7- Response Time (Connector - To - Web
Service): the time in seconds between the
moment when the request is sent by the
Virtual Web Service Connector to the Web
Service, and when the result of the request is
received by the Virtual Web Service
Connector. Calculated using Equation (7).

8- Communication Time (Connector - To -
Web Service): the round trip of a request
and its response; the time in seconds
between the moment when the request is
sent by the Virtual Web Service Connector
and Received by the Web service, and
between the moment when the response is
sent by the Web service received by the

 International Journal of Information Systems and Computer Sciences, Vol.7. No.1, Pages : 16-22 (2017)
 Special Issue of ICSIC 2017 - Held during 23-24 September 2017 in Amman Arab University, Amman-Jordan
 http://www.warse.org/IJISCS/static/pdf/Issue/icsic2017sp16.pdf

19

ISSN 2319-7595

Virtual Web Service Connector. Calculated
using Equation (6).

9- Accessibility: the ability of a Web service
to process a given request; Acc(ws) =
P(ws)/K , it depends on the Input Fault (IF),
and the Input Type Fault (ITF).
 Acc(ws): accessibility of the Web service
 P(ws): number of requests processed by

Web Service
 K: total number of requests

10- Integrity: how the Web service maintains the
correctness of the transactions' execution;
provides the expected behavior; Int(ws) =
Sc(ws,op) / Ex(ws).
 Int(ws): integrity of the Web service
 Sc(ws): number of successful Web

service’s operations execution.
 Ex(ws): Total number of Web service

operations execution.
11- Performance: the Web service’s throughput

and latency, it defines the productivity of the
Web service; Throughput is the number of
requests that can be addressed in a given
time-frame. Latency is the round-trip time of
a request and its response.

While The QoS parameters for the Communication
level (Virtual Web Service Connector) are:

1- Execution Time: the time in seconds
between the moment when request is sent by
requester to the Virtual Web Service
Connector, and receiving the response of the
request. Calculated using Equations (3), (4)
and (5).
Execution Time = Eq(3) + Eq(4) + Eq(5)

2- Reliability: the ability of the Virtual Web
Service Connector to keep operating over
time; measured by the number of failures
per month/Year; Rel(con) = F(con)/t.
 Rel(con) : Virtual Web Service

Connector’s reliability
 F(con): number of Virtual Web Service

Connector’s failures.
 t: period of time day, month, year, etc…)

3- Throughput: the amount of requests that can
be processed by the Virtual Web Service
Connector in a specific period of time;
Thr(con) = N(con)/t.
 Thr(con): throughput of the Virtual Web

Service Connector.
 N(con): number of the Virtual Web

Service Connector’s successful
invocations
 t: specific period of time (day, month,

year, etc…)
4- Availability: the probability that the Virtual

Web Service Connector is available and

ready to use; Av(con) = 1 – ((Rej(con, Req)
+ F(con))/K).
 Av(con): Virtual Web Service Connector

availability
 Rej(con, Req): Virtual Web Service

Connector’s rejected requests
 F(con): number of Virtual Web Service

Connector’s failures
 K: total number of requests

5- Communication Time: the round trip of a
request and its response; the time in seconds
between the moment when the request is
sent by the requester and received by the
Virtual Web Service Connector, and
between the moment when the response is
sent by Virtual Web Service Connector and
received by the requester. Calculated using
Equation (8).

6- Response Time (Requester - To – Virtual
Web Service Connector): the time in
seconds between the moment when the
request is sent by the requester to the Virtual
Web Service Connector, and when the result
of the request is received by the requester;
calculated using Equation (1).

7- Accessibility: the ability of Virtual Web
Service Connector to process a given
request; Acc(con) = P(con)/K , it depends on
the Input Fault (IF), and the Input Type
Fault (ITF).
 Acc(con): accessibility of the Virtual

Web Service Connector
 P(con): number of requests processed by

the Virtual Web Service Connector.
 K: total number of requests

8- Integrity: how the Virtual Web Service
Connector maintains the correctness of the
transactions' execution; provides the
expected behavior; Int(con) =
Sc(con,op)/Ex(con).
 Int(con): integrity of the Virtual Web

Service Connector
 Sc(con, op): number of successful

Virtual Web Service Connector’s
monitoring operations’ execution.
 Ex(con): total number of Virtual Web

Service Connector monitoring
operations execution.

9- Performance: Virtual Web Service
Connector’s throughput and latency, it
defines the productivity of the Virtual Web
Service Connector; Throughput is the
number of requests that can be addressed in
a given time-frame. Latency is the round-
trip time of a request and its response.

10- Internal Monitoring Time: the time in
seconds of the monitoring operations used to

 International Journal of Information Systems and Computer Sciences, Vol.7. No.1, Pages : 16-22 (2017)
 Special Issue of ICSIC 2017 - Held during 23-24 September 2017 in Amman Arab University, Amman-Jordan
 http://www.warse.org/IJISCS/static/pdf/Issue/icsic2017sp16.pdf

20

ISSN 2319-7595

add the QoS variables to the request’s SOAP
message, and to extract in the results from
the response’s SOAP message. Calculated
using Equations (3) and (4);
Total monitoring time = Eq(3) + Eq(4).

Finally, The QoS parameters for the Flow level
(Extended Execution Engine with Process Execution
Self-Healing Manager) are:

1- Reliability: ability of a Extended Execution
Engine with Process Execution Self-Healing
Manager to keep operating over time; the
ability of the composed Web service to keep
operating over time, measured by the
number of failures per month/Year;
Rel(EEeng) = F(EEeng)/t.
 Rel(EEeng) : Extended Execution

Engine with Process Execution Self-
Healing Manager’s reliability
 F(EEeng): number of Extended

Execution Engine with Process
Execution Self-Healing Manager’s
failures; unsuccessful invocations’ order
according to the business process.
 t: specific period of time day, month,

year, etc…)
2- Throughput: the amount of business process

that can be processed by Extended
Execution Engine with Process Execution
Self-Healing Manager in a specific period of
time; Thr(EEeng) = N(EEeng)/t.
 Thr(EEeng): throughput of Extended

Execution Engine with Process
Execution Self-Healing Manager.
 N(EEeng): number of business processes

processed by the Extended Execution
Engine with Process Execution Self-
Healing Manager.
 t: specific period of time day, month,

year, etc…)
3- Availability: the probability that the

Extended Execution Engine with Process
Execution Self-Healing Manager is available
and ready to use; Av(EEeng) = 1 – ((
Rej(EEeng, Notifications) + F(EEeng))/K)
 Av(EEeng): Extended Execution Engine

with Process Execution Self-Healing
Manager availability
 Rej(EEeng, Notifications): Extended

Execution Engine with Process
Execution Self-Healing Manager’s
rejected notifications to execute a
business process.
 F(EEeng): Number of Extended

Execution Engine with Process
Execution Self-Healing Manager’s
failures

 K: total number of notifications

4- Accessibility: ability of Extended Execution
Engine with Process Execution Self-Healing
Manager to process a given business
process; Acc(EEeng) = P(EEeng) / K ,
depends on the Order Fault (OF).
 Acc(EEeng): Extended Execution Engine

with Process Execution Self-Healing
Manager Accessibility
 P(EEeng): number of business process

processed by Extended Execution Engine
with Process Execution Self-Healing
Manager
 K: total number of business processes

notified to be executed by Extended
Execution Engine with Process
Execution Self-Healing Manager

5- Integrity: how Extended Execution Engine
with Process Execution Self-Healing
Manager maintains the correctness of the
transactions' execution; provides the
expected behavior of the Extended
Execution Engine with Process Execution
Self-Healing Manager; Int(EEeng) =
Sc(EEeng,BP) /Ex(EEeng).
 Int(EEeng): integrity of the Extended

Execution Engine with Process
Execution Self-Healing Manager
 Sc(EEeng, BP): number of successful

Extended Execution Engine with Process
Execution Self-Healing Manager’s
business processes execution.
 Ex(EEeng): Total number of Extended

Execution Engine with Process
Execution Self-Healing Manager’s
business processes execution.

6- Performance: Extended Execution Engine
with Process Execution Self-Healing
Manager’s throughput and latency, it defines
the productivity of the Extended Execution
Engine with Process Execution Self-Healing
Manager; Throughput is the number of
business processes that can be addressed in a
given time-frame. Latency is the round-trip
time of a business processes invocation and
its response.

7- Execution price: The execution price of an
execution plan of a composite service is the
sum of the execution prices of the operations
invoked over the services that participate in
composite service.

8- Execution duration: The execution duration
of an execution plan of a composite service
is the sum of the execution time of the Web
services that participates in composite
service; the time in seconds between the

 International Journal of Information Systems and Computer Sciences, Vol.7. No.1, Pages : 16-22 (2017)
 Special Issue of ICSIC 2017 - Held during 23-24 September 2017 in Amman Arab University, Amman-Jordan
 http://www.warse.org/IJISCS/static/pdf/Issue/icsic2017sp16.pdf

21

ISSN 2319-7595

moment when the business process first
request is sent by the Extended Execution
Engine with Process Execution Self-Healing
Manager to the participating Web service,
and when the result of the business process’s
last request is received by the Extended
Execution Engine with Process Execution
Self-Healing Manager.

In our proposal architecture, QoS parameters are
measured while considering the following eight
values, shown in Figure 4. t1: the time at which
Service Requester (Extended Execution Engine with
Process Execution Self-Healing Manager) has issued
the request. t2: the time at which Virtual Web Service
Connector has received the request. t3: the time at
which Virtual Web Service Connector has issued the
request. t4: the time at which Service Provider has
received the request. t5: the time at which Service
Provider has issued the response. t6: the time at
which Virtual Web Service Connector has received
the response. t7: the time at which Virtual Web
Service Connector has issued the response. t8: the
time at which Service Requester (Extended
Execution Engine with Process Execution Self-
Healing Manager) has received the response.

Fig. 4 Proposed architecture measured times for QoS Monitoring.

The QoS parameters is will be calculated using the
following equations:
Response time = t8 – t1 (1)
Execution time = t5 – t4 (2)
Virtual W-Service Connector Req. monitoring time = t3 – t2
 (3)
Virtual Web Service Connector Res. monitoring time = t7 – t6
 (4)

Total Communication time = (t2 – t1) + (t4 – t3) + (t6 – t5) + (t8 –
t7) (5)
Connector – Web Service Communication time = (t4 – t3) + (t6 –
t5) (6)
Web Service Response Time = t6 – t3 (7)
Requester – Conn-Comm-time = (t2 – t1) + (t8 – t7)
 (8)

IV. CONCLUSION

An exact differentiation between Service oriented
architecture and component based architecture is hard
to make, because opinions on what “SOA” exactly is
and how it will develop differ. If SOA is seen as a
new type of architecture that defines the how-to of
assigning interfaces in a servicing way so that these
services can be used in a context freeway, it does not
differ significantly from existing component based
frameworks like Enterprise JavaBeans. If the
definition of SOA includes the usage of technologies
like WSDL, UDDI, and SOAP (and its potential
successors), SOA differs in several ways from the
“old” component based architecture. With these
technologies, software can be built in a completely
new way. Software developers can use foreign,
external “components” in the form of Web Services.
Web Services can be used in contexts that were not
considered at the time they were built. But SOA is
not the solution to all problems linked with software
development. There are many problems: Ranging
from finding the required services, providing
acceptable performance, security, realising
transactions up to maintaining one’s own service,
even if foreign, integrated services have changed or
are closed. There are many problems to resolve, but
there are many possibilities too. It will depend on
Sun or other larger companies, to develop an overall
solution, containing solutions to all of these
problems.

REFERENCES

[1] Rajeev Alur and David L. Dill. A theory of timed automata.
Theor. Comput. Sci., 126(2):183–235, 1994.
[2] Natee Artaiam and Twittie Senivongse. Enhancing service-side
qos monitoring for web services. In SNPD ’08: Proceedings of the
2008 Ninth ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, pages 765–770, Washington, DC,
USA, 2008. IEEE Computer Society.
[3] Luciano Baresi, Carlo Ghezzi, and Sam Guinea. Smart
monitors for composed services. In ICSOC ’04: Proceedings of the
2nd international conference on Service oriented computing, pages
193–202, New York, NY, USA, 2004. ACM.
[4] Bruce Bukovics. Pro WF: Windows Workflow in .NET 3.5.
Apress, Berkely, CA, USA, 2008.

 International Journal of Information Systems and Computer Sciences, Vol.7. No.1, Pages : 16-22 (2017)
 Special Issue of ICSIC 2017 - Held during 23-24 September 2017 in Amman Arab University, Amman-Jordan
 http://www.warse.org/IJISCS/static/pdf/Issue/icsic2017sp16.pdf

22

ISSN 2319-7595

[5] Michael J. Carey. Soa what? Computer, 41(3):92–94, 2008.
[6] Issam Chebbi, Schahram Dustdar, and Samir Tata. The view-
based approach to dynamic inter-organizational workflow
cooperation. Data Knowl. Eng., 56(2):139–173, 2006.
[7] OASIS International Standards Consortium. Uddi version
3.0.2, September 2004. http://www.uddi.org/pubs/uddi
v3.htm.
[8] OASIS International Standards Consortium. ebxml registry
services and protocols v3.0, March 2005.
http://www.ebxml.org.
[9] Thomas Erl. Service-Oriented Architecture: A Field Guide to
Integrating XML and Web Services. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2004.
[10] Al_Zyadat, W., Al-Zyoud, F., and Alhroob
, A.,Smooth Handoff Process Cluster_Based In Vehicular Ad Hoc
Networks, International Journal of Computing Academic Research
(IJCAR), Vol. 6(3), 101-109, 2017.
[11] Organization for the Advance of Structured Information
Standards (OASIS). Reference model for service oriented
architecture 1.0, oasis standard, October 2006.
http://docs.oasis-open.org/soarm/v1.0/.
[12] Khalid A. Kaabneh, “High Fidelity Image Watermarking
Using FWT by Exploiting the RGB and HSV Models”,
International Journal of Computer Technology and Applications
(IJCTA), V. 5(2), April 2014.
[13] Al-Hadid, I. , Airport Enterprise Service Bus with Self-
Healing Architecture (AESB-SH), International Journal of
Aviation Technology, Engineering and Management, Vol. 1(1), 1-
13, 201.
[14] Lican Huang, D.W. Walker, O.F. Rana, and Yan Huang.
Dynamicworkflow management using performance data. In
Cluster Computing and the Grid, 2006. CCGRID 06. Sixth IEEE
International Symposium on, volume 1, pages 154–157, May 2006.
[15] Afaneh, S., Al-Hadid, I., Al-Malahmeh, H., "Extreme
Programming Agile Methodology With Self-Healing", In
Proceedings of the European, Mediterranean and Middle Eastern
Conference on Information Systems (EMCIS), Germany. 2012.
[16] Philipp Leitner, Florian Rosenberg, and Schahram Dustdar.
Daios: Efficient dynamic web service invocation. IEEE Internet
Computing, 13(3):72–80, 2009.
[17] Yousef, Nidal, Hassan Altarwaneh, and Aysh Alhroob. "Best
Test Cases Selection Approach Using Genetic
Algorithm." Computer and Information Science 8.1, 2015.
[18] Al-Hadid, I., Khwaldeh, S., Kaabneh, k., Tarawneh, H.,,
Efficient Big Data Transfer Technique for Static Routing
Networks, International Journal of Applied Engineering Research,
Vol 12 (9), pp 2071-2078, 2017.
[19] Afaneh, S., Al-Hdid, I., Airport Enterprise Service Bus with
Three Levels Self-Healing Architecture (AESB-3LSH),
International Journal of Space Technology Management and
Innovation (IJSTMI), Vol. 3 (2), 1-23, 2013.
[20] Al-hadid, I., Afaneh, S., and Almalahmeh, H., Extreme
Programming Certification Process using Confidence Grade,
International Journal of Computer and Information Technology,
Vol. 4(1), pp 129 - 138, 2015.
[21] Kaabneh, K., Afaneh, S., Almalahmeh, H., Al-hadid, I. ,
Improved Web Service Self-Healing Connector, International
Journal of Computer Science and Information Technologies, Vol. 5
(2), 2649 - 2657, 2014.
[22] Mani, A., and Nagarajan, A., “Understanding quality of
service for Web services: Improving the performance of your Web
services”, Retrieved August 22, 2009 from http://www-
106.ibm.com/developerworks/library/ws-quality.html

