
Shivani Yadav et al., International Journal of Emerging Trends in Engineering Research, 8(6), June
2020, 2824- 2840

2824

ABSTRACT

Software engineering is an approach pre-owned by the
researchers and innovators to reduce the ratio of crisis in
software. Therefore the designer/ innovator can readily design
a valuable quality software, by using various approaches like
Component-Based Software Engineering (CBSE). The
components quality has a high impact on the quality of a whole
application. Several quality models for CBSE and Component-
Off-The-Shelf (COTS) are available in the literature so this
paper presents various quality models with defined parameters
for quality prediction. Several models, like, Boehm's, McCall's,
FURPS, ISO 9126, Dromey's, have been developed for quality
evaluation using hierarchically related characteristics of quality
indicators. Over the years, some models have been developed
for structuring software quality for software. Nowadays,
researchers are showing their passion for innovation in the area
of software reliability. The reliability of a software component
relies on the following factors like the reliability of services,
environment frequency so finally this paper presents the
analysis and assessment of software quality models and their
quality parameters for CBS by going through various
researchers and practitioners' work.

Key words: Reliability, quality models, component-based
software engineering, assessment

1. INTRODUCTION

Software engineering is a process to provide a methodical,
disciplined, measurable approach for the creation, deployment,
and maintenance of software; in other words, the application of
engineering to software [1]. Software engineering is the part of
the engineering approach which aims to fulfill the
organizational commitment for its product quality. Six Sigma,
Total Quality Management (TQM), etc. maintain a culture of
continuous improvement of process, and eventually, this
culture leads to the development of more effective methods for
software engineering. The earliest work in the field of software
began with process abstraction, which was found to be not
powerful enough for building big, complex programs. This led
to the focus on the data processing view which emphasized

function abstraction. It takes in the inputs and outputs a value
after processing the input in the function body. The 1980s saw
the introduction of the Object-Oriented (OO) approach with
capability for both data and function abstraction. This is
achieved through “class”, which encapsulates data and restricts
access through a collection of objects. This abstraction paves
the way for the construction of huge, complex systems, with
capabilities to extend the features of an object through a
hierarchy of objects. All this led to the emergence of
Component-Oriented (CO) system development methodology,
which consists of software components as building blocks. CO
system maximizes the reusability and reliability of components.
A new software product development exercise often requires
new measures to ensure the quality of development processes,
apart from quality requirements and quality measurement
methods. The focus is on a robust quality management system
that allows for the development of a quality product, rather
than individual quality processes. This quality management
system may comprise detailed methods and accepted standards
for development processes. We can classify the existing
international standards into 4 broad categories:

 Standards for development process documentation
 Standards for quality assurance process

implementation
 Standards for software documentation
 Other related standards

Measures of quality assurance are determined by standards of
software quality lifecycle and a quality model with defined
parameters for quality evaluation. Several models, like,
Boehm's, McCall's, FURPS, ISO 9126, Dromey's, have been
developed for quality evaluation using hierarchically related
characteristics of quality indicators. The ISO/IEC 25030
standard provides some models within its framework. This set
of models can be combined with software development process
quality models, which also affect the quality of the product.
Although there are some characteristics like usability,
efficiency, functionality, portability, and maintainability, a

Analysis and Assessment of Existing Software Quality
Models to Predict the Reliability of Component-Based

Software

Shivani Yadav1, Bal Kishan2

1,2Department of Computer Science & Applications
Maharshi Dayanand University, Rohtak-124001, Haryana, INDIA

1shivaniyadav17@gmail.com, 2balkishan248@gmail.com

 ISSN 2347 - 3983
Volume 8. No. 6, June 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter96862020.pdf

https://doi.org/10.30534/ijeter/2020/96862020

Shivani Yadav et al., International Journal of Emerging Trends in Engineering Research, 8(6), June 2020, 2824- 2840

2825

common quality characteristic observed across all these basic
models is reliability [2].

The quality of software developed is extremely important in
software development. There can be various parameters, by
which they can estimate software quality, like software
architecture, conformance to functional specifications, ability
to scale, adherence to development methodology, and other
intangibles which are taken for granted by professionals [3, 4].
Researchers have their way of describing quality models, with
the time different researchers gave different types of quality
models. Like, Desissen Boeck et al. classified quality models
into three different types [5, 6]:

 Definition model – defines or describes quality. It is
difficult to conduct quality assurance as these models are
generally too abstract and lack information about their
operation.

 Assessment model – contains specific instructions,
methods, and criteria for evaluation. These can generally be
represented as a mathematical model aggregating quality
factors metrics’.

 Prediction model – supports activities like defect prediction.

According to all the researchers, more or less concept of
quality models is the same. All the models are based on basic
quality models (Mc Call, Boehm, FURPS, Dromey, ISO). With
time due to an increase in customer needs, making enhanced
products all the models were evaluated for better models. On
one thought all the models appear to be the same but there is a
difference between all the models as a different model
approach has a different purpose. The ISO 9126 defines
quality, the assessment model uses the metric-based approach
to assess the quality of a given system and the prediction model
uses the reliability growth model for predicting quality.

An important metric for estimating software quality is
reliability. It can be defined as the probability that the software
will not fail for a specified time under specified conditions [7].
According to ISO/IEC 25010, reliability is defined as the
degree to which software, product, component, or system
performs specified functions under certain conditions for a
dedicated time [8]. It can also be defined as a consolidation of
availability, fault tolerance, and maturity. It is a crucial
parameter that helps determine the efficiency of the software
system. Its role in market success determination of software is
significant as the economic implications can be huge. Many
approaches can be used to measure software reliability [9, 10].
Quality is an ongoing concern throughout the software
lifecycle, right from requirements specification till the delivery.
Due to its importance in failure detection and error prevention,
reliability modeling for estimation and prediction process is
considered as the new area of research interest by many
researchers. With the help of statistical methods, researchers
have obtained parameters for predicting the number of error
occurrences for use in reliability estimation [11]. The different
scenarios encountered during reliability assessment are:

 code correction for the elimination of direct errors
 establishing reliability for identical use case scenarios and

testing
 framework creation to reduce new errors when correcting

detected errors
 determining the link between errors in source code and the

probability of failure due to them

With decades of research for software engineering, the
foundations for many object-oriented languages were
established to support reuse in a more structured way to
enhance quality and increase productivity. Making any
software from the starting is a complex process, costly, and
time-consuming, this problem can be solved by introducing the
concept of reusability of the components, thus component-
based systems are introduced. With these objectives, CBSE has
been accepted as a new and effective subdomain of software
engineering. It is a discipline that includes software component
identification, development, adoption, and integration of these
components in a large software system. The main aim of CBSE
is to support the independent development of components of
their compositional designs, analysis, and verification of the
complete system. In this environment, it is very important to
standardize the components and their integration process for
the quality of CBSE. The quality of components has a high
impact on the quality of a whole application [12]. Several
quality models for CBSE and Component-Off-The-Shelf
(COTS) are available in the literature [13]. Nowadays,
researchers are showing their interest in working in the area of
software reliability. The reliability of a software component
relies on the following factors [14]:

 the reliability of services connected to the component, i.e.
external services

 the usage profile of the component, including its frequency
and parameters in operation

 the reliability of the environment where the component
will be executed, including hardware as well as software
environments

Till now proposed software reliability models can be
categorized as:
 Architecture based models- It describes the operational and

architectural profile of the software system for reliability
modeling. These models are path-based and state-based.

 Mathematical based models- It includes mathematical
formulas for component usage ratio calculation. The usage
ratio for a component is the execution time of the
components to the overall execution time. These models
can be used for estimation of the overall reliability of the
system especially in the case of components.

 Soft computing techniques- It is the new approach that is
used nowadays for estimating the reliability of component-
based systems. Soft computing techniques use imprecise
data and are better suited for real-world problems.

Shivani Yadav et al., International Journal of Emerging Trends in Engineering Research, 8(6), June 2020, 2824- 2840

2826

2. SOFTWARE QUALITY

A quality model can be thought of as a combination of
parameters like traceability, integrity, reliability, clarity of
design and documentation, and relationships between different
software components. These parameters can then be used to
define and calculate quality requirements for a software
product. Quality can be defined through different ways like the
quality of any living /nonliving object in the universe can be
described in the following terms:

“The measure of standard of any object/thing against the other
objects/things of the same kind is known as the quality of that
object/thing.” Or “It can also be defined as the degree of
superiority or inferiority of something as compare to the other
things of the same type.”

The above definition can be described with the help of an
example, mobile phone quality (i.e. a product) highly depends
on the functioning speed of the phone, consistency with the
reliability of the phone, phone’s ability to handle multiple
applications simultaneously, and many other factors. Similarly,
quality in software is focused on excellence and improvement
in software products. Nowadays, due to the increase in the use
of technology, there is a need to develop authentic and reliable
software [15].

3. SOFTWARE QUALITY MODELS

 Most of the contemporary quality models are classified
according to the means and ways of their generation and are
hierarchical [16]. These can be broadly categorized into:

 Assumed model - utilize hypothetical relationships among
used variables.

 Data based model – use statistical analysis of related
matrix.

 Hybrid model – use a combination of hunches and data
analysis.

Research on software quality has been ongoing for a long
period. In starting, from the various researchers quality models
were categorized into two parts:

 Basic Models – which focus on complete and
comprehensive product evaluation

 Tailored Quality Models – which focus on the evaluation
of components

The Basic Models can be used for any kind of software
products and are hierarchical in structure. The six most
important are: Mc Call [1977], Boehm [1978], FURPS [1992],
Dromey [1995], ISO 9126-1 [2001]; its variants for external
(ISO / IEC 9126-2 [2003]), internal (ISO / IEC 9126-3 [2003])
and quality in use metrics: ISO / IEC 9126-4 [2004]. The ISO -
9126 model as a result of inputs from previous models, namely
Boehm and McCall models. A new adapted model: ISO 25010
or ISO/IEC CD 25010 was established in 2007 [11]. This is
also known as Software product Quality Requirements and
Evaluation or SQuare.

Tailored Quality Models started coming up in 2001 with the
Bertoia model. Further models were proposed like in 2003 by
Georgiado, in 2005 by Alvaro, and Rawashdesh. These quality
models are also known as component quality models. They
differ from basic models because their applicability is confined
to specific application domains, where the relative importance
of features may vary according to that particular domain. The
need for such models is driven by specialized organizations and
their need for evaluation of individual components. Most of
these models are adapted from Basic Models, with a slight
modification to fulfill the goals of different domains.

Many software quality models are available these days for
assessing software quality products. They are based on basic
models, like McCall, Boehm, FURPS, Dromey, and ISO. These
four models are considered as the basic quality models, all the
other quality models are based on these models by enhancing
them in one way or the other. This section describes some of
the well-known software quality models, from various studies.

3.1 McCall’s model (1977)

The first quality model was proposed by Jim McCall in 1977. It
describes quality factors, which can be separated into two
levels: external parameters, which can be measured directly,
and quality criteria, which can be measured objectively or
subjectively [17]. The software quality factors can be classified
into three categories in this model: Product Operation, Product
Revision, and Product Transition. Factors included in each of
these categories are:

 Product Operation: Accuracy, Reliability, Efficiency,
Integrity, and Usability. These factors determine a
customer’s satisfaction.

 Product Revision: Maintainability, Testability, and
Flexibility. It is used to assess the ease of system
adaptation and error correction.

 Product Transition: This determines the ability to adapt to
changes in hardware configuration, like distributed
processing [4].

3.2 Boehm’s quality model (1978)

Barry W. Boehm presented a hierarchical structure for
primitive, intermediate level and high-level characteristics.
Boehm built upon the primitive and intermediate characteristics
in McCall’s model and also included hardware performance as
a parameter, which was missing in McCall’s model. The
intermediate level characteristics used in this model are:
Usability, Testability, Maintainability, Portability, Flexibility,
Human Engineering, and Understandability [18].

3.3 FURPS (1987) and FURPS+ (2000)

FURPS stands for Functionality, Usability, Reliability,
portability, and Supportability. This model was introduced by
Robert Grady and specifies parameters for each of the 5
factors. Functionality includes capabilities and features of the
software. Usability includes the ease of user interface, ease of
training, and user documentation. Reliability includes accuracy,

Shivani Yadav et al., International Journal of Emerging Trends in Engineering Research, 8(6), June 2020, 2824- 2840

2827

mean time between failures and, frequency, and severity of the
failure. Performance measures the conditions of operation such
as response time, speed, efficiency, and resource usage.
Supportability includes parameters that make software
maintenance easier, like serviceability, adaptability, testability,
and compatibility [4].

3.4 Dromey’s quality model (1995)

Dromey tried to connect software quality attributed to software
product properties by focusing on quality attribute and sub-
parameters relationship. The 3 principal components to be
considered [19] are i) Product properties, ii) high-level quality
parameters, iii) linking properties with quality parameters. The
properties can be classified into four parts: Descriptive,
Contextual, Correctness, and Internal. However, the model
does not define how product properties must be realized [20].

3.5 ISO 9126 model

The ISO 9126 model is based on Boehm and McCall models. It
focuses on two aspects first one is internal and external quality
parameters, and the second one is quality parameters
showcasing usage characteristics. Internal quality parameters
can be evaluated without execution, like source code, while
external parameters require execution to be evaluated. External
quality parameters can only be assessed during the system
operation or maintenance phase. The quality in use parameters
is concerned with the efficiency, effectiveness, and security of
the software product and the resulting user satisfaction. The
ISO-9126 model brought about standardization in software
quality terminology and has subsequently been used for
developing tailored quality models. This was made possible
due to the standardization of terminology regarding software
quality [11]. ISO includes parameters like reliability, usability,
functionality, efficiency, maintainability, and portability.
Furthermore, usage characteristics focus on productivity,
effectiveness, safety, and satisfaction.

3.6 ISO 25010 model

ISO 25010 emerged in 2007, as an update of the existing ISO
9126 model. According to this model, software product quality
can be divided into 8 key features and each feature has some
specified characteristics. The aim of this model is quality
driven software development. One major change in this model
is the removal of portability as a key feature. Instead, security
and compatibility have been used to encompass some
characteristics previously considered part of portability, and
also some other characteristics that weren’t considered earlier.
Portability has been clubbed under Transferability as a
characteristic. ISO 25010 shares similarities with the ISO/IEC
9126 model along the lines of internal, external, and quality in
use parameters. Parameters used for software quality are
reliability, performance, security, maintainability,
transferability, compatibility, operability, and functional
suitability [11].

4. ANALYSIS OF SOFTWARE QUALITY MODELS

Over the years, several models have been developed for
structuring software quality evaluation.

4.1 Capability maturity model (CMM 1991)

This model lays down a five-level path for refining an
organization’s software development process, with each level
resulting in a more organized and systematic process. It was
developed by the U.S. Department of Defense-sponsored
research and development center, called Software Engineering
Institute (SEI), for enhancing software engineering
methodologies. The CMM is similar to ISO 9001, as both deals
with software development and maintenance standards.
However, unlike ISO 9001, which only lays down minimally
acceptable quality standards, CMM provides a framework for
continuous improvement along with transition steps. The five
levels of the CMM model are:

 Initial level – At this level, the processes are not organized
and much depend on individual efforts. The successful
development of software is difficult to replicate as there
are no defined processes.

 Repeatable level – An organization at this stage has
established processes, which are properly defined and
documented, making it possible to repeat successes

 Defined level – Here, the organization has refined the
software development process according to its own needs
through standardization, and integration.

 Managed level - The organization monitors and measures
its processes for controlling performance quantitatively.

 Optimizing level – The organization focuses on process
improvement by continuously monitoring feedback and
using new tools and techniques.

4.2 Ghezzi model (1991)

According to this model software, developers can use internal
qualities to control software structure and achieve the required
external qualities. Internal qualities to be maintained are
Accuracy, Reliability, Portability, Reusability, Maintainability,
Flexibility, Usability, and Integrity.

4.3 IEEE model (1993)

It defines the standard for software maintenance, which is
qualitative. It includes the following factors: Reliability,
Usability, Maintainability, and Portability.

4.4 SATC’s quality model (1996)

Software Assurance Technology Center (SATC) at NASA
establishes metrics to measure the achievement of goals for
improving software quality. The SATC defines four goals:
requirements quality, product quality, and implementation
effectively and testing effectively [4].

Shivani Yadav et al., International Journal of Emerging Trends in Engineering Research, 8(6), June 2020, 2824- 2840

2828

4.5 Bansiya’s QMOOD model (2002)

The Quality Model for Object-Oriented Design is hierarchical
and extends to Dromey’s model. There are four levels in this
model:

 Identifying design quality characteristics for Object-
Oriented systems.

 Identifying Object-Oriented design properties for internal
and external functionality of design components.

 Identifying Object-Oriented design metrics like no. of
methods in classes.

 Identifying Object-Oriented design components for
architecture design, like objects, class hierarchy.

4.6 Kazman model (2003)

This model focuses on quality characteristics including
Functionality, Availability, Efficiency, Reusability, Testability,
Security, Portability, Inheritability, and Modifiability.

4.7 Aspect-Oriented Software Quality Model (2006)

This model extends the ISO 9126-1 software quality model by
introducing new sub characteristics; modularity, reusability,
and complexity, to the ISO 9126- 1 model’s original
characteristics. The primary focus of aspect-oriented
development is modularity [4].

4.8 Software Quality in Development (SQUID)

Software Quality in Development (SQUID) approach was
proposed by Kitchenham et al. for defining software quality
requirements. This approach defines the quality model using
two components: structural component defines the model
elements along with their relationships, and content component
for linked entities in the structure. This model incorporates the
operational behavior of the software, along with quality
characteristics, to define quality requirements [21].

4.9 Ortega’s systemic model

Ortega’s Systemic Model considers the quality and sub-quality
characteristics for arriving at quality metrics. The qualities are
considered to be related, thereby resulting in a systemic global
quality design comprising of four evaluation dimensions
related to the product as well as process: product and process
efficiency, product, and process effectiveness [22].

4.10 Factor-Strategy approach

Marinescu and Ratiu proposed a Factor-Strategy approach to
overcome the limitations of other quality models in addressing
the quality design aspect. The proposed model creates design
rules quantifiably with the help of detection strategies [23]. The
distinctive feature of this model is its use of a computational
approach to quantify the association of quality factors to
strategy.

4.11 Design Enhanced Quality Evaluation (DEQUALITE)

Khomh and Gueheneuc proposed the DEQUALITE model for
object-oriented systems. This model uses quality parameters as
well as design aspects for evaluating software quality [24]. The
model defines quality metrics for parameters. These metrics,
along with design patterns and quality parameters make up the
key elements of the DEQUALITE model. The consideration of
design elements is what makes this model unique.

4.12 Quality Meta-Model

Finne proposed a quality meta-model that lays down abstract
concepts that can be instantiated for system development as
and when required [25]. It suggests a three-level view for
quality modeling: meta, general, and instance level. The model
considers information systems, use cases, quality parameters,
and quality metrics as key elements.

4.13 Quamoco

Quamoco is a meta-model proposed by Wagner et. al. The
model uses operationalized quality models to try and bridge the
gap between quality characteristics and quality measurement
[26]. A unique feature of this model is the Product factor, like
Dromey’s quality carrying property. Product factors, quality
aspects, and entities are the key elements of this model.
However, it does not address the design or process aspects of
quality.

4.14 Rawashdeh model

This model takes after Dromey and ISO 9126 model, focusing
on COTS components and fulfilling the objective of satisfying
different types of user needs [27]. The model details a four-step
approach to creating a software quality model:

 Identify high-level quality parameters
 Obtain a set of subordinate parameters from high-level

parameters
 Define internal and external metrics where internal metrics

focus on parameters related to the source and external
metrics focus on parameters related to system behavior

 Identification of parameters specific to different user types

4.15 Open source models

Open-source software is gaining traction due to the increased
collaboration and freedom offered for use in multiple, diverse
scenarios. Open source products are available for all types of
computer software including Operating systems, middleware,
and end-user applications. Quality models for Open Source
software build upon models like ISO 9126 while incorporating
some specialized parameters for Open Source software.
However, there is no ideal model for Open Source software yet,
which can capture all aspects. We’ll look at four models in the
further section of the paper which will be useful in the analysis
of the quality of such software.

Shivani Yadav et al., International Journal of Emerging Trends in Engineering Research, 8(6), June 2020, 2824- 2840

2829

4.16 Cap gemini open source maturity model

This model defines indicators for product and application
maturity. The model is scored on a scale between 1 and 5, with
each indicator assigned a value to arrive at a total score.

4.17 Open BRR model

The Business Readiness Rating framework builds on the ISO
9126 and Cap Gemini models. The model specifies seven
categories for accelerated evaluation of open source software,
which can be further refined for simplification and examination
at a granular level [27].

4.18 SQO-OSS model

This hierarchical model takes allows automatic calculation of
metrics by taking the community process and source code into
account. A major feature of this model is the ability to reduce
user interference by focusing on automation in a continuous
monitoring system. However, the model focuses only on the
source code and not the product functionality. Even the
community factors considered are the ones that can be
automatically measured [27].

5. STUDY AND REVIEW OF LITERATURE

This study and literature review provides some of the best and
relevant explanations/ suggestions to resolve problems of
researchers or beginners who are working in the field of
reliability. This review may help different researchers/
developers on how to predict the quality of software based on
Component-Based Software. Software Quality Assurance
(SQA) models define different types of quality attributes given
such as availability, maintainability, reliability, and usability,
etc

Suman and Manoj Wadhwa [4] analyzed multiple software
quality characteristics concepts and discussed the comparative
analysis software quality parameters of software quality
models. Quality parameters which are compared with all
quality models are functionality, efficiency, compatibility,
usability, reliability, security, integrity, maintainability.

Padmalata Nistala et al. [20] compiled research on software
quality models to envelope model components and support
quality architecting. Systematic mapping was used to classify
238 primary papers based on the type of research, publication
trends, and standard usage. The team found 40 papers on
quality models and used them to analyze meta-model elements
and their usefulness in supporting quality architecture using
Bayer’s reference architecture framework. The results showed
100% support for quality planning, 75% support for quality
assessment, 40% support for quality documentation, and 13%
support for quality realization aspect. According to the author,
software processes control quality realization and, the evolution
of quality models and software architectures is necessary to
correlate quality definition and realization.

Singh and Bharti [27] reviewed the major existing models
while listing out their pros and cons. According to the author,
they stressed the importance of communication in software
quality. It was further found that some existing models were
quite general and not easily applicable to specific cases. Some
tailored quality models were discussed, like the ISO 9126 and
models for Open source software with an emphasis on
community members' participation. These tailored quality
models have been derived from basic models considering a
specific domain and relevant features and sub-features. Since
these models are built for a particular domain, they have
limited scope.

Kenett et. al [28] explored an extended quality conceptual
framework for assuring product quality. According to the
author, the focus was on placing software quality in perspective
by three performing critical activities:

 Requirement definition and change monitoring
 Implementation method design and quality achievement
 Evaluation of product and process quality.

Seffah et al. [29] highlighted the quality of service attribute
from a usability perspective. Several methods were discussed
for a cost-effective usability assessment. Cost-effectiveness
was taken as a factor due to its direct relationship with
stakeholder satisfaction.

Gupta and Kumar [30] presented a framework for future
examination using software reliability facts based on current
research. According to the author, the reliability management
plan executed by a software engineer through the life of a
software product was evaluated and the need to reduce efforts
spent for measuring the reliability of object-oriented design
within estimated budget and time was emphasized.

Singhal and Singhal [31] focused on reliability as the
determining factor for predicting the struggle required for
testing software. Based on the literature review of existing
models of reliability and structure used by object-oriented
design for reliability, a need for reduction in reliability
measurement effort was identified for sticking to estimated
time and budget.

Nagar and Thankachan [32] discussed traditional development
models like Waterfall, spiral, and prototyping as well as
advanced models like Agile before proposing an algorithm for
identifying an appropriate model for software reliability
improvement. According to the author, they cited an example
of medicine and manufacturing to illustrate reliability in terms
of structural and functional quality.

Khoshgoftarr et al. [33] used a neural network model for
predicting the quality of the software. According to the author,
the neural network showed better accuracy as compared to a
non-parametric discriminant model. However, object-oriented
faults were not sufficiently predicted using the metrics derived
in this model.

Shivani Yadav et al., International Journal of Emerging Trends in Engineering Research, 8(6), June 2020, 2824- 2840

2830

Punia and Kaur [34] put forward a method to predict software
maintainability levels on a five-level scale, ranging from very
well to very poor, using soft computing techniques and
MATLAB’s fuzzy logic toolbox. The toolbox helped create
rules and generate training and test data sets, which were then
fed into a multilayer feed-forward neural networks. According
to the author, the method was evaluated using Mean Relative
Error (MRE) and Mean Absolute Relative Error (MARE). The
experimental results showed reasonable levels of accuracy and
usefulness of Artificial Neural Network (ANN) in predicting
software maintainability.

Fahad et al. [35] conducted a comparative analysis of software
quality models and various metrics associated with those
models for predicting software reliability. According to the
author, characteristics like size, performance, complexity,
quality, etc. were considered for evaluation using three
proposed models: McCALL, BOEHM, and ISO9126.

Bakota et al. [36] sought to build a probabilistic approach that
could use expert knowledge to deal with imprecision while
computing complex quality characteristics. It used the freedom
offered by ISO9126 standard to propose a new approach while
focusing on maintainability. An acyclic graph with nodes
corresponding to inward-looking (source code) and outward-
looking (execution performance) quality properties were
constructed to determine quality characteristics. The measures
of these characteristics were expressed as a goodness function
on an interval scale, where 0 and 1 are the worst and best cases.
According to the author, the results showed changes in quality
models with the occurrence of maintenance activities in a
positive correlation. Development activities could be revealed
by changes in values.

Sibisi et al. [37] created a framework for quality requirement
specification and defined the characteristics in ISO/IEC 9126-1
(2001). According to the author, the research focused on
creating a framework for adapting software quality models that
could work on an intermediate or end software product and
meet different customer and organizational needs. While a
general quality profile questionnaire is used to select reliable
metrics and rating levels, it requires an objective approach to
select appropriate characteristics and sub-characteristics at the
product level. Results were validated by focusing on seven
factors listed in ISO 9126-2: Reliability, Repeatability,
Reproducibility, Availability, Inductiveness, Correctness, and
Meaningfulness. It was found that the validation process was
successful at the characteristic level, whereas, sub-
characteristics level validity required further improvements.

Miguel et al. [11] took a user-centric approach for proposing
models to identify quality issues leading to several new
measures such as reusability, configurability, availability,
lower cost, and better quality, were considered for evaluating
the components. Some of the models, with a range in a small
domain, have been adapted from ISO 9126. Basic models can
also be adapted to build custom quality models as per
requirement. Open-source models highlight community-driven
requirements.

Menasce et al. [38] suggested using OoS-aware software
components to mediate performance properties at runtime. The
components could build a QN model to analyze OoS service
requirement ability by using past performance properties.

Yang et al. [39] used a neural network called FALCON (Self-
Adaptation Learning Control Network) on a set of artificial
data. The model measures properties like performance,
stability, and reliability. However according to the author, due
to lack of application on an actual data set, the research is still
in the preliminary stage.

Banerjee et al. [40] suggested an evaluation framework and
metrics for a conceptual level component-based system along
with their theoretical validations. According to the author, the
framework was tested on the library management system and
quality evaluation was conducted from two viewpoints:
designer and use, covering complexity, completeness,
expressiveness, and analyzability parameters.

Sheoran et al. [41] proposed a method for software quality
prediction using a hybrid technique to be made up of improved
particle swarm optimization and artificial neural network.
According to the author, the system performance is measured
using metrics maintainability, reliability, and cost. The hybrid
algorithm uses a hierarchical model for quality prediction and
shows improvement as compared with existing techniques.

Sharma and Bano [42] collected defect reports from six
different IT organizations as data for identifying potential
reliability factors of software. According to author findings,
requirement analysis, cost and size estimation and software
defects/ faults were important in determining reliability.

Khatetneh and Mustafa [43] predicted software failures using a
newly developed fuzzy expert system. According to the author,
the proposed model showed that predictive accuracy increased
when particular dataset behavior was taken into account by the
model.

Sharma and Dubey [44] predicted software reliability by
analyzing various methods/approaches used in the past by
reading various research papers. According to the author, their
main focus is to explain the development of different
models/approaches using metrics of object-oriented and
predicting software reliability in a system. The results give
some of the answers to research gaps found in the previous
research and points out the key areas which help improve
reliability.

Antony and Dev [45] measured software reliability using CK
metrics. According to the author, a relationship between object-
oriented metrics and reliability was established using values of
metric parameters extracted from Java Class Analyzer.
Findings showed that higher system reliability could be
achieved by keeping the high value of NOC and low caules of
LCOM, WMC, CBO, RFC, and DIT.

Mishra and Dubey [46] analyze the reliability of object-
oriented software systems using the Analytic Hierarchy Process

Shivani Yadav et al., International Journal of Emerging Trends in Engineering Research, 8(6), June 2020, 2824- 2840

2831

(AHP) approach. The author used CK metrics mapped with
reliability sub-characteristics.

Su-Hua Wang et al. [47] discussed the importance of good
quality software, some basic quality models like Boehm,
McCall, Dromey, and FURPS quality model. Also, all the
models are compared to find the differences between them.
According to the author, the paper concluded that McCall and
Dromey model is not giving good results in the field of
software quality engineering whereas, ISO/IEC 9126 model is
the most suitable model which supports most approaches of
quality.

Marcin Wolski et al. [48] defined a measurement framework,
based on McCall and Boehm models. This framework was used
for the evaluation of software products developed within the
research and innovation project GÉANT. It includes the EU as
an external stakeholder, which is the temporary funding agency
hoping to make the project self- reliant in the future. According
to the author, they published the results of the application of
this model on 2 projects developed under the GEANT
ecosystem, and one under the open-source system.

Karnavel and Dillibabu [49] presented the COQUALMO
model for identifying defects and their limitations. The IT
industry aims to decrease cost and time for evaluation without
compromising on quality because residual defects are a major
drain on cost, time, and effort. According to the author, they
developed a novel model called Software Testing Defect
Corrective Model (STDCM) to evaluate the faults occurring
continuously in a software product. The developed model was
validated using statistical inferences, showing enhanced
products of software concerning quality.

Sharma and Sharma [50] discussed multiple quality models to
compare them with each other while laying down the
importance of metrics and software quality models to build
quality software.

Deissenboeck et al. [51] segregated the software quality models
into three broad areas, based on the purpose of the model:
Definition, Assessment, and Prediction (DAP). According to
the author, they listed down the scenarios in which these
models were applicable and derived a set of requirements, to be
used to either i) evaluate existing models or ii) further develop
and improve existing quality models, in terms of DAP
classification.

Gordieiev et al. [52] analyzed the development and features of
existing quality models, including McCall, ISO/IEC 9126
(2001), and ISO/IEC 25010 (2010), in terms of software
reliability and Green Software (GSW). According to the author,
they applied a weighted metric approach for quality
parameters, and the changes in those weights as the models
evolved, to investigate and predict the complexity of software
quality models.

Kläs and Münch [53] defined two types of quality models: i)
fixed models and, ii) define- your-own models. According to
the author, it helps overcome the challenges in selecting the

appropriate quality model for software development projects
according to their unique features by listing down the possible
variables before finalizing the elements for a balanced quality
model.

Shukla and Verma [54] took a philosophical and managerial
view of software quality. According to the author, they
compared the famous software quality models on various
parameters and concluded that quality models are needed by
software developers to attain optimum software quality.

Saini [55] studied software quality models to quantify factors
that affect quality. It was found that maintainability is a critical
parameter and should be taken into account right from the
initial development stage. This helps detect and correct errors
early in the lifecycle, thereby reducing the cost of development.
According to the author, they provide an overview and analysis
of maintainability in various software quality models.

Qiuying et al. [56] described a model that considered a
combination of fault removal efficiency and testing coverage
information along with error generation based on a non-
homogeneous Poisson process. The model included fault
introduction rate as well into software reliability analysis,
expressing fault detection rate, and considering fault repair
with the use of testing coverage and fault removal efficiency
respectively. The model’s efficiency was tested over three sets
of real failure data and compared with multiple non-
homogeneous Poisson process SRGMs on five criteria.
According to the author, it was observed that the model yielded
better predictive performance.

Liang et al. [57] incorporated a vast amount of background
knowledge while building an informationally diverse model.
Due to increased informational diversity, increased conflict was
observed to the completion of tasks. On the other hand,
conflicts based on task tend to provide learning opportunities
which help in improving the software quality. According to the
author, this was confirmed using survey data from 299
members from 75 software development teams. The learning
aspect of the model includes helpful information from the
larger pool.

Jie Xu et al. [58] presented several techniques and a step-by-
step procedure to derive quality estimation models. The
effectiveness of metrics is verified using a mix of machine
learning and statistical techniques. To increase accuracy, the
authors also adopted a neuro-fuzzy approach. For analysis, data
from the ISBG repository is used. According to the author, the
combination of statistical modeling and the neuro-fuzzy
approach is a uniquely positive feature of this research, as seen
from the observed improvements after the application of the
recalibration method on a statistical model.

Pai and Dugan [59] used fault trees and Bayesian belief
networks to propose a new software reliability estimation
approach, which takes causal dependence between processes
into account and results in a realistic estimate of software
reliability.

Shivani Yadav et al., International Journal of Emerging Trends in Engineering Research, 8(6), June 2020, 2824- 2840

2832

Khoshgoftaar and Allen [60] suggested classification rules,
which considered the efficiency and effectiveness of the
software reliability models explicitly. The application of the
rules was demonstrated using two case studies: 1) Modeling of
class membership in fault-prone models as a function of a
combination of process metrics depicting a module’s
development history in a military system. 2) Modeling of class
membership of fault-prone models as a function of the number
of interfaces to other modules in a telecommunication system.
According to the author, balanced misclassification rates
provided practical and useful SQ models as compared to other
classification rules.

Pandey et al. [61] analyzed some software quality models, each
considering a multitude of characteristics. According to the
author, they emphasized the critical role of customer feedback
and systematic processes across the SDLC in quality
estimation. Reliability and Requirement factors were suggested
as selection factors for quality models.

Gao et al. [62] highlighted the importance of attribute selection
in data preprocessing for quality modeling. According to the
author, they presented four techniques for attribute selection
and demonstrated their applicability to a telecommunications
software system. AUC and BGM parameters were considered
for the evaluation of classification accuracy. KS method was
shown to provide better results than PS, AHS, and RS methods.
The KS method showed remarkable performance even when
working with less than 15% on a subset of the original attribute
set, comparable with a complete set of parameters. The model
could be used to greatly enhance model evaluation, calibration,
and validation times for evaluating software development.

Alshathry et al. [63] suggested a QA optimization approach by
using pre-determined risk rating levels to prioritize investment
efforts during evaluation. According to the author, the aim is to
employ highly effective practices to high-risk rating work, to
build a holistic model considering cost, schedule, and quality.

Reza and Abdul [64] tried to combine analysis of time series
with OSS for obtaining software quality assurance, based on
statistical techniques. According to the author, this could be
used to forecast and predict probabilistic quality properties
which can’t be evaluated using existing models. An added
benefit is the increased productivity and reliability of OSS
components.

Khoshgoftaar et al. [65] proposed a classification-tree model to
predict components having errors/bugs and then targeting them
for enhancement efforts. According to the author, they applied
the TREEDISC algorithm on a large legacy
telecommunications system to show how TREEDISC models
identify and label fault-prone software modules based on
process and execution metrics.

Loh and Lee [66] proposed a divide-and-conquer strategy
based quality model (QUAMO) for measuring the quality of
OO systems using data mining techniques and OO design
metrics. According to the author, the model was derived from
five existing models, namely Boehm, McCall, Dromey,

FURPS, and ISO 9126. The objective was to ease the process
of comparing similar studies on software quality.

Seiffert et al. [67] addressed the class-imbalance problem in the
context of software-quality prediction. The team examined data
boosting and sampling techniques which help in decision-tree
modeling while selecting software modules. About 50000
models were built using sampling techniques with 5 data and
boosting with 15 software quality data sets. According to the
author, it was seen that boosting provided better results than
data sampling techniques.

Drown et al. [68] defined a data sampling method using genetic
algorithms. This Evolutionary sampling method was used for
designing a high-assurance system and comparison was made
with different data sampling techniques like one-sided
selection, random oversampling and undersampling, Synthetic
Minority Oversampling Technique (SMOTE), cluster-based
oversampling, Wilson’s editing, and Borderline-SMOTE.
According to the author, two real-world software systems were
used as case studies and it was seen that Evolutionary Sampling
provides better results than most data sampling methods

Huang and Zhu [69] applied a multi-instance perspective using
a multi-instance kernel to analyze problems in OO software
quality estimation. In the training phase, each class was taken
as an instance, whereas class hierarchy was considered a bag.
The objective was to estimate the likelihood of fault in untested
class hierarchies using the altered data from the last phase and
software metrics. A hierarchy with faults must include a
minimum one negative (fault-prone) class. The evaluation was
implied using industrial optical communication software on
five datasets. According to the author, the results obtained from
the combination of support vector algorithms and a dedicated
multi-instance kernel showed more accuracy in estimating
fault-proneness of a class hierarchy.

Yi Liu et al. [70] used datasets from seven NASA software
projects to study software quality classification modeling
effectiveness using multiple validation datasets. It was found
that 70% of cases can locate the best two models among six by
using five validation datasets. According to the author, they
designed a GP-based statistical quality control classifier
consisting of three phases: training, multiple dataset validation,
and voting. The performance of this approach was better when
multiple datasets were used from multiple software having
similar reliability goals.

Xiong et al. [71] proposed a model named as Outsourcing
Software Quality Management (OSQMM) that takes into
account customer satisfaction by analyzing the voice of
customers. Issues with the development of outsourcing
software and current models assuring quality were analyzed for
applying Quality Function Deployment (QFD). According to
the author, the effectiveness of the model is verified using the
development of an accounting system as a case study.

Khoshgoftaar and Gao [72] focused on identifying fault-prone
modules during the development phase itself for improvement
in software quality. This results in a focused approach to

Shivani Yadav et al., International Journal of Emerging Trends in Engineering Research, 8(6), June 2020, 2824- 2840

2833

software quality and reliability enhancement by allowing the
team to estimate the faults likely to be in a given
module/project. According to the author, they discussed the
inability of logistic regression models to provide a quantitative
value for the number of faults, while highlighting the
usefulness of the Zero-Inflated Poisson (ZIP) and Poisson
Regression Model (PRM) regression model which provides
quantitative and qualitative prediction.

Khoshgoftaar and Liu [73] proposed a multi-objective
optimizing classification solution using a decision tree model
based on genetic programming. Genetic programming was used
because of its suitability in solving multi-objective
optimization problems. According to the author, the two main
objectives: i) Minimize the ‘Modified expected cost of
misclassification’, ii) Optimize the number of predicted fault-
prone models in line with allocated resources. An industrial
software system was used as a case study to show the
usefulness of the proposed model.

Agrawal and Chari [74] studied the impact of mature processes
on time, quality, and efforts by considering 37 CMM level 5
projects from four organizations using a linear regression
model. It was found that software size was the only significant
factor that impacted time, quality, and efforts when highly
mature processes are used. According to the author, as a result,
high levels of process maturity resulted in a reduction of
variance in software development outcomes caused by factors
other than size.

Huo et al. [75] compared the waterfall model with agile
methodology and studied the effectiveness of agile processes in
maintaining software quality while navigating the unstable
requirement environment and time pressure. According to the
author, they want to show the quality processes associated with
both approaches.

Xiong et al. [76] focused on the role of the Quality Function
Deployment (QFD) method in controlling the problem of
requirements change in software development before proposing
a new Dynamic Quality Function Deployment (DQFD) method
based on SECI. According to the author, DQFD is combined
with a software structure design method to control
requirements change while amalgamating the practice and
theory of knowledge management. The new software
requirement change management approach is applied and
validated by its application on a real-world development
project.

Bettenburg and Hassan [77] According to the author, they
studied the impact of social structures connecting end-users and
developers on the quality of software using statistical models.
Social information is mined from version control and issue
tracking repositories of an open-source project to identify the
predictor variable. The results obtained from the statistical
models showed similar explanatory power as traditional
models.

Alsultanny and Wohaishi [78] focused on increasing the
productivity of the software by considering the complexities

faced by designers and implementers by testing various factors
that affect software quality. According to the author, they
proposed a model for providing reliable and quality software
that satisfied ISO 9126 requirements by studying reliability,
usability and risk management for quality improvement, and
understandability, maintainability, and compatibility for
productivity improvement.

Kanellopoulos et al. [79] leveraged the ISO/IEC-9126
standards to develop a method for evaluating source code
quality and software behavior. The elements are automatically
derived from source code and enhanced with quality
characteristic rankings, using software engineer’s expert
knowledge to weigh source code parameters. The metrics and
parameters used are quite flexible. According to the author, the
application of the proposed model on one proprietary and five
open source systems showed that it can quantitatively capture
expert opinions and quality trends regarding system quality.

Almakadmeh et al. [80] defined test techniques based on
generic model-based methodology. These can help the
developers and testers in error handling, especially the
beginners, to effectively implement the testing process with
optimal effort, time, and cost.

Cristescu et al. [81] showcased the utility of CMMI in software
engineering modeling as well as process maturity assessment of
an organization. The activities in Software Reliability
Engineering (SRE) were described by the author along with
their capability for control over the development cycle of
software products. Software reliability estimation process
models were considered successful in the discovery of the ideal
framework for their application.

Mehdi Gheisari et al. [82] developed a mathematical model for
optimal prediction of stakeholder satisfaction. The model used
constraint equations and validated real data using the impact of
relationships among different quality parameters. The
successful results showed the usefulness of the proposed
optimal model and further scope for its exploration.

Phama et al. [83] discussed the limitations of current models of
reliability prediction based on component-based systems as
they are unable to incorporate factors like error propagation,
concurrently present errors and fault tolerance mechanisms,
while modeling system reliability. The authors went on to
present a modeling schema whose models are transformed into
Markov models for reliability prediction using the authors’
approach. The approach was then applied in two case studies
for predicting reliability and analyzing sensitivity.

Li and Smidts [84] designed a ranking system for quality
parameters. Expert estimation was used to arrive at a
quantitative value for each measure used in ranking. Those
measures were then combined to derive a single score using the
utility of multiple parameters. The authors showed that a more
accurate software reliability prediction could be obtained using
this calculation method in each development phase.

Shivani Yadav et al., International Journal of Emerging Trends in Engineering Research, 8(6), June 2020, 2824- 2840

2834

6. ASSESSMENT OF SOFTWARE QUALITY MODEL
AND THEIR QUALITY PARAMETERS RELATED TO
CBS

Quality parameters for component-based systems are
constrained by the limitations of OSS and COTS quality
prediction. While OSS’s emphasis is on the availability of code
for reuse, COTS’ focus is on user interfaces. The researchers
need to focus on models that incorporate parameters for both
types of software. The literature review shows how researchers
have tried to overcome this need for a uniform assessment
model.

Sharma et al. [85] analyzed the scope of software maintenance,
encompassing any changes to the software product: error
corrections, optimizations for better performance, capability
enhancement, and removal of unwanted features. According to
the author, they discussed the differences in maintenance
activities required for component-based software (CBS) as
compared to legacy software

Bosch et al. [86] discussed the emergence of CBSD is the
major approach to even COTS products due to the focus on
object-oriented development. According to the author, the
reliability claims associated with CBSD products need to be
investigated further.

Jing et al. [87] discussed the importance of Quality of Service
(QoS) provisioning in the life cycle of distributed systems. This
required understanding of more than just the functional
properties of individual components in component-based
systems. According to the author, it becomes difficult to predict
the quality of service where there is little information about the
components is limited like a black box.

Cai et al. [13] discussed how architecture design in component
bases software systems can be enhanced to develop mature
applications on top of the quality and efficiency offered by
CBS. According to the author, this allows for reinforcement of
process quality along with product quality due to the
complementary features of the design pattern.

Sanz et al. [88] defined parameters for measuring the
reusability of learning objects, namely modularity, traceability,
modifiability, usability, self-contain ability, and
standardization.

Bosch et al. [89] proposed the inclusion of usability as a quality
attribute to be considered while designing the system, rather
than measuring and implementing it in a fully finished system.
According to the author, implementing usability changes after
the implementation of results in high costs and limited
improvements are possible due to its impact on the underlying
architecture.

Gill et al. [90] discussed the advantages offered by component-
based software systems and how the reliability of such systems
is measured. According to the author, they proposed that the
failure of one component did not affect the overall system
equally as against the prevailing notion. The failure of one

component could affect other components to varying degrees,
depending on the relationship between those components.

Sheoran and Sangwan [91] used existing models for software
quality prediction. The results from the Software Quality
Model (SQM) were compared with ISO 25010, Component-
based quality model (CBQM), ISO 9126, Bertoia, and Alvaro
model. According to the author, the study was conducted using
secondary sources of data. Several characteristics were
considered, like reliability, usability, maintainability, and
portability, along with sub-characteristics like
understandability, performance, compatibility, and accuracy. It
was found that the Alvaro model was able to provide better
results, especially in terms of accuracy, testability, and
understandability.

Palviainen et al. [92] presented a coherent approach for
reliability evaluation during the design and implementation
stage by combining measured and predicted values with
heuristic estimates. According to the author, assessment
processes of Component-level reliability and system-level
reliability estimation activities are integrated for iterative
development of CBSD systems, with increased reliability.

Tomar and Tomar [93] discussed the issue of preserving
quality in component-based software system development,
which is largely determined by reliability. Since most
components are black- boxes, reliability prediction is quite
difficult. According to the author, they developed the
Component-Based Reliability Model (CBRM) to predict the
reliability of components, individually and upon integration.
Two factors were used to measure the output of CBRM:
Component Reliability (CR) for individual components, and
the Average number of interaction failures for integrated
components.

Arora et al. [94] focused on the importance of quality of service
while developing distributed systems. The author went on to
discuss the benefit of CBSD systems while looking to improve
the quality of service as compared to COTS systems, due to the
black-box nature of COTS products.

Mahmood et al. [95] discussed the different development
methodologies like object-oriented and CBSD, and how CBSD
can be used in both COTS and open source development
projects. This makes it especially relevant in software
development discussions. As a result, there is a need for
detailed requirement analysis and methods for quality attribute
identification for CBSD.

Khoshgoftaar et al. [96] proposed a tool based on Case-Based
Reasoning (CBR) for quality modeling. CBR provides an
automated reasoning process which makes it attractive for
quality analysis of high-reliability software systems. According
to the author, they called this CBR tool SMART (Software
Measurement Analysis and Reliability Toolkit), which supports
three types of modeling: i) CBR based classification ii)
Extended CBR classification with cluster analysis iii) Module-
order models for predicting rank-order of modules according to
a quality factor.

Shivani Yadav et al., International Journal of Emerging Trends in Engineering Research, 8(6), June 2020, 2824- 2840

2835

Panwar and Tomar [97] Software industry focus on two key
aspects while defining software product quality: i) customer
satisfaction, ii) profits. Component-based development aids in
both as it reduces the development time which aids in customer
satisfaction, as well as the costs of development by reducing
man-hours required for development due to reusability of
components. According to the author, they proposed a model
for measuring the degree of stakeholder satisfaction (Q)
through a combination of quality attributes. The results showed
an improvement of 2.46% when the model was validated using
the Shuffled Frog- Leaping Algorithm (SFLA).

Singh and Tomar [98] discussed the benefit of Component-
based Software (CBS) development due to the rapidity of
development once constituent components have attained
maturity. However, reliability estimation is a concern.
According to the author, they proposed a reliability prediction
model using two measures: i) component impact factor, and ii)
path propagation probability. The impact of individual
components on overall reliability is gauged in the form of
component impact factor and the reliability of the integrated
system is factored in using the probability of propagation of
errors along the execution path in the overall system. The
proposed model was implemented in Java, on a sample case
study, which showed that the model can be used in the initial
stages of development for CBS systems’ reliability estimation.

Software developers often use quality models to fit their
requirements to alleviate customer apprehensions. However,
the models may not be suitably applicable always. For
example, assessing a component-based software system using
ISO 9126 may be counter-productive as ISO 9126 does not
include reusability as a parameter, which is especially
important in component-based systems. ISO 9126-1 focuses
mainly on 6 quality attributes:

 Reliability
 Functionality
 Efficiency
 Maintainability
 Portability
 Usability

The lack of reusability as a quality attribute makes it almost
impossible to judge a component-based system using ISO
9126-1, as the reuse of components is the main driving force
behind the idea of CBSD.

Other parameters like maintainability, reliability, etc are also
important to analyze as these help in effective quality
prediction and assessment of software products according to
customer requirements. Having processes in place for
development, execution, and deployment of products with
these attributes in mind help in moving organizations up the
Capability Maturity Model (CMM) ladder. However, it is also
important to include context-specific parameters for models to
be effective at fulfilling their purpose; like in the case of
inclusion of reusability as a parameter for CBSD.

According to Panwar et al. [99], they emphasized the
importance of stakeholder satisfaction as a key measure of the
quality of a product, irrespective of the industry. The two major
forms of software development markets, i.e. Commercial-off-
the-shelf software and Open Source software are leaning
towards component-based- software development. Hence, it is
imperative to develop models suited for reliability prediction of
Component-Based Software (CBS). The researchers used the
firefly optimization technique of computational intelligence to
derive an objective function for software quality prediction on
MATLAB. The proposed model was tested on real data and
provided better results than existing models.

As we all know that software is developed step by step
according to software development life cycle, to achieve fault-
free system testing at every phase of the cycle gives a
promising result in the area of reliability especially. To make
time and cost-efficient software, components are reused but the
challenge is that components should be reliable, deployable,
and reusable. For making a reliability prediction model,
components should be chosen very carefully according to the
requirements.[100,101,102]

When treating some quality characteristics it is important to
know how to obtain them i.e. how to build software to
attain the highest degree of stakeholder satisfaction.
Developer-oriented quality factors have a great impact on the
fundamental structure of the product. Quality characteristics
also affect each other positively and negatively. The positive
impacts of one attribute on other shows an increase in
strength due to the previous one. And negative means a
decrease in strength. So, it is important to make some trade-
off between them, and at the time of designing a system, it is
essential to consider quality characteristics in the
fundamental design phase. The development- oriented quality
attributes can be calculated using some metrics as shown in
Table 1. [103]

Shivani Yadav et al., International Journal of Emerging Trends in Engineering Research, 8(6), June 2020, 2824- 2840

2836

Table 1: Quality attributes and metrics

Name of
Attribute

Name of the
sub-attribute Purpose Method of

Application Formula Scale Target

Reliability

Maturity No. of failures
during trial

Calculate the
no. of detected

failures

Z= X1/X2

X1= Detected
failures

X2= test cases

Absolute

Developer and
Tester

Recoverability
Availability of
the system for
a specific time

Test system
availability to

some
parameters like

repair time

Z=T/A

T= Total
System

Downtime

A= Number of
breakdowns

Absolute

User and
Maintainer

Fault Tolerance

Breakdown
caused due to
software until
system restart

Total numbers
of Breakdown/
Total number

of failures

Z= 1-X/Y

X= Total
breakdowns

Y= Total
failures

Absolute

User

7. CONCLUSION

In this study, the main focus is to analyze and assess the
quality model and prediction of CBS using software quality
assurance models, quality characteristics. CBS is a subfield of
software engineering and has a tremendous scope of research
due to its ability to enhance the quality and production rate of
software development. Some parameters work as key quality
parameters in the SQA domain. This study explores and
analyses existing models to measure the software quality
characteristics using parameters for quality prediction.
Moreover, the relationship among these quality parameters to
measure overall quality has not been explored but helps in
identifying the quality factors for CBS. These attributes will
help in assessing the various computational intelligence
techniques for optimal quality prediction of CBS.

REFERENCES

[1] L. Bass, Software Architecture in Practice, Pearson
Education India, 2007

[2] S. Sproge, and R. Cevere, Quality Models in Software
Product Development Life Cycle, International
Conference on Applied Information and Communication
Technologies, pp. 69-73, 2012.

[3] H. Gumuskaya, Core Issues Affecting Software
Architecture in Enterprise Projects, World Academy
of Science, Engineering and Technology, Vol. 9, pp.32-
37, 2005

[4] Suman and M. Wadhwa , A Comparative Study of
Software Quality Models, International Journal of
Computer Science and Information Technologies, Vol. 5
no. 4, pp. 5634-5638, 2014

[5] F. Deissenboeck, E. Juergens, K. Lochmann, and F.
Informatik, Software quality models: purposes, usage
scenarios and requirements, In: Proceedings of the
ICSE Workshop on Software Quality, pp. 9–14, 2009
https://doi.org/10.1109/WOSQ.2009.5071551

[6] M. Yan, X. Xia, X. Zhang, L. Xu, D. Yang and S. Li,
Software quality assessment model: a systematic
mapping study, Science China Information. Sciences,
Vol. 62, Article no. 191101, 2019.
https://doi.org/10.1007/s11432-018-9608-3

[7] ANSI/IEEE Std 729-1983, IEEE Standard Glossary of
Software Engineering Terminology, The IEEE, Inc,
New York.

[8] https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-
1:v1:en, last accessed on-2015.

[9] M. Jedlicka, O. Moravcik and P. Schreiber, Survey to
Software Reliability, Central European Conference on
Information and Intelligent Systems, CECIIS, pp. 1-5
2008

Shivani Yadav et al., International Journal of Emerging Trends in Engineering Research, 8(6), June 2020, 2824- 2840

2837

[10] S. Khatri R.S., Chillar and A. Chhikara, Analyzing the
Impact of Software Reliability Growth Models on
Object Oriented Systems during Testing,
International Journal of Enterprise Computing and
Business Systems, Vol. 2, no. 1, pp. 1-10, 2012

[11] J. P. Miguel, D. Mauricio and G. Rodriguez, A Review
of Software Quality Models for the Evaluation of
Software Products, International Journal of Software
Engineering & Applications (IJSEA), Vol. 5, no. 6, pp.
31-53, 2014.
https://doi.org/10.5121/ijsea.2014.5603

[12] J. Gao, H.-S. Tsao, and Y. Wu, Testing and Quality
Assurance for Component-Based Software, Artech
House, 2003.

[13] X. Cai, M. R. Lyu, K.-F. Wong, and R. Ko,
Component-Based Software Engineering:
Technologies, Development Frameworks, and
Quality Assurance Schemes, in proceedings of 7th
Asia-Pacific Conference on Software Engineering
(APSEC), pp. 372–379, 2000.

[14] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner,
Parameterized Reliability Prediction for Component-
Based Software Architectures, QoSA 2010, LNCS
6093, pp. 36–51, 2010

[15] O. Dahiya, K. Solanki, S. Dalal and A. Dhankhar, An
Exploratory Retrospective Assessment on the Usage
of Bio-Inspired Computing Algorithms for
Optimization, International Journal of Emerging
Trends in Engineering Research, Vol. 8, no. 2, pp. 414-
434, 2020.
https://doi.org/10.30534/ijeter/2020/29822020

[16] Pressman, R. S. Software Engineering a practitioner’s
Approach 7th Edition. McGraw-Hill, Inc., 2012

[17] D. P. Narayani, and P. Uniyal, Comparative Analysis
of Software Quality Models, International Journal of
Computer Science and Management Research, Vol. 2,
issue 3, pp. 1911-1913, 2013.

[18] D. Jamwal, Analysis of Quality Models for
Organizations, International Journal of Latest Trends
in Computing, Vol. 1, issue 2, pp. 19-23, 2010.

[19] R. S. Jamwal, D. Jamwal and D. Padha, Comparative
Analysis of Different Software Quality Models, in:
Proc. 3rd National Conference, Computing For Nation
Development, Bharati Vidyapeeth’s Institute of
Computer Applications and Management, pp. 1-5, 2009.

[20] P. Nistala, K. V. Nori and R. Reddy, Software Quality
Models: A Systematic Mapping Study, IEEE/ACM
International Conference on Software and System
Processes (ICSSP), pp. 125-134, 2019.

[21] B. Kitchenham and S. Linkman, The SQUID approach
to defining a quality model, Software Quality Journal,
Vol. 6, pp. 211-223, 1997.

[22] M. Ortega, Construction of a Systematic Quality
Model for Evaluating a Software Product, Software
Quality Journal, Vol. 11, no. 3, pp. 219-242, 2003.

[23] R. Marinescu and D. Ratiu, Quantifying the quality of
object-oriented design: the factor-strategy model, in
11th Working Conference on Reverse Engineering, Delft,
pp. 192-201, 2004.

[24] F. Khomh and Y. G. Gueheneuc, DEQUALITE:
building design-based software quality models, in
Proceedings of the 15th Conference on Pattern
Languages of Programs, pp. 1-7, 2008.
https://doi.org/10.1145/1753196.1753199

[25] A. Finne, Towards a quality meta-model for
information systems, Software Quality Journal, Vol.
19, no. 4, pp. 663-688, 2011.

[26] S. Wagner, A. Goeb, L. Heinemann, M. Klas, C.
Lampasona, K. Lochmann, and A. Trendowicz,
Operationalised product quality models and
assessment: The Quamoco approach, Information
and Software Technology, Vol. 62 , pp. 101-123, 2015.

[27] D. K. Singh and A. K. Bharti, A Comparative Studies
Of Software Quality Model For The Software
Product Evaluation, International Journal of Research
in Engineering & Technology, Vol. 6, Issue 8, pp. 1-18,
2018.

[28] R. S. Kenett, and E. Baker, Process Improvement and
CMMI® for Systems and Software, CRC Press, 2010.

[29] A. Seffah, M. Donyaee, R. B. Kline, and H. K. Padda,
Usability measurement and metrics: A consolidated
model, Software Quality Journal, Vol. 14, no. 2, pp.
159-178, 2006.

[30] N. Gupta and R. Kumar, Reliability Measurement of
an Object Oriented Design: A Systematic Review,
International Journal of Scientific Engineering and
Technology, Vol. 3, no. 12, pp. 1483-1487, 2014.

[31] A. Singhal and A. Singhal. A Systematic Review of
Software Reliability Studies, Software Engineering: An
International Journal (SEIJ), Vol. 1, no. 1, pp. 96-114,
2011.

[32] P. Nagar and B. Thankachan, Software Reliability
Engineering–A Review, International Journal of
Applied Physics and Mathematics, Vol. 1, no. 2, pp.
133-137, 2011.

[33] P. M. Khoshgoftaar, E.B. Allen, J.P. Hudepohl and S.J.
Aud., Application Of Neural Networks to Software
Quality Modeling of a Very Large
Telecommunications System, IEEE Transactions on
Neural Network, Vol. 8, issue 4, pp. 92-909, 1997
https://doi.org/10.1109/72.595888

[34] M. Punia and A. Kaur, Software Maintainability
Prediction using Soft Computing Techniques,
International Journal of Innovative Science,
Engineering & Technology, Vol. 1, issue 9, pp. 431-442,
2014.

[35] S. F. Ahmad, M. R. Beg and M. Haleem, A
comparative study of software quality models,
International Journal of Science, Engineering and
Technology Research, Vol. 2, issue 1, pp. 172-176,
2013.

[36] T. Bakota, P. Hegedus, P. Kortvelyesi, R. Ferenc and T.
Gyimothy A Probabilistic Software Quality Model,
Proc. Twenty seventh IEEE International Conference on
Software Maintenance, pp. 243-252, 2011, doi:
10.1109/ICSM.2011.6080791.

[37] M. Sibisi and C. C. V. Waveren, A Process Framework
for Customizing Software Quality Models, Pub.

Shivani Yadav et al., International Journal of Emerging Trends in Engineering Research, 8(6), June 2020, 2824- 2840

2838

AFRICON, IEEE, pp. 1-8, 2007, doi:
10.1109/AFRCON.2007.4401495.

[38] D. A. Menasce, V. A. F. Almeida, and L. W. Dowdy,
Performance by Design, Prentice Hall, 2004.

[39] B. Yang, L. Yao, and H. Huang. Early software quality
prediction based on a fuzzy neural network model, in
Proc. ICNC’ 07, IEEE, pp. 760–764, 2007.

[40] P. Banerjee, and A. Sarkar, Quality evaluation
framework for component based software, in Proc.
Second International Conference on Information and
Communication Technology for Competitive Strategies,
pp. 1-6, Article no. 17, 2016.

[41] K. Sheoran, P. Tomar and R. Mishra, Software Quality
Prediction Using Hybrid Classifier Based on
Improved PSO and Ann, Journal of Advanced
Research in Dynamical and Control Systems, Vol. 9, pp.
3016-3029, 2017.

[42] N. Sharma and P. Bano, A Survey of Software
Reliability Factor, IOSR Journal of Computer
Engineering, Vol. 12, no. 1, pp. 50-55, 2013.
https://doi.org/10.9790/0661-1215055

[43] K. Khatatneh and T. Mustafa, A Survey of Software
Reliability Factor, IOSR Journal of Computer
Engineering, Vol. 26, no. 1, 2009.

[44] C. Sharma and S. K. Dubey, A Perspective Approach
of Software Reliability Models and Techniques,
ARPN Journal of Engineering and Applied Sciences,
Vol. 10, no. 16, pp. 7300-7308, 2015.

[45] J. Antony and H. Dev, Estimating Reliability of
Software System Using Object- Oriented,
International Journal of Computer Science Engineering
and Information Technology Research (IJCSEITR),
2013.

[46] A. Mishra and S.K. Dubey, Fuzzy Qualitative
Evaluation of Reliability of Object Oriented Software
System, IEEE International Conference on Advances in
Engineering and Technology Research (ICAETR), 2014.

[47] S. H. Wang, D. Samadhiya, and D. Chen, Software
Quality: Role and Value of Quality Models,
International Journal of Advancements in Computing
Technology, Vol. 3, no. 6, pp. 65-74, 2011

[48] M. Wolski, B. Walter, S. Kupiński and J. Chojnacki,
Software Quality Model for A Research‐Driven
Organization—An Experience Report, Journal of
Software: Evolution and Process, Vol. 30, no. 5, pp. 1-
14, 2017. doi:10.1002/smr.1911

[49] K. Karnavel and R. Dillibabu, Development and
Application of New Quality Model for Software
Projects, The Scientific World Journal, PMID:
25478594, PMCID: PMC4248366, pp. 1-11, 2014.
http://dx.doi.org/10.1155/2014/491246

[50] K. Sharma, and K. Sharma, Comparison Of Various
Software Quality Models, Proc. of the Intl. Conf. on
Recent Trends in Computing and Communication
Engineering -RTCCE, ISBN: 978-981-07-6184-4d, pp.
48-51, 2013.

[51] F. Deissenboeck, E. Juergens, K. Lochmann, and S.
Wagner, Software Quality Models: Purposes, Usage

Scenarios and Requirements, ICSE Workshop on
Software Quality, pp. 9-14, 2009

[52] O. Gordieiev, V. Kharchenko and M. Fusani, Evolution
of Software Quality Models: Green and Reliability
Issues, CEUR Workshop Proceedings, Vol. 1356, pp.
432-445, 2015

[53] M. Kläs, and J. Münch, Balancing Upfront Definition
and Customization of Quality Models, Proceedings of
the Workshop Software-Qualitätsmodellierung und –
bewertung, pp. 26-30, 2008.

[54] H. S. Shukla, and D. K. Verma, Analysis of Software
Product Quality Models, International Journal of
Emerging Technologies in Computational and Applied
Sciences, Vol. 15, no. 311, pp. 26-30, 2015.

[55] R. Saini, S. K. Dubey and A. Rana, Analytical Study of
Maintainability Models for Quality Evaluation,
Indian Journal of Computer Science and Engineering,
Vol. 2, no. 3, pp. 449-454, 2011.

[56] Q. Li, and H. A Pham, Testing-Coverage Software
Reliability Model Considering Fault Removal
Efficiency and Error Generation, PLoS One. , Vol. 12,
no. 7, pp. 1-25, 2017.doi:10.1371/journal.pone.0181524,
pp. 1-25

[57] T. P. Liang, J. Jiang, G. S. Klein, and J. Y. C. Liu,
Software Quality as Influenced by Informational
Diversity, Task Conflict, and Learning in Project
Teams, IEEE Transactions On Engineering
Management, Vol. 57, no. 3, pp. 477-487, 2010.
https://doi.org/10.1109/TEM.2009.2033049

[58] J. Xu, D. Ho and L. F. Capretz, An Empirical Study on
the Procedure to Derive Software Quality Estimation
Models, International Journal of Computer Science &
Information Technology, Vol. 2, no.4, pp. 1-16, 2010

[59] G. J. Pai, and J. B. Dugan, Enhancing Software
Reliability Estimation Using Bayesian Networks and
Fault Trees, International Symposium on Software
Reliability Engineering (ISSRE) Fast Abstracts, 2001.

[60] T. M. Khoshgoftaar and E. B. Allen, A Practical
Classification-Rule For Software-Quality Models,
IEEE Transactions on Reliability, Vol. 49, no. 2, pp.
209–216, 2000. doi:10.1109/24.877340

[61] S. Pandey, S. F. Ahmad, and M. Hussain, A Critical
Survey on Quality Models in Software Engineering,
ACEIT Conference Proceeding, IJCSIT, pp. 282-284,
2016.

[62] K. Gao, T. M. Khoshgoftaar, and H. Wang, An
empirical investigation of filter attribute selection
techniques for software quality classification, IEEE
International Conference on Information Reuse &
Integration, pp. 272-277,
2009, doi:10.1109/iri.2009.5211564

[63] O. Alshathry, H. Janicke, H. Zedan and A. AlHussein,
Quantitative Quality Assurance Approach,
International Conference on New Trends in Information
and Service Science, pp. 405-408, 2009.
doi:10.1109/niss.2009.114

[64] R. M. Parizi and A. A. A. Ghani, Towards Automated
Monitoring and Forecasting of Probabilistic Quality
Properties in Open Source Software (OSS): A

Shivani Yadav et al., International Journal of Emerging Trends in Engineering Research, 8(6), June 2020, 2824- 2840

2839

Striking Hybrid Approach, Eighth ACIS International
Conference on Software Engineering Research,
Management and Applications, pp. 329-334,
2010.doi:10.1109/sera.2010.48

[65] T. M. Khoshgoftaar, E. B. Allen, X. Yuan, W. D. Jones
and J. P. Hudepohl, Assessing uncertain predictions of
software quality, Proceedings Sixth International
Software Metrics Symposium (Cat. No.PR00403), Vol 1,
pp. 1-10, 1999. doi:10.1109/metric.1999.809737

[66] C. H. Loh and S. P. Lee, Predicting Quality of Object-
Oriented Systems through a Quality Model based on
Design Metrics and Data Mining Techniques,
International Conference on Information Management
and Engineering, IEEE, pp 239-243, 2009.

[67] C. Seiffert, T. M. Khoshgoftaar and J. V. Hulse,
Improving Software-Quality Predictions With Data
Sampling and Boosting, IEEE Transactions On
Systems, Man, And Cybernetics-Part A: Systems And
Humans, Vol. 39, no. 6, pp. 1283-1294, 2009.

[68] D. J. Drown, T. M. Khoshgoftaar, and N. Seliya,
Evolutionary Sampling and Software Quality
Modeling of High-Assurance Systems, IEEE
Transactions On Systems, Man, And Cybernetics-Part
A: Systems and Humans, Vol. 39, no. 5, pp. 1097-1107,
2009.
https://doi.org/10.1109/TSMCA.2009.2020804

[69] P. Huang and J. Zhu, A Multi-Instance Model for
Software Quality Estimation in OO Systems, Fifth
International Conference on Natural Computation,
IEEE, pp. 436-440, 2009.

[70] Y. Liu, T. Khoshgoftaar and J. F. Yao, Building a Novel
GP-Based Software Quality Classifier Using Multiple
Validation Datasets, IEEE International Conference on
Information Reuse and Integration, pp. 644-650, 2007

[71] W. Xiong, X. T. Wang and Z. X. Wu, Study of a
Customer Satisfaction-Oriented Model for
Outsourcing Software Quality Management using
Quality Function Deployment (QFD), in proceedings
of 4th International Conference on Wireless
Communications, Networking and Mobile Computing,
pp. 1-5, 2008,

[72] T. M. Khoshgoftaar, and K. Gao, Count Models for
Software Quality Estimation, IEEE Transactions on
Reliability, Vol. 56, no. 2, pp. 212-222, 2007.

[73] T. M. Khoshgoftaar and Y. Liu, A Multi-Objective
Software Quality Classification Model Using Genetic
Programming, IEEE Transactions on Reliability, Vol.
56, no. 2, pp. 237-245, 2007.

[74] M. Agrawal and K. Chari, Software Effort, Quality
and Cycle Time: A study of CMM Level 5 Projects,
IEEE Transaction on Software Engineering, Vol. 33,
no. 3, pp. 145-156, 2007.

[75] M. Huo, J. Verner, L. Zhu, and M. Ali Babar, Software
Quality and Agile Methods, proceedings of the 28th
Annual International Computer Software and
Applications Conference, pp. 1-6, 2004.

[76] W. Xiong, Z. Wu and S. Z. Yu, Research on The
Application of QFD and Konwlege Management in
the Outsourcing Software Quality Assurance,

International Conference on Computer Technology and
Development, pp. 352-358, 2009

[77] N. Bettenburg and A. E. Hassan, Studying the Impact
of Social Structures on Software Quality, 18th IEEE
International Conference on `Program Comprehension,
pp. 124-133, 2010.

[78] Y. A. Alsultanny and A. M. Wohaishi, Requirements of
Software Quality Assurance Model, Second
International Conference on Environmental and
Computer Science, pp. 19-23, 2009

[79] Y. Kanellopoulos, P. Antonellis, D. Antoniou, C.
Makris, E. Theodoridis, C. Tjortjis, and N. Tsirakis,
Code Quality Evaluation Methodology using the
ISO/IEC 9126 Standard, International Journal of
Software Engineering & Applications (IJSEA), Vol. 1,
no. 3, pp. 17-36, 2010.
https://doi.org/10.5121/ijsea.2010.1302

[80] K. Almakadmeh, and F. Abu-Zitoon, A Generic Model-
Based Methodology of Testing Techniques to Obtain
High Quality Software, Proceedings of the
International Conference on Intelligent Information
Processing, Security and Advanced Communication-
IPAC, ACM, Article No.: 49, pp. 1–6, 2015,
doi:10.1145/2816839.2816903.

[81] M. P. Cristescu, J. A. Vasilev, M. V. Stoyanova, and A.
M. R. Stancu, Capability And Maturity.
Characteristics Used In Software Reliability
Engineering Modeling, Land Forces Academy Review,
Vol. XXIV, no 4(96), pp. 332-341, 2019

[82] M. Gheisari et al., An Optimization Model for
Software Quality Prediction With Case Study
Analysis Using MATLAB, IEEE Access, Vol. 7, pp.
85123-85138, 2019.

[83] T. T. Phama, X. D´efagoa, and Q. T. Huynhb,
Reliability Prediction for Component-Based
Software Systems, Science of Computer Programming,
Vol. 97, part 4, pp. 426-457, 2014,
http://dx.doi.org/10.1016/j.scico.2014.03.016

[84] M. Li, and C. S. Smidts, A Ranking of Software
Engineering Measures Based on Expert
Opinion, IEEE Trans. Softw. Eng., Vol. 29, no. 9, pp.
811-824, 2003.

[85] A. Sharma, P. S. Grover, and R. Kumar, Predicting
Maintainability of Component-Based Systems by
Using Fuzzy Logic, International Conference on
Contemporary Computing, pp. 581–591, 2009.

[86] J. Bosch, C. Szyperski, and W. Weck, Black Box
Programme Specilization, in proceedings of
4thInternational Workshop on Component-Oriented
Programming, 1999.

[87] E. Capra, C. Francalanci, and S. A. Slaughter, Is
Software ‘Green’? Application Development
Environments and Energy Efficiency in Open Source
Applications, Information Software Technology, Vol.
54, no. 1, pp. 60–71, 2012.

[88] J. Sanz-Rodriguez, J. M. Dodero, and S. Sanchez-
Alonso, Metrics-Based Evaluation of Learning
Object Reusability, Software Quality Journal, Vol. 19,
no. 1, pp. 121–140, 2011.

Shivani Yadav et al., International Journal of Emerging Trends in Engineering Research, 8(6), June 2020, 2824- 2840

2840

[89] J. Bosch and N. Juristo, Designing Software
Architectures for Usability, in proceedings of
25thInternational Conference on Software Engineering,
pp. 757–758, 2003.

[90] N. S. Gill and P. S. Grover, Component-Based
Measurement: Few Useful Guidelines, ACM SIGSOFT
Software Engineering Notes, Vol. 28, no. 6, pp. 4-4,
2003.

[91] K. Sheoran and O. P. Sangwan, An Insight of Software
Quality Models Applied in Predicting Software
Quality parameters: A Comparative Analysis, Pub.
Fourth International Conference on Reliability, Infocom
Technologies and Optimization (ICRITO) (Trends and
Future Directions), pp. 1-5, 2015, doi:
10.1109/icrito.2015.7359355

[92] M. Palviainen, A. Evesti, and E. Ovaska, The
Reliability Estimation, Prediction and Measuring of
Component-Based Software, The Journal of Systems
and Software, Vol. 84, no. 6, pp. 1054- 1070, 2011.

[93] D. Tomar, and P. Tomar, New Component-Based
Reliability Model (CBRM) to Predict the Reliability
of Component-Based Software, International Journal
of Reliability and Safety Publication, Inder Science, Vol.
13, no.1, pp. 83-95, 2019, Print ISSN: 1479-389X
Online ISSN: 1479-3903 (Indexed : Scopus)

[94] A. Arora, V. S. Arunachalam, J. Asundi, and R.
Fernandes, The Indian Software Services
Industry, Res. Policy, Vol. 30, no. 8, pp. 1267-1287,
2001.

[95] S. Mahmood, R. Lai, Y. S. Kim, J. H. Kim, S. C. Park,
and H. S. Oh, A survey of component based system
quality assurance and assessment, Inf. Softw. Technol.,
Vol. 47, no. 10, pp. 693-707, 2005.

[96] T. M Khoshgoftaar, E. B. Allen, and J. C Busboom,
Modeling software quality: the Software
Measurement Analysis and Reliability Toolkit,
Proceedings 12th IEEE Internationals Conference on
Tools with Artificial Intelligence, pp. 54-61, 2000.
doi:10.1109/tai.2000.889846 .

[97] D. Panwar, and P. Tomar, New Mathematical Model for
Software Quality Prediction of Component-Based
Software Using Shuffled Frog Leaping Algorithm,
International Journal of Computer Applications in
Technology, Inderscience, Vol. 55, no 4, ISSN: 0952-
8091,pp. 266-275, 2017 (Scopus and ESCI Indexed).

[98] A. Pratap Singh and P. Tomar, A New Model for
Reliability Estimation of Component-Based
Software, proceedings of 3rd IEEE International
Advance Computing Conference, ISBN: 978-1-4673-
4529-3/12, pp. 1431-1436, 2013. (Indexed in IEEE
Xplore)

[99] D. Panwar, M. Siddique, and P. Tomar, Software Quality
Assurance using Firefly Optimization Algorithm”, in
book entitled Communication and Computing
Systems, proceedings of the International Conference
on Communication and Computing Systems, ISBN 978-
1-138-029521, pp. 515-520, 2017.

[100] S. Yadav and B. Kishan, Reliability of Component-
Based Systems- A Review, International Journal of

Advanced Trends in Computer Science and Engineering,
Vol. 8, no. 2, 2019.

 https://doi.org/10.30534/ijatcse/2019/31822019
[101] O. Dahiya and K. Solanki, Comprehensive cognizance

of Regression Test Case Prioritization Techniques,
International journal of emerging trends in engineering
research, Vol. 7 No. 11, pp. 638-646, 2019.
https://doi.org/10.30534/ijeter/2019/377112019

[102] S. Yadav and B. Kishan, Assessment of software
quality models to measure the effectiveness of
software quality parameters for Component Based
Software (CBS), Journal of Applied Science and
Computations, Vol. VI, issue IV, 2019.

[103] R. D. Banker and R. J. Kauffman, Reuse and
Productivity in Integrated Computer-Aided Software
Engineering: An Empirical Study, MIS Quarterly., pp.
375–401, 1991.

