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ABSTRACT 
 

The results of use of one-to-one and hypermonotone 
transformations in order to perform the synthesis of the 
optimal image, required for the functioning of the 
correlation-extreme navigation systems (CENS) of mobile 
robots (MR) are represented in this article. The algorithm 
of the synthesis of the optimal RI in the hyperordinal scale 
is suggested. 
 
Key words: nominal scale, hyperordinal scale, optimal 
reference image, algorithms synthesis, navigation systems 
of mobile robots. 
 
1. INTRODUCTION 
 
The navigation of the airborne MR, equipped with CESN, 
in conditions of the uncertainty, caused by influence of 
different stochastic factors, requires the search of optimal 
solution regarding the RI composition as well as regarding 
the corresponding algorithms. The process of RI 
composition with respect to the possible change of the data 
on the MR reference location causes the necessity to find 
the simple and accurate solutions, which ensure the 
required indicators of precision of navigation system [1, 2, 
3]. 
 
1.1 Problem analysis 
 
The results of preparation of the general approach to 
optimal RI synthesis using the group of the permissible 
transformations and corresponding scales are represented 
in the article [4]. The results of use of the strong and 
ordinal scales during the synthesis of the RI for vehicle 
CENS are described in the article [5]. Meanwhile, there 
are no results of use of nominal and hyperordinal scales 
for the RI synthesis for CENS of MR.  
 
The object of this article is the RI synthesis in the 
representations in nominal and hyperordinal scales. 

 
2. MAIN MATERIAL 
 
2.1 The synthesis of optimal reference image in 
nominal scale. 
We will solve the problem of optimal RI synthesis in the 
nominal scale using the group of the permissible 

transformations, based on the construction of reflection 
	b: Oᇱ → R, which aligns each zone of the viewing surface 
with the corresponding type of background brightness, 
with the help of the following assumptions. According to 
[4, 5] we introduce a vector ૈ ∈  ୒  whose components܀
are equal to digitization of the brightness of zones. Hence, 
the RI digitalization vector ૂ ∈  ୑ will be represented܀
with the help of vector ૈ as follows: 

ૂ = ۶ૈ    (1) 
 

Let us set the population of the possible permitted 
digitalizations per zone by Cૈ ⊂  ୒, which in general case܀
is defined by the relation ρ  in numerical scale [4]. Thus 
the population of the possible digitalizations for vector 
ૂ ∈  ୑ can be defined by܀
Cૂ = {ૂ ∈ ૂ|୑܀ = ۶ૈ,ૈ ∈ Cૈ}. 
In weak scales the RI representation is written as: 
 

ෝૂ = arg minૂ∈େૂ‖ܡ − ଶۯ‖ૂ .  (2) 
 

The problem (2) can be equivalent to the following 
problem: 
 

ෝૈ = ܡ‖min஠∈େಘ݃ݎܽ ଶۯ‖۶ૈ− .  (3) 
 

and the optimum digitization ෝૂ is restored along the vector  
ෝૈ by means of a relation (2). 
Given the above let us assume that R is the equivalence 
relation on X, which divides the set X into the zones, the 
brightness of which is described by the components of the 
vector ૈ.  Different brightness values must correspond to 
different zones. Consequently, no limits are applied to the 
components of vector ૈ, which means Cૈ =  .୒܀
 
Therefore, Cૂ = {ૂ ∈ ૂ|୑܀ = ۶ૈ,ૈ ∈ -୒} is the N܀
dimension subspace܀୑. 
The geometric meaning of finding the optimal 
digitalization ෝૂ is to specify the projection of vector 
ܡ ∈ ୑ on the subspaceCૂ܀ ⊂  .୑܀
It is common practice to prenormalize the vector y while 
comparing the vectors y and , which is‖ۯ‖ܡ = 1. Thus 
let us set the optimal digitalization ෝૂ to be the normalized 
vector. Then the problem (2) can be expressed as: 
 

 arg min 
 

 
C SM

y A
2 ,  (4) 
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where S୑ = {ૂ ∈ ଶۯ‖ૂ‖|୑܀ = ૚} is the unit sphere in ܀୑. 
Let us present the equivalent problem (3) as follows:  
 

ෝૈ = min஠∈େಘᇲ݃ݎܽ ܡ‖ ଶۯ‖۶ૈ− ,  (5) 
 

where C஠ᇱ = {ૈ ∈ ଶۯ‖୒|‖۶ૈ܀ = 1}. 
Theorem 1. The optimal digitalization ෝૂ ∈ Cச ∩ S୑ , which 
is the solution of the problem (4) is defined by the 
expression: 
 

ෝૂ = 	 ܡ۾ ⁄‖ܡ۾‖ ,    (6) 
 

where  
 

۾ = ۶(۶ᇱ۶ۯ)ି૚۶ᇱ(7)   ۯ 
 

- is the matrix of the operator p:܀୑ → Cૂ, which is the 
orthogonal projector on the subspace Cச. 
Proof. Let us restate the problem (5) as follows: 
we will minimize f(ૈ) = ܡ‖ − ଶۯ‖۶ૈ  under restriction 
 

g(ૈ) = ଶۯ‖۶ૈ‖ − 1 = 0,  (8) 
 

and compose its Lagrangian 
L(ૈ,μ) = ܡ‖ − ଶۯ‖۶ૈ + μ(‖۶ૈ‖ۯଶ − 1). 

The necessary condition for the vector ෝૈ to be a solution 
for the problem (5) is the following: 
 

∇ૈL(ෝૈ,μො) = ૙.   (9) 
 

The direct calculations show us that: 
 
∇గ݂(ߨ) = ∇గ(‖ܡ − ۶π‖ۯଶ) = 2(۶ᇱ۶ۯπ−۶ᇱܡۯ), 
∇గg(ߨ) = ∇గ(‖۶π‖ۯଶ − 1) = 2۶ᇱ۶ۯπ. 
 
Then the problem (9) can be expressed as: 
 

(1 −μො)۶ᇱ۶ۯෝૈ = ۶ᇱ(10)   ,ܡۯ 
 
based on which 
 

ෝૂ = ۶ෝૈ = ܡ۾ (1− μො)⁄ ,  (11) 
 

where the matrix ۾ is defined by the expression (7). 
 
Let us substitute (11) into (8) and we will find (1 + μො) =
 .୅‖ܡ۾‖
Then using (10) we will receive: 

 

ෝૂ = ܡ۾
ۯ‖ܡ۾‖

, ෝૈ = ൫۶ᇲ۶ۯ൯ష૚۶ᇲܡۯ
ۯ‖ܡ۾‖

  (12) 
 

The sufficient condition for ෝૈ, defined by the formula 
(12), to be the solution of the problem (8) is the positive 
definiteness of the Hessian matrix of second differential 
coefficients of Lagrangian L, that is the matrix: 
 

∇஠ଶL(ෝૈ,μො) =  .۶ۯ୅۶ᇱ‖ܡ۾‖2
 
It is common knowledge [10] that to obtain the positive 
definiteness of the matrix it is necessary and sufficient for 
its principal minors to be positive.  The direct calculations 
show us that:  

 
۶ᇱ۶ۯ = diag(nଵ, … , n୒),  (13) 

 
where  

n୧ = ∑ p୩୩∈୒౟ .    (14) 
 

Consequently, the matrix ۶ᇱ۶ۯ  is scalar and the elements 
of its main diagonals are positive, therefore the 
determinant det۶ᇱ۶ۯ > 0 as well as the sufficiency 
criterion is met.   
For the practical calculations of the solution ෝૈ  it is more 
convenient to use the resulting expression instead of the 
matrix representation (12): 
 

πෝ୧ = ଵ
୬౟
∑ p୩y୩୩∈୒౟ , i ∈ 1, Nതതതതത,  (15) 

 
which follows from the continued equality:  
 
h i M j N

f p p i M j N

b p n i j M

c n i j M

d i M j N

e

ij r j
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The optimal digitalization ෝૂ is defined by the relation 
ෝૂ = ۶ෝૈ and can be calculated  directly:  
 
κො୧ = πෝ୰౟ = ∑ p୩y୩୩∈୒౨౟

∑ p୩୩∈୒౨౟
ൗ ,				i ∈ 1, Mതതതതത (16) 

 
In case of equal observations (pଵ = ⋯ = p୑ = 1 M⁄ ), the 
expression (15) is represented as:  
 

(π୧)୭୮୲ = zనഥ = ଵ
୫౟
∑ z୨୨∈୒౟ ,			i ∈ 1, Nതതതതത (17) 

 
and is represented as sampling mean, defined according to 
the elements of the current image (CI) fragments, the 
number of which equals to m୧, and whose numbers 
correspond to the numbers of i -th zone of RI.   
Then the relation (15) can be viewed as the generalization 
of the sampling mean (17) in case of unequal observations. 
Using the zonal structure of RI, let us transform the 
decision function of the nominal algorithm  
 

B൫k,ૈ୩൯ = f൫ૈ୩൯ = ฮܡ − ۶ૈ୩ฮۯ
ଶ
  (18) 

 
into:  
 

B൫k,ૈ୩൯ = ∑ ∑ p୨୩୨∈୒౟
୒
୧ୀଵ ൫y୨୩ − π୧୩൯

ଶ
. (19) 

 
Substituting the optimal value of RI for k-th CI fragment, 
which is defined by the expression (15), into the 
expression (19), we will receive the decision function of 
the nominal algorithm as follows: 
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B୬୭୫(k) = B൫k,ૈ୭୮୲୩ ൯ = ∑ n୧୩D୧

୩୒
୧ୀଵ ,			k ∈ 1, Rതതതതത,  (20) 

 
 
where D୧

୩ = ଵ
୬౟
ౡ∑ p୨୩൫y୨୩ − yన୩തതത൯

ଶ
୨∈୒౟  is the sampling 

variance, calculated with the help of elements of k-th 
fragment of CI, whose numbers correspond to the numbers 
of i -th zone of RI.  
 
In case of equal observations D୧

୩ = ଵ
୫౟
∑ ൫y୨୩ − yన୩തതത൯

ଶ
୨∈୒౟ .  

Hence, let us write down the decision function (20) as 
follows:  
 

 
B୬୭୫(k) = ଵ

୑
∑ m୧D୧

୩୒
୧ୀଵ ,					k ∈ 1, Rതതതതത  (21) 

 
The algorithm with such decision function is called classic 
zoned algorithm.  
 
Thus, it is proven that in regards to effectiveness the 
nominal and classic zoned algorithms are equal as they 
have the same decision functions, and the formula (21) can 
be viewed as the generalization of the decision function of 
classic zoned algorithm in case of unequal observations.  
 
As a rule, the vector y when compared with the RI 
digitalization, is initially centered.   
The vector ܡ ∈  ୑  is referred to as centeredone to metric܀
A or A-centered vector if  
 

(૚୑ , ୅(ܡ = ૚୑ᇱ ܡۯ = ∑ p୨y୨୑
୨ୀଵ = 0. (22) 

 
It appears that the following clause is valid.  
Clause 1. 
If the vector y in the problem (4)  is A-centered, then the 
optimal digitalization ෝૂ is equally A-centered.  
 
Proof. 
The continued equality 
 

૚୑ᇱ ෝૂۯ = ෍ p୧κො୧

୑

୧ୀଵ

= ෍ p୧πෝ୰౟

୑

୧ୀଵ

= ෍πෝ୧

୒

୧ୀଵ

෍ p୩
୩∈୒౟

= 

=∑ ∑ p୩୩∈୒౟ y୩୒
୧ୀଵ = ∑ p୩y୩୑

୧ୀଵ = 0, 
 
in deriving of which the relations (15) were taken into 
consideration, implies the affirmation of the clause. 
 
In case of centered and normalized RI and CI fragments, 
the decision function (19) is written as: 
 

B൫k,ૈ୩൯ = 2൫1−∑ m୧
୩୒

୧ୀଵ yన୩തതതe୧൯, (23) 
 

and the algorithm is equal to the picking algorithm, and for 
the nominal algorithm with the optimal RI, the expression 
(21) is transformed into 

B୬୭୫(k) = 1−∑ m୧
୩൫yన୩തതത൯

ଶ୒
୧ୀଵ .  (24) 

 
 
 

2.2 The synthesis of optimal reference image in 
hyperordinal scale 
 
In the case in question 	R  is the relation of hyperorder on 
X.  
Let us describe the Cૈ  as follows:  
 
Cૈ = {ૈ ∈ ୒|πଵ܀ ≤ ⋯ ≤ π୒;π୧ାଵ − π୧ ≤ π୧ାଶ −
π୧ାଵ,ifa୧ = −1; 	π୧ାଶ − π୧ାଵ ≤ π୧ାଵ − π୧ 	, if	a୧ = 1,              
(25) 
i	 ∈ 1, N− 2തതതതതതതതതത, 
 
where the vector ܉ = (aଵ, … , a୒ିଶ) ∈ ,୒ିଶ܀ a୧ = ±1 sets 
the relation of order on consequent difference components 
π୧,π୧ାଵ,π୧ାଶ. 
In this case the problem of definition of optimal 
digitalization of RI takes the form: 
 

ෝૂ = arg minૂ∈େૂ‖ܡ − ଶۯ‖ૂ   (26) 
 

and the equivalent problem is written as: 
 

ෝૈ = arg min f(ૈ) = arg min‖ܡ −  ૛ (27)ۯ‖۶ૈ
 
under restrictions 
 

(ૈ)܏ ≤ ૙, h(ૈ) ≤ ૙,  (28) 
 
where 
 

 

1

1
2

2 1

( ) ,
( ) ,

( ) ,
( ) 2 , 3.

N

j j j
N

k k k k k

g

h a N

 

  







 


 



   

g R

h R








 

 
Since the function h(ૈ) is convex function in consequence 
of its linearity, the viewed problem is related to the 
problem type of convex programming. The Lagrange 
function is written as: 
 

L(ૈ,ૄ, ૅ) = f(ૈ) + ૄᇱg(ૈ) + ૅᇱh(ૈ), 
 

where ૄ ∈ ૅ,୒ିଵ܀ ∈  ୒ିଶ are the vectors of the܀
undetermined coefficient of Lagrangian. 
 
According to the Kuhn-Tucker theorem [9], if vectors 
ૈ,ૄ,ૅ meet the conditions: 
 
∇஠L(ૈ,ૄ,ૅ) = ∇f(ૈ) + ૄ(ૈ)܏∇ + ૅ(ૈ)ܐ∇ = ૙; 
(ૈ)܏ ≤ ૙;ܐ(ૈ) ≤ ૙;ૄ ≥ ૙;ૅ ≥ ૙;   (29) 
μ୨g୨(ૈ) = 0,  j ∈ 1, N − 1തതതതതതതതതത; ν୩h୩(ૈ) = 0,  

κ ∈ 1, N − 2തതതതതതതതതത 
 
Then 	ૈ  is the absolute minimum point of the problem 
(27), (28). 
 
The matrix of the gradient vectors ܐ,܏ have the form: 
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(30) 

 
Then the system of equations (30) for definition of vectors 
ૈ,ૄ,ૅ is written in the coordinates as follows: 
 

     
         
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(31) 

 
where matrix  1 N i iα=diag α ,…,α , α =1 2n . 
 
The matrix of system of equations (31) has the block 
structure. 
 

N ۷୒ હસ܏(ૈ) હસܐ(ૈ)  
N-1 ۻଵ ۻଶ 0 (32) 
N-2 ۻଷ 0 ۻସ  
 N N1 N2  

 
where ۷୒ is the unity N × N -matrix. The blocks ۻଵ,ۻଶ 
correspond to the system of equations 
μ୨൫π୨ − π୨ାଵ൯ = 0, j ∈ 1, N− 1തതതതതതതതതത 
and their elements are constructed according to the rule: 
 

if π୨ᇱ > π୨ାଵᇱ , then (ۻଵ)୨୧ = ൝
1, i = j,

−1, i = j + 1,			
0, i ≠ j, j + 1,

୨୧(ଶۻ) = 0, i ∈ 1, N − 1തതതതതതതതതത 

(33) 
if π୨ᇱ ≤ π୨ାଵᇱ  then (ۻଶ)୨୧ = δij,(ۻଵ)୨୧ = 0. 
 
For example, if π୨ᇱ ≤ π୨ାଵᇱ , j ∈ 1, N − 1തതതതതതതതതത , then ۻଶ = 	 ۷୒ିଵ ,  
ଵۻ =0.  
The blocks ۻଷ,ۻସ  correspond to the system of equations: 
 

ν୩a୩(π୩ + π୩ାଶ − π୩ାଵ) = 0, k ∈ 1, N− 2തതതതതതതതതത. 
 

Their elements are formed based on the analysis of 
relations of each triple of consequent components of 

vector ૈᇱ according to the following system of 
inequalities: 
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 





   
   
   

  
  

k k
k k

k k k k

k k k k

k k

k k

a
a1

1
2 1 0

2 1 1

1 0

1 0

2 0
2 0

,
,

,
,

(34) 
 

where δ଴ ,δଵ  are the following rules:  
 

   

   

 



0 3 4

1 3 4

0

1 2
2 1

0 1 2
0 1 2

  

 
  

 
  









  

M M

M M

kj kj kj

kj kj

j k k
j k

j k k k
j N

, ,

, , ,
, ,

, , , ,
, , .

(35) 
 
The vector܌ ∈  ଷ୒ିଷof right parts of the system (30)܀
equals to: 
 

܌ = (ૈଵᇱ , … ,ૈ୒ᇱ , 0, … ,0).  (36) 
 
Thus, for optimal digitalization synthesis we can assume 
the following:  
Algorithm 1.  
Step 1. Repeat the steps 1…5 of the algorithm 1. 
Step 2. Set the vector ܉. 
Step 3. Using the blocked representation (32) of the matrix 
 build ,(ૈ)ܐ∇,(ૈ)܏∇ and the relation (33) for the matrix ۻ
the first N lines of the matrix	ۻ. 
Step 4. Build the next 2ܰ − 3 lines of matrix ۻ after the 
analysis of the system of inequalities (33), (34) and using 
the rules (35).  
Step 5. Build the vector ܌ ∈  ଷ୒ିଷ  of the right part of the܀
system (30), using the expression (36). 
Step 6. Find the solution (ૈ,ૄ, ૅ) ∈  ଷ୒ିଷ of the system܀
of linear equation (30) using one of the known methods. 
Step 7. Find the vector of the optimal digitalization in the 
relation ૂ = ۶ૈ. 
 
2.3. The example of the solution of the problem (30) 
 
As an example, let us take the solution of the problem (30) 
forN=3. 
 
The cases in question can occur while πଵᇱ ≤ πଶᇱ ≤ πଷᇱ , and 
(33) implies that μଵ = μଶ = 0, while the system (30) 
becomes: 
 

 

   
   
   

 
   

1 1 1 1 1

2 2 1 1 2

3 3 1 1 3

1 2

1 1 1 3 2

2

0
2 0

  
  
  

 
 












 

a
a

a

a

;
;

;
;

.

   (37) 

 
Let aଵ(πଵ + πଷ − 2πଶ) ≤ 0. Then, taking into 
consideration (34), (35) we will receive the trivial solution 
ૈ = ૈᇱ, ૅ = ૙. 
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If not, the last equation of the system (37) can be written 
as πଵ + πଷ − 2πଶ = 0, and its solution is defines with the 
expression: 

πଵ = πଵᇱ − αଵνଵ, 
 

πଶ = πଶᇱ + 2αଶνଵ, 
 

πଷ = πଷᇱ − αଷνଵ, 
 

νଵ = ஠భᇲ ା஠భᇲ ିଶ஠మᇲ

௔భ(ఈభାఈయାସఈమ). 
 

Clause 2. 
If the vector of CI ܡ ∈  ୑ is centered to metric A, then the܀
vector ૂ = ۶ૈ 
where ૈ – the solution of the problem (27), (28), is A-
centered. 
 
Proof. 
The continued equality is valid: 
 

      
  

1 A  p p p n pi i
i

M
i r i j

j Ni

N

i

M
i

i

N
ii

i

  
1 11 1

. (38) 

 
Since the sum of each column of matrix ∇ܐ∇,(ૈ)܏(ૈ) is 
equal to zero, when summing over all the equations of the 
system (30), we get 
 

n n p y p yi i
i

N
i i

i

N
j j

j Ni

N
j j

i

M

i

       
   1 1 1 1

0 .  (39) 

 
The affirmation of the clause follows from relations (38), 
(39). 
 
Theorem 2. 
The vector	ૂ ∈  ୑, built by the Algorithm 1 is centered܀
and normalized in metrics Aby the solution of the problem 
(26). 
 
Proof. 
 
The problem (26) is equal to the problems 27), (28), and 
the conditions of the Kuhn-Tucker theorem for the latter 
can be written as: 
 

∇஠L(ૈ, ,ૃૄ) = ૙;   (40) 
 

μ୨൫π୨ − π୨ାଵ൯ = 0, j ∈ 1, N − 1തതതതതതതതതത;  (41) 
 

ν୩h୩(ૈ) = 0, k ∈ 1, N − 2തതതതതതതതതത;  (42) 
 

ଶۯ‖۶ૈ‖ − 1 = 0;   (43) 
 

μ୨ ≥ 0, j ∈ 1, N − 1തതതതതതതതതത;  ν୩ ≥ 0, k ∈ 1, N − 2തതതതതതതതതത (44) 
 
Using the Algorithm 1, first let us calculate the vector ૈᇱᇱ 
according to the methods of solution of a system of 
equations (30), thus the vector ૈᇱᇱ along with the vectors  
ૄ,ૅ are the solution of the system (30), that is the 
conditions (40)-(42)  are met. 

In order to obtain the corresponding solution ૂᇱᇱ = ۶ૈᇱᇱ of 
the problem (26), it is necessary to normalize ૂᇱᇱ, that is to 
take ૂ = ૂᇱᇱ ‖ૂᇱᇱ‖ۯ⁄ . 
Hence, the condition (43) is met for the equivalent 
problem.  
Therewith, the conclusion of the theorem implies that the 
problem (27), (28) is equivalent to (26).  
 
3. CONCLUSION 

 
As a result of the performed research, the optimal RI for 
CENS of MR has been synthesized using the nominal and 
hyperordinal scales. The algorithm of the synthesis of the 
optimal RI in the hyperordinal scale has been developed. It 
is confirmed that the vector of the optimal digitalization in 
the scales in question is centered and normalized in the 
metric A. 
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