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ABSTRACT 
 
In this article we present the results of theoretical and 
practical evaluation of effectiveness of decision function 
(DF) generation, as a result of image comparison, in the 
navigation systems of the mobile robots (MR), based on 
the tracking and comparison method. It has been suggested 
to use the probability measure as a criterion for the 
evaluation of the effectiveness of DF generation.The 
results of the theoretical evaluation of effectiveness of DF 
generation have been obtained, the results of the statistical 
modeling of DF generation process have been 
displayed.The necessity of RI generation and image 
comparison in strong scales has been demonstrated. 
 
Key words: navigation systems, mobile robots, the 
probability of decision function generation, strong scale. 
 
1. INTRODUCTION 
 
The navigation process of MR, equipped with the 
correlation-extreme navigation system (CENS), has the 
stochastic nature considering its dependence on the 
multiplicity of random factors.The part of these factors 
directly relate to the system itself, which induces the 
necessity to minimize their influence on the system 
operation.Firstly this refers to the system of generation 
ofthe current image (CI), the used reference images (RI), 
which are formed by some means or other, as well as to 
the image comparison method that is defined by the type 
of the algorithms in the corresponding scale.Basically, 
these factors define the characteristics of the navigation 
system [1, 2, 3], which necessitates the search of the most 
optimal solutions with regard to the effectiveness of DF 
generation. 
 

1.1 Problem analysis 
 
In the articles [4, 5, 6, 7] the results of the research, aimed 
at the optimal RI generation in different scales, are 
presented, the general approaches to the DF generation in 
CENS are analyzed, the algorithms for image comparison, 
including those formed with consideration to external 
factors and peculiarities of MR usage, are suggested. 
However, the results of the research, aimed at obtaining 
the effective solutions from the system perspective 
regarding the RI generation and the choice of the 
algorithm for image comparison in the corresponding 
scales, are missing. 
 
The object of this article is to define the most rational way 
of generation of DF for MR from the system perspective. 
 
2. MAIN MATERIAL 
 
2.1 The criterion and general approaches to the 
theoretical evaluation of image comparison methods 
 
When evaluating the effectiveness of different methods of 
image comparison, the RI, used in the CENS, is commonly 
represented as the Gaussian static ergodic random field. 
Concurrently, the RI, which has been prepared in advance 
using the relevant databases is deterministic. Hence, it is 
expedient to evaluate the effectiveness сP  of the 
algorithms of different types and to compare the 
theoretical evaluation results with the ones received with 
the help of statistical modeling. 
The proof of the problem of the theoretical evaluation of 
the sought probability сP  will be received using the 
assumption that: 
1)the positioning area of MR is known, that is the 1 2N ×N  

-matrix of RI ija    is given; 
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2) the grid nodes of RI and CI (current image) coincide; 
3) RI is represented as the matrix with the dimensions 
 1 1 2 2M <N , M <N ; 

4) CI is described with the help of additive model 

ij ij ij 1 2ˆ ˆẑ =a +n , iÎ1,N , jÎ1,N , , where ijn N(0,1) ; 
5) the rotation of the RI with respect to the CI is absent. 
 
Let us use the following notions for proof of the problem: 
1. b  of DF; 
2. The dimensions of the matrix of DF values is 
   1 1 2 2N -M +1 × N -M +1 ; 
3. The total quantity of the compared elements of CI is 

   1 1 2 2K= N -M +1 N -M +1 . 
 
The population of DF values will be represented with the 
help of the random vector  1 K= b ,…,bb . 
Let us display the matrix in lines and mark the number of 
the source fragment, which corresponds to the CI, as p . 
Let us assume that A is the event, which corresponds to 
the proper match of the RI and CI, and pB  is the event, 
when the number of the source fragment p  is equal. 
In case of obtaining the decision on the DF minimum, the 
conditional probability  pP A B  can be written as the 
following probability of event: 
 

p ib <b , i 1,K, i p.    (1) 
 

Assuming the K -dimensional probability density function 
KbW  of the vector b  is known,we shall introduce the 

random vector t , which is linked to the vector b  by the 
following set of equations: 
 

p p

i p i

t =b ,

t =b -b , i 1,K, i p.




 
  (2) 

 
Representing the set of equations (2) with respect to ib ,  
we will obtain: 
 

p p

i p i

b =t ,

b =t -t , i 1,K, i p.




 
  (3) 

 
Let us take into consideration the following: 
If the random vectors b , t  are linked by the dependence 

i i 1 Kt =f (b ,…,b ), i 1,K,  and K 1 KW (x ,…,x ),b  is set, 
then  
 

K 1 K
r

1i Ki
K 1 K

1 Ki=1

W (y ,…,y )=

(x ,…,x )
= W (x ,…,x ) ,

(y ,…,y )
 
  


t

b
 (4) 

 
where kix  is the i -th branch, opposite to 
(2)transformation of variables.  

1i Ki

1 K

(x ,…,x )
(y ,…,y )

 
  

 is the Jacobian of transformation of 

variables for i-thbranch. 
 
In this context the reciprocal transformation is defined by 
the equation (3) and has one branch. 
The module ofJacobian of transformation of variables 
equals to 1, therefore the relation (4) can be presented as 
follows: 
 

K 1 K

K p 1 p p-1 p p p+1 p K

W (y ,…,y )=
=W (y -y ,…,y -y ,y ,y -y ,…,y -y )

t

b
. (5) 

 
Let us denote the K -dimensional probability density 
function of the vector t KF t . 
As a result the following continued equality is received: 
 

0 0 0 0 0

1 p-1 p p+1 K Kt 1 K
- - - - -

= dy L dy dy dy L dy W (y ,…,y )
    
     .(6) 

 
Lets plug (5) into (6) and when changing the variables we 
will obtain: 
 

p p p p

p

1 p-1 p p+1 K Kb 1 K
y y - y y

AP
B

dy L dy dy dy L dy W (y ,.,y ).
    



 
   

     
 (7) 

 
If the decision is made based on the maximum DF value, 
then: 
 

p p p p

p

y y y y

1 p-1 p p+1 K Kb 1 K
- - - - -

AP
B

dy L dy dy dy L dy W (y ,…,y ).


    

 
  

 

     

(8) 

 
If the probabilities pP(B )  of events pB  are given in 
advance, then, based on the relation of total probability, 
we will receive: 
 

 
R

с p p
p=1

P =P(A)= P(B )P A B .  (9) 

 
The quadratic difference algorithm is characterized by the 
following type of DF: 
 

2M k
i i

k k
ii=1

ˆŷ -e
b = ,

σ

 
  
 

   (10) 

 
where    k k k

1 M 1 Mˆ ˆ ˆˆ ˆ ˆ= z ,…,z , = e ,…,ez e – are the vector 

representations of k -th fragment of CI and RI in case of 
the representation of their matrix as lines; 
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 k k k
1 M= σ ,…,σσ – is the matrix representation of k -th 

fragment of the matrix of the standard deviation of system 
channels’ interior noises. 
For the additive model of interaction of image signaling 
component and channel noise, the k -th fragment of CI 
can be written as: 
 

k k kˆ ˆŷ , a n k 1,K,   (11) 
 

where  k k k
1 Mˆ ˆ ˆ= a ,…,aa – is the vector representation of 

noise-free k -th fragment of CI; 

 k k k
1 Mˆ ˆ ˆ= n ,…,nn –is the vector of internal noise of 

channels, used for generation of k -th fragment of CI.  
Let us draw vectors 

   k k k k k k k
1 M i i i i iˆ ˆ ˆξ = ξ ,…,ξ , ξ = a -e +n σ , k 1,K . 

It is evident that   k k k
i i i iˆ ˆξ a -e σ ,1N . 

Let us denote by  2χ m, M  the noncentral 2χ - 
distribution with M  degree of freedom and noncentrality 
parameter m , then the random variable will be written as: 
 

 2 k
kb χ m ,M , 

where 
 

2M k
k i i

k
ii=1

ˆ ˆa -e
m = .

σ

 
  
 

   (12) 

 
The value km  in physical meaning is the weight-average 
noise-to-signal ratio for k -th fragment of CI, if signal 
represents the energy of differences of RI and k -th 
fragment of CI. 
The one-dimensional density function for components kb  
of vector b  is defined by the expression, 
 

   
 k

jk k
M 2-1

b M 2
j=0

exp - y+ m 2 m y 4
W (y)= y ,

j!Γ j+ M 22

y 0, k 1,K,

 
 

 

  

 
and the middling and the variability of the value kb  equal 
respectively to: 
 

k
kb =m +M,M   k

kb =4m +2M.D  
 

For large values of the parameter km , the noncentral 2χ - 
distribution with M  degrees of freedom approximates the 
normal distribution with mean bkM  and variance k(b )D . 
Since the components of the noise vectors kn  were 
assumed to be independent random values, the 
components k

iz  of the fragments of CI are statistically 
independent and the same conclusion can be drawn 
relative to random values kb . Then the K -dimensional 
density of the distribution of probabilities of a vector b  is 

expressed through the product of one-dimensional density 
of values kb : 
 

k

K

b k
p k=10

k p

AP = W (y) I (y)dy,
B





 
  
 

  (13) 

 
where 
 

 
 

k
ik-m 2

i-1+M 2 -x 2
k M 2

i=0 y

m 4eI (y)= x e dx.
i!Γ i+ M 22



  (14) 

 
Considering the definition of incomplete  -function 

  α-1 -x

y

Γ α,y = x e dx,


  and the decomposition  

     
 

n
-y α

n=0

y Γ α
Γ α,y =Γ α -e y ,

Γ α+n+1



  

the expression (14) can be used as a practical form: 
 

   

 

k- y+m 2 M 2
k

k i n

i=0 n=0

I (y)=1-e y 2 *

(m y 4) (y 2)
* .

i! Γ M 2+i+n+1

 

 
 (15) 

 
In order to speed up the calculation for the fragments with 

km >>M , let us use the non-central 2χ -distribution 
approximation by the normal distribution, the result after 
integration is: 
 

k

k k

y-M-mI (y) 1-Φ ,
2M+4m

 
   

 
 (16) 

 

where    
x

-1 2 2

-

Φ(x)= 2π exp - y 2 dy

  is the probability 

integral. 
In practice, the critical function generally uses centered 
and normalized RI and fragments of CI. Furthermore, the 
energies of the RI and the fragments of CI are artificially 
aligned, so the quadratic difference algorithm is equivalent 
to the correlation algorithm. 
Let us study the statistical characteristics of the centered 
and rationed fragment of CI. 
Let’s fix the fragment number, and then to shorten the 
record, we’ll drop it. 
Based on the additive model of the fragment (11), enter 
the following vectors: 
 

   1 1 M M 1 1 M Mˆ ˆˆ ˆ= y σ ,…, y σ , a σ …, a σ ,y a  

   1 1 M M 1 1 M Mˆ ˆ ˆ ˆn σ ,…, n σ , e σ ,…,e σ n e  . 
 
Then let us write down the CI model as: 
 

 i, n 0,1 , i 1,M.   y a n N  
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Let us study the statistical characteristics of the random 
value  i iξ = y -y ζ,  

where  
1 2M M

2
i i

i=1 i=1

1 1y= y ; .ζ= y -y .
M M

 
  
 

   

We need to consider that random values iy  are 
independent and have a normal distribution with a single 
variance. 
Then the random value is 2 2Mζ χ (m,M),  

where  
M M

2
i i

i=1 i=1

1m= a -a , a= a .
M   

As a result: 
 

   
 

2 j2- Mx +m 2M 2 M-1

ζ M 2-1
j=0

mMx 4M x eW (x)= , x 0.
j!Γ j+ M 22



  

Since the random variables iy  and ζ  are independent, 
applying the formula for probability density quotient from 
division iz  by ζ  [11]: 
 

i iξ ζ z
-

W (x)= W (u)W (ux) u du,



  

 
we obtain: 
 

 

 
 

 

2

i

- m+α 2 M 2

ξ M 2-1

2 2j
M+2j

j=0 0

e MW (x)= *
2π×2

u x +M)-2uαxmM 4
* exp - u du

j!Γ j+M 2 2

  
 
 
 

 
, (17) 

 
where iα=a -a .  
 
Using the integral representation for the function of the 
parabolic cylinder [12]: 
 

 
2-z 4

2 -ν-1
ν

0

eD (z)= exp -zt- t 2 t dt, Reν<0,
Γ(-ν)



  

 
let us reduce (17) to:  
 

 
 

   

    

i

2 2 2

2

ξ M-1 2

j
-M-1-2j 2

M+1 2+j2j=0

m+α α xexp - +
2 4 x +M

W (x)= *
πM×2

αxm 4 Γ M+1+2j D -
x +M* ,

j!Γ j+M 2 1+x M



 
 
 
 

 
  
 

 (18) 

 
where νD (x)  is the function of the parabolic cylinder [12]  
To perform practical calculations with the function νD (x)
, it is convenient to present it as[12]: 
 

2ν 2 -x 4
ν ν

ˆD (x)=2 e D (x),  
where 
 

 
 

 
 

ν

2 2

Γ 1 2
D̂ (x)= *

Γ 1-ν 2

Γ -1 2ν 1 x x 1-ν 3 x*Φ - , ; + Φ , ; ,
2 2 2 Γ - ν 2 2 2 22

  
   
      
   

 (19) 

 

where  
 
 

i
i

i=0 i

h x
Φ h,c;x =

c



  is the confluent 

hypergeometric function; 
           i 0c =c c+1 L c+i-1 = Γ c+i Γ c , c =1.  
Then the probability density (18) is described by the 
expression: 
 

 

  

 
 

2

i

- m+α 2

ξ M+1 2M

j

-n-1-2j
j=0

eW (x)= *
πM×2 φ(x)

Γ M+1+2jm αxˆ* D - ,
8φ(x) j!Γ j+M 2 Mφ(x)

   
       


(20) 

 
where 

 
2φ(x)=1+ x M.   (21) 

 
 
It can be demonstrated that he initial moments of 2l -th 
and  2l+1 -th type of the distribution (17) are determined 
by the relations: 
 

   

 

 
 

2
j

- m+α 22l l
i l

j=0

k=1
i2

l
i=0

m 2
Mξ =e M *

j! M 2+j-k

α 2
* i+1 2 ,

i!










 (22)  

 
 

   
 

 
 

2- m+α 2 l+1 2
2l+1
i

i2j

l
j=0 i=0

αe MMξ = *
2

α 2m 2 Γ j+M 2-l-1 2
* i+3 2 .

j!Γ j+M 2 i!

 

 
(23) 

 
The following expressions for the mean and variance of 
the random value iξ  results from(22) and (23): 
 

   
 

j
-m 2

i
j=0

m 2 Γ j+ M 2-1 2
ξ =α M 2×e ,

j!Γ j+ M 2



M (24) 

 

   
 

 
j

22 -m 2
i i

j=0

m 2Mξ = 1+α e - ξ .
2 j! j+ M 2-1



D M (25) 
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Study of asymptotic properties of distribution (17) based 
on the theory of asymptotic evaluation [13] resulted in 
following: 
1) if M , m<<M   
 

 
iξ ~ α,1 ,W N    (26) 

 
i.e. the distribution is asymptotically oriented towards a 
normal with an average value α  and a unit variance; 
2) if M , m<<M  , the expressions (18), (19) for mean 
and variance take the form of: 
 

i i~α M m, ξ ~ M m.M D  (27) 

If the vector a = 0 , i.e.  1 Mξ ,…,ξ  is a repeated sample 
from the standard normal distribution, then m=0  and the 
distribution (17) move to the Student distribution with M  
degrees of freedom: 
 

  
    iξ M+1 22

Γ M+1 2
W (x)= ,

πMΓ M 2 1+ x M
 

 
moreover, from (25) it follows that 

 iξ M M-2 , M>2.D  
 
It can be shown that the density of the distribution (17) is 
invariant with respect to linear transformations of the 
observation vector ŷ . 
 
The picking algorithm has the following DF: 
 

   
-1 2M M 2k k k k k k k

k i i i i i
i=1 i=1

M
k k

i
i=1

1b = ξ e , e = e -e e -e ,
M

1e = e .
M

 
 
  

 



 

(28) 

 
Calculations have shown that probability density (17) is 
well approximated by normal density with parameters 

k k
i iξ , ξM D , defined by formulae (24), (25). Using this 

approximation, assuming that  k
iξ i 1,M  are the 

independent random values, we obtain: 
 

 

 

M
k k

k k k k i i
i=1

1 2M 2k k
k i i

i=1

b γ ,s , γ = e ξ ,

s = e ξ , k 1,K.



 
 

  





N M

D





 

 
Then according to (4) the statistics kb  have a normal 

distribution with mean 
M

k
k i i

i=0

γ = e ξ M  and variance 

M
2 2 k
k i i

i=1

s = e ξ . D  

By substituting this probability density in formula (8), we 
find a ratio for the probability of DF generation, provided 
that the number of source fragment equals to p : 
 

  2
K

p k p-x 2
p

kk=1-
k p

xs -γ +γ1P A B = e Φ dx.
s2π






 
  
 

  (29) 

 
2.2 The results of the statistical experiment on 
algorithms of DF generation 
 
The object of the experiment: 
1. Evaluation of the efficiency of algorithms using 
statistical modelling (Monte-Carlo technique); 
2. Validation of formula (29) based on the comparison 
with statistical modelling results. 
An image comparison algorithm based on sequential 
comparison of the RI with the 1 2M ×M -sub-matrices 
(fragments) of the CI matrix and decision making on the 
extreme of the critical function, was simulated. Prior to 
comparison, each piece of CI was centered and 
normalized: 
 

 

1 2

1 2

kl kl
ijkl

ij
kl
M M

kl kl
ij

i=1 j=1

M M 2kl kl
kl ij

i=1 j=1

ˆT -T
y = ;

σ

1T̂ = T ;
M

1 ˆσ̂ = T -T ,
M





 (30) 

 
where kl

ijT  is the  i,j -th element of the fragment, whose 

left upper corner has coordinates  k,l  in CI matrix; 
kl 2

kl
ˆ ˆT , σ  is the evaluation of the mean value and variance 

of the reference  k,l -th fragment; 
 

1 2 1 2

1 2 1 1 1

M=M M ; i 1,M ; j 1,M ;

k 1,R ; l 1,R ; R =N -M +1;

 

 
 

2 2 2R =N -M +1 . 
 

Similar operations are carried out over RI. It is further 
assumed that the prior probabilities of all fragments are 
identical. Then in a strong scale, the optimal algorithm 
according to maximum likelihood criterion is a quadratic 
difference algorithm: 
 

 
1 2M M 2kl

ij ij
i=1 j=1

1B(k,l)=- y -e
M , (31) 

 
which, because of the centrality and normalization of each 
fragment of CI and the similar RI property, is equivalent to 
a correlation: 
 

1 2M M
kl
ij ij

i=1 j=1

1B(k,l)= y e
M .  (32) 
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To implement the algorithm in the nominal scale as well as 
in order and hyperorder scales, it is necessary first to solve 
for each fragment the problem of synthesis of the optimal 
RI of the form: 
 

 
1 2M M 2kl

ij ijE
i=1 j=1

B(k,l;e)= min y -e
 e

, (33) 

 
where the set E is defined by the type of scale in which the 
RI is represented. The centered and normalized solution of 
problem (33) is received in the [7] for the nominal scale, 
algorithms for order and hyperorder scales. The decision is 
then made according to the maximum of decision function 
(31) or (32). 
Statistical experiments has been performed for algorithms 
of all the types considered, i.e. repeated running of 
algorithms for different CI implementations, comparing 
the coordinate estimate  op op

ˆ ˆi ,j , obtained at each start 

with the true value (coordinates of source fragment) 

 op opi ,j , which was specified in the modelling of the CI.  
If the coordinates coincide, a conclusion is drawn about 
the DF generation during the processing of this 
implementation, and an assessment of the probability of 
the DF generation by the ratio of the formed DF to the 
total number of runs of algorithms in the test series. For an 
algorithm in a strong scale, efficiency estimates are 
calculated using an expression (29). 
 
Statistical experiment results. 
CI with dimensions 1 2N =N =16  (Figure 1) and fixed 
brightness of individual zones was modelled. The 
brightness of the first zone varied during the tests. CI 
elements with the dimensions 1 2M =M =4  and number of 
zones N=3 .  
The total number of implementations processed in the 
series, used to calculate one probability value сP , is zN  = 
400. Algorithms, which use centered and normalized RI 
and CI fragments, were tested as well as those for nominal, 
ordinal, hyperorder and absolute scales. Information about 
the numerical representation of RI brightness was used 
only by the algorithm in a strong scale. 
 

 
In Figure 2 the dependence of efficiency of nominal 
(results have labels "+"), ordinal (“ ") algorithms and 
algorithm in strong scale (circles) against contrast 

2 1ΔT=T -T  for σ=3K  and σ=7K  in case of fixed other 
parameters of CI and RI, is presented. On the same graph, 
solid fat curves show theoretic dependency graphs, drawn 
based on the formula(29). The differences in the efficiency 
of ordinal and hyperordinal algorithms have been so small 
that they cannot be reflected on graphs. 
 

 
Thus, it is shown that:  

1) at higher noise levels (small noise-to-signal ratios), the 
algorithmin a strong scale is slightly more efficient than 
the ordinal one, which at the same time is the most 
sensitive to inversion of contrast ΔT ; 

2) at high noise-to-signal ratio the algorithm in a strong scale 
is significantly inferior to the ordinal one, and in case of a 
substantial inversion of the contrast, the nominal algorithm 
has the best performance; 

3) the satisfactory correspondence between the theoretical 
results and the results obtained from the statistical 
simulation for a strong scale algorithm has been received. 

 
3. CONCLUSION 
 
As a result of the performed researches, it has been shown 
that in MP navigation systems from system positions the 
correlation algorithm of image comparisons is the most 
preferred for application, and the formation of RI must be 
carried out in a strong scale. 
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