
A Murali et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3468- 3477

3468

ABSTRACT

 Nowadays, the debugging process in the Field Programmable
Gate Array (FPGA) platform is more essential to manufacture
the hardware device without error. Normally, the Digital
Signal Processor (DSP) unit contains a different kind of
processing blocks such as Finite Impulse Response (FIR)
filter, Fast Fourier Transform (FFT), Arithmetic Unit, etc.
Every processing block is operated with analog and digital
types of the signal which are transferred in various types of
bus protocols such as Universal Asynchronous Receiver
Transmitter (UART), Serial Peripheral Interface (SPI) or
Inter-Integrated Circuit (I2C). In this research work, the
reconfigurable insertion technique is used in the FIR filter to
debug the entire architecture with less area. Additionally, the
protocol debugging also proceed in this work to improve the
system performances. In case of any bug in the UART
protocol, the data is transferred through 2CI bus protocols
which reduce the time period of the entire architecture. In
Spartan 6 FPGA device, I2C bus protocol occupied 754 LUTs,
539 flip flops, 427 slices which are too less than other
protocols. According to the power consumption, the UART
protocol consumes 0.0135W which is better than other
protocols.

Key words: Field Programmable Gate Array, Finite Impulse
Response filter, Inter-Integrated circuit, Universal
Asynchronous Receiver Transmitter, FSM controller,
Reconfigurable buffers, Debug Instrument.

1. INTRODUCTION

In recent days, Field Programmable Gate Arrays (FPGAs)
have become one of the core components for high-reliability
computing systems. In modern days, so many errors have
occurred while designing the architecture in the FPGA
platform. In the DSP processor, the FIR filter is one of the
major blocks which is used for digital communication. While
communicating the digital information, the bug has occurred
and it affects the user information. So, the debugging process
needs to be performed on the FPGA platform. Design

difficulty doubles every 18 months compared to design
efficiency, which doubles every 39 months [1-2]. It is due to
the enormous effort that has been made to validate complex
designs. Virtual prototyping is typically used for device
testing, but when the design is complex, virtual prototyping
suffers from speed problems. Due to hardware invisibility,
only small signals accessible at the FPGA pins[3-4] can be
controlled. In order to address this problem, FPGA's vendors
have introduced Integrated Logic Analyzer (ILA) cores
embedded in the design that can be activated on the basis of
certain preset conditions and provide a small debug window.
Nonetheless, in addition to the restricted window, debugging
is still difficult because user input is required to figure out the
problems. For debugging the Register Transfer Level (RTL)
module, bus protocols are helped to transfer the data. If the
error has occurred in the bus protocols, the wrong data only
reached to the RTL module [5-6]. The difficulty of
debugging, therefore, increases with the design complexity
which increases the design cycle time. It is a practical
necessity to test and debug any embedded design before
physical deployment. Despite the recent methodologies in the
FIR filters design algorithm, there are still some issues faced
by design engineers. Some of the issues are smaller filter
order, low power consumption, minimization of Stop Band
Ripple (SBR), Pass Band Ripple (PBR) [7]. The framework
consists of comprehensible information about the design
internal process that was normally used for the debugging
task. The software was mostly used for the HLS blocks
debugging process and validation. Although, once the design
is mapped to an FPGA, this is difficult to find the bugs [8, 9].
Many existing methods have been applied for the FPGA
debugging process that has the limitations of more circuit area
and more debugging time. Moreover, the bugs are identified
only in the RTL modules, not in bus protocols [10]. In this
research work, debugging architecture is designed for
verifying the DTG-FIR filter and identifies the error in bus
protocol it seems.
The Major contribution of this research paper is given below,

• The debugging process is applied in bus protocol
which helps to identify and rectify the error in UART
and I2C protocols.

An Efficient Debugging Architecture for DTG Based FIR
Filter Using I2C Protocol in DSP Processor

A Murali, K Hari Kishore

Research Scholar, Department of ECE, Koneru Lakshmaiah Education Foundation,
Vaddeswaram, Guntur, A.P, India

Professor, Department of ECE, Koneru Lakshmaiah Education Foundation,
Vaddeswaram, Guntur, A.P, India

Email: amurali3@gmail.com

ISSN 2347 - 3983
Volume 8. No. 7, July 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter95872020.pdf

https://doi.org/10.30534/ijeter/2020/95872020

A Murali et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3468- 3477

3469

• In case of any bug in any one of the bus protocols,
alternative bus protocols help to transmit the data.

• The Reconfigurable buffer insertion technique is
used to debug the multiple internal blocks of FPGA.
The proposed reconfigurable buffer insertion
technique occupied less hardware utilization
compared to conventional debugging.

• FSM controlled based debugging architecture is used
to maintain the common buffer for all the taps of the
filter which helps to improve the system speed.

The paper is followed as a Literature survey is provided in
section 2, the existing model problems and solution is given in
section 3, the proposed explanation of the bus protocols are
explained in section 4, Results and discussion is given in
section 5, and conclusion and future scope are provided in
section 6.

2. LITERATURE SURVEY

Hardware debugging circuits requires signal tracking to record
and analyze circuit behavior. Recent methodologies in the
Hardware debugging in FPGA circuits were surveyed in this
section.

 Habib ulhasan khan and Dianagohringer [11] proposed FPGA
debugging process using rule based inference system with
MATLAB software. This proposed architecture has
undergone the Design Under Test (DUT) for transferring the
memory data to the respective unit blocks. With the help of
MATLAB, the stored information has performed the debug
process using the rule based method. The error correction
process was performed by the debug method but the
decision-making process was handled by the user. Due to the
usage of the inference system model, the data loss was too
less. But, the debugging process took more time to identify the
error and rectified it.

 Eddie Hung et al. [12] presented coupling based instrument
based FPGA debugging with user circuitry. Generally, the
designers create the prototypes model for making the FPGA
model with a possible combination of logical blocks that
undergone the testing process. In this work, the trace buffer
model was used to improve the observability of the FPGA
devices and the debugging circuitry was enhanced with
efficient operation speed. For the debugging process, the
individual buffer was inserted for all the internal modules
which increase the entire system area.

 Goeders and Wilton [14] designed a debugging architecture
that automatically records the circuit behavior and relates
them to the source code. The developed architecture allows the
designer to debug the HLS circuit’s in-context with the source
code. Several signals tracking method has been applied to the
HLS that allow much longer execution trace to be captured.
The signal tracking methods like signal compression,
Cycle-by-Cycle tracking of dynamic changes in the signal,
and offline signal restoration were used. The developed
architecture is compared with an embedded logic analyzer to
perform signal tracking shows that the length of execution

trace is faster for the developed architecture. The circuit area
and debugging time is required to be reduced.

 Khan, et al. [15] developed an intrusive FPGA-in-the-Loop
(FIL) debugging method using a rule-based inference system.
The FPGA in-loop is used to debug with a cycle-accurate
lossless debugging system with an unlimited trace window in
an embedded design. The HDL debugging data has been used
in this method for a runtime correspondence analysis. The
golden reference generated through a high-level model and
post-synthesis implementation simulation results were used to
speed up the debugging process. The pattern extraction is used
to analyze the generated golden reference and the received
debugging data. The error is difficult to identify in the system
and debugging time is needs to be reduced.

3. PROBLEM STATEMENT

 Normally, FPGA has a different model that is helped to design
the various designs. Different kinds of prototypes and DSP
processors were also possible to design in the FPGA platform.
Due to the easy handling and flexible characterization, the
FPGA platform is frequently used in the society than the ASIC
design. For designing the hardware setup module, FPGA is
one of the main platforms to identify and rectify the errors.
While performing the FPGA debugging the following
problem has been created. i.e.

• In recent years, identifying the errors in FPGA
systems is too difficult. Most of the debugging
architecture takes 50% of the embedded design cycle.

• The conventional architecture occupied more area,
more testing time, more power due to the more
number of logical elements present in the modules.

• Most of the conventional architecture is performed in
the debugging process in the main module of the
architecture. If there is any bug in the bus protocols,
the entire system operation has collapsed.

• Transmission bus protocols also lost more data
during the communication from one module to
another module.

Solution:
 To conquer the above mentioned problems, the reconfigurable
buffer insertion technique is used in this proposed method.
Mainly, this work concentrates bus protocols such as UART
and I2C. In case of any error occurred in any one of the bus
protocols, alternative protocols help for data transferring.
There is no need to wait for transferring the data until the bug
protocol needs to be debugged. This process helps to operate
the FIR filter with efficient and perfect information. With the
help of the FSM controller, the common buffer has designed to
verify all the internal modules of the FIR filter.

4. DTG-FIR ARCHITECTURE

Initially, the DTG-FIR filter architecture is designed in the
Verilog language. The block diagram of DTG-FIR is shown in
Figure 1, which contains register, an address generator, FIR
filter, and Shift register. Based on the block diagram, the entire
architecture is simulated and the FIR results are verified.

A Murali et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3468- 3477

3470

 Figure 1: Block diagram of the DTG- FIR filter architecture

This FIR filter is undergone the debugging process, the basic
flow of the debugging block diagram is shown in Figure 2,
which contains the following modules such as input test
vector, circuit under test, output response, expected correct
response, and comparator.

Figure 2: Fundamental flow of FPGA debugging

The processing inputs are generated from any sources or
randomly which are stored in the register. The respective
architecture is designed to perform the operation which
contains the N number of modules. Each module needs to
perform the design under test to avoid the error present in the
respective modules. Likewise, all the modules have performed
the circuit under test operation which produces the output.
During the test case, if it is any bug has happened, the
delivered output is entirely wrong. Initially, the bug needs to
be identified and rectified in FIR filter architecture. Moreover,
in this work, the bugs are checked in the bus protocols (UART,
I2C) which also generate wrong results in the output response
terminal. The designer should know the input values,
architecture operation, and the respective output values. So,
the designer can say the expected response of the FIR filter
architecture. With the help of the comparator, the output
response results and expected response results are comparing.
If it is a mismatch, the comparator generated the fail results in
the comparator terminal. So, the bus protocols bugs are
debugged using the error correction unit. In this case, the
comparator produces the pass results in the output terminal.
The process of bus protocols in the FIR filter explanation is
given below.

4.1 Different Bus protocols in FIR filter architecture

UART is a serial communication protocol used for the sharing
of data between computers and peripherals. UART is a
low-speed, short-distance, low-cost protocol. A large number
of hardware devices require RS232 interface, Serial Peripheral

Interface (SPI) or I2C for serial communication. They include
most of the equipment used in laboratories, quality and
process controllers, various sensors, measuring instruments
such as scales, and a lot more. UART / SPI / I2C is used on
more advanced devices due to its higher transfer rate and
built-in support for many microcontrollers, microprocessors
and DSPs. Use a deep-memory technique, the mixed-signal
oscilloscope (MSO) simplifies the debugging of the various
physical-and command-layer problems that users normally
experience. Notwithstanding the standard being so common,
it's not easy to debug RS232, SPI, and I2C connections in the
runtime setting.
 The various aspects such as hardware and cabling,
communication settings, and protocols should be considered
as any mismatch here can cause a problem. In this research, a
reconfigurable debugging architecture is proposed for
UART/SPI/I2C interface with the DSP processor (FIR filter).
The debugging architecture uses a single common buffer
source to trace out and trigger into UART, I2C, SPI protocol
which is interfaced with the FIR filter. An FSM based
controller circuit executes instruction sets to debug
communication protocol based on its activation by analyzing
transmission signals. Also, the proposed FSM circuit controls
the required buffer size and read/write operation based on the
debugging requirement. DSP processors require different
communication standards on-chip for multi signal processing.
Debugging these standards on-chip is a difficult process as it
requires large buffer sizes to debug or test each standard. To
design a common trace buffer using the FSM controller this
reduces computational complexity and device resources.

Figure 3: Debugging Architecture for DTG-FIR Filter with Serial
Communication protocols
Generally, simulation is one of the basic processes in the VLSI
implementation. This simulation should be performed before
starting the debugging process. To effortlessly examine the
corresponding structure bugs, a wide scope of the upgrade is
applied to plan and checking the normal output against the
simulated outputs. The significant bit of simulation is that
recreation can be prepared in programming without the
requirement of hardware. Simulation gets many structure
mistakes; particularly function errors, misconception interface
necessities, inaccurate detail, and different mistakes, which

A Murali et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3468- 3477

3471

can be distinguished through a basic test. The debugging
architecture of the DTG-FIR filter is shown in fig.3. The most
common debugging technique is to insert trace buffers in DTG
based FIR filter and monitor those results in Chip scope pro
analyzer. One trace buffer is inserted at input ports to trace
FIR input and another buffer at the output port. Triggers are
applied to switch internal logic core and results are traced by
output buffers. Those traced signals are transferred to the
Logic analyzer through JTAG port.

Apart from trace buffers, other modules should have inserted
with core logic i.e.: counter module, timer module,
error-correcting module, etc. The error-correcting unit
replaces error with debugged logic values. The clock signals
are used to control the error correction unit module. In this
research work, three different bus protocols are used to
transfer the data from PC to FPGA and vice versa such as
UART, SPI, and I2C. For both transmitter and receiver
operation, parallel to serial and serial to parallel converter has
used with respective baud clock generator. Based on the signal
type, the protocol is selected to transfer the data. With the help
of the error correction unit, the bugged error is solved in the
bus protocols which help to give the proper input to the FIR
module. FSM controller helps to use a reconfigurable buffer
insertion technique with a common buffer. The detailed
explanation of the entire bus protocols and FSM controller are
explained below.

4.1.1 Implementation of UART

The proposed UART architecture consists of the basic UART
sub modules, which are the receiver, transmitter and baud rate
generator called the Prescaler. In addition, this design has
internal buffers in both the receiver and the transmitter. Since
this architecture operates in the serial clock domain and
interacts with the parallel clock domain of the processor, we
implement buffers using asynchronous FIFOs. The
asynchronous FIFO architecture ensures smooth data
transmission between two separate clock domains. Figure 4,
below, displays the overall UART block diagram [5].

Figure 4: Overall block diagram of UART protocol

4.1.2. Implementation of I2C:

Transfer from and to the master device is serial and is split
into 8bit packets. All these basic specifications render
implementing the I2C protocol very easy, even with cheap

microcontrollers that do not have any unique I2C hardware
controllers. You need 2 free I / O pins and a few basic I2C
routines to send and receive commands. The original I2C
guidelines set a fixed frequency of 100 kHz for the clock.
Such as Quick mode was later expanded to 400 kHz. There is
also a high-speed mode that will go up to 3.4 MHz and an
ultra-fast mode of 5 MHz, too. Connection from and to the
master computer is serial and is separated into 8bit packets.
Both such basic specifications make it really straightforward
to incorporate an I2C protocol, even for low-cost
microcontrollers that do not have a special I2C hardware
controller. It requires two free I / O pins and a few basic I2C
routines to send and receive commands. The original I2C
guidelines set a fixed clock frequency of 100 kHz. It was later
improved to 400 kHz in quick mode. There is also a
high-speed mode that can reach up to 3.4 MHz and there is
also an ultra-fast 5 MHz mode.

UART, I2C and SPI are the most widely used serial protocols
for both inter-chip and intra-chip low / medium bandwidth
data transmissions. Depending on the type of signal, the bus
protocols can pick and transmit data without failure. This
useful knowledge allows designers to make deliberate and
precisely designed architectural decisions. For a thorough
comparative analysis, both protocols are implemented as
general-purpose IP implementations, integrating all the
requisite features needed by current ASIC / SoC applications
according to a recent market review of a large number of
commercial I2C and SPI devices [6].

4.2 FSM process

In the debugging module, the FSM controller helps to decide
the communication protocol where the input signal has
transferred. The block diagram of the FSM processing model
is shown in Figure 5.

Figure 5: FSM processing diagram

Initially, the bus protocols are set as the state machine to
transfer the information from one module to another module.
If state machine is 1, the UART protocol is enabled to perform
their operation. If state machine is 2 and 3, SPI and I2C bus
protocols are enabled to transfer the intermediate data. Based
on the input selection module, the bus protocols are selected
and processed their operation. For performing the UART, state

A Murali et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3468- 3477

3472

machine 4 is allocated for memory which contains the 10 bit
(start bit, stop bit, 8 bit data) as well as SPI and I2C have
allocated in the state machine 5 and 6 memory. State machine
5 and 6 undergone the process of finding the master and slave.
SPI and I2C bus protocols contain the memory size of 16 bit or
32 bit information based on the ADC model. This entire
process is performed in the state machine counter. Address
decoder is used to assign the memory for storing the data in
buffer. Based on the input selection, the bus protocols are
selected and the outputs are delivered in the I/O port terminal.
The experimental results are explained in the below section.

5. EXPERIMENTAL SETUP

 The proposed DTG-FIR filter architecture was experimented
using 4GB RAM with 3.30 GHz, i3 processor, and 500GB
hard disk. The architecture has been implemented using
Verilog language in Xilinx 14.4 software. By using Xilinx
Vivado 14.4, the filter architecture was integrated with the
Integrated Logic Analyzer. By using the Chip Scope analyzer,
the trigger value has applied to the different taps which helped
to select the serial communication protocols. This research
work is implemented and verified in Spartan 6 FPGA devices.

5.1 Results and Discussion
 In this research work, the DTG-FIR filter has implemented
and verified the performance parameters. The main
parameters of the FIR filter are input and the co-efficient
value. Both input and co-efficient are generated randomly and
it should multiply and accumulate the multiplication results.
Here, 16 tap FIR filters have implemented in the Spartan 6
FPGA device. Figure 6, shown the DTG-FIR filter waveform
which is taken from Modelsim software.

Table 1: FPGA performance for Spartan 6 target devices

Figure 6: The waveform of DTG-FIR filter architecture

The waveform contains control signals, input ports, and
output ports. Clock, enable and reset signals are represented
as 1 to control the entire filter architecture. The DTG-FIR
filter architecture input is generated randomly which is
representing as signal_in. This input has to perform the filter
operation with co-efficient which also generated randomly.
The co-efficient data is represented as desire in. These two
values are performed in the DTG-FIR filter architecture for
each clock cycle. Each clock cycle output is stored in the
signal out register. From this simulation, it is cleared that the
proposed architecture has simulated perfectly without any
execution error. After the simulation, the same Verilog code is
undergone for the implementation process. From that
implementation process, the FPGA performances are
evaluated. The Verilog code is synthesized in the Spartan 6,
Virtex 4, Virtex 5, and Virtex 6 FPGA device that results are
given in Table 1.

Target device Method LUT Flip flop Slices Frequency
(MHz)

Power(W)

Virtex 4

MBI 984/10944 874/10944 447/5472 95.68 0.017
RD-UART 811/10944 854/10944 443/5472 264.21 0.0587

RD-I2C 701/10944 514/10944 405/5472 301.77 0.0188

Virtex 5
MBI 874/12480 887/12480 354/3120 101.58 0.025

RD-UART 654/12480 354/12480 547/3120 267.36 0.015
RD-I2C 641/12480 341/12480 333/3120 354.21 0.058

Virtex 6

MBI 777/46560 987/93120 985/11640 125.62 0.087
RD-UART 875/46560 655/93120 648/11640 288.54 0.0697

RD-I2C 677/46560 601/93120 554/11640 369.32 0.087
Spartan 6 MBI 1043/5720 876/11440 478/1430 71.242 0.017

RD-UART 875/5720 592/11440 463/1430 245.02 0.0135
RD-I2C 754/5720 539/11440 427/1430 328.12 0.018

A Murali et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3468- 3477

3473

In this comparison, four different architectures are
implemented and the results are compared in the table. In the
conventional method, More Buffer Insertion (MBI) technique
has used to debug the filter architecture. Due to the usage of
more buffers in the architecture, the hardware components
have increased rapidly. To overcome this issue and debug the
error is the bus protocols, Reconfigurable Debugging (RD)
technique is used in all serial communication protocols.
Among the three protocols, I2C occupied less hardware
utilization and the power consumption is less in UART.

5.2 Comparative Analysis
In this section, the proposed method is compared with
different conventional debugging models such as
FPGA-in-the-loop (FIL) [14], Incremental Trace Buffer [15],
High Level Synthesis (HLS) [8], [18] and Signal Tracing
Technique (STT) [13]. All the conventional architectures were
used more number of buffers for debugging each RTL module.
Due to the more number of buffers, the delay and the entire
system area have increased. More logical elements have used
in conventional methods which increase the area of the entire
architecture. Moreover, all the conventional methods are
failed to identify the bugs in the bus protocols during the
transmission. But, the proposed architecture can identify and
rectify the error which occurred in the bus protocols. The
comparison of the proposed method with the existing design is
given in Table 2, Table 3 and Table 4. The pictorial
representation of the comparison is shown in Figure 7, Figure
8 and Figure 9.

Table 2: Comparative analysis of ZED performances
Target Device Designs LUT Flip

flop
Slices

 ZED
 (xc7z020-484)

HLS [8] 7685 4948 1542

FIL[14] 3962 854 825

RD-UART 1541 844 815

RD-I2C 1125 798 775

Table 3: Comparative analysis of Stratix 4 performances
Target FPGA Designs LUT Flip

flop
Slices

Stratix 4
(EP4SGX110)

ITB [15] 3054 691 720
RD-UART 2988 687 714
RD-I2C 2541 612 674

Table 4: Comparative analysis of Stratix 5 performances

Target FPGA Designs LUT Flip
flop

Slices

Stratix 5
(5sgxea7n2f45c2)

STT [13] 3301 1206 1420

RD-UART 3214 1154 1358

RD-I2C 3001 1048 1264

Figure 7: Comparison of Zynq 7000 FPGA performance for
different methods

Figure 8: Comparison of Stratix 4 FPGA performance for different

methods

Figure 9: Comparison of Stratix 5 FPGA performance for different

methods

5.3 FPGA based Serial Communication Protocol
Debugging
The process of connecting input port and buffer connection
detail is shown in Figure 10, which contains the net name,
source instance, source component, and base type. Clock
signals and trigger data signals are major blocks in the
debugging process [19-36]. For the synchronization block, the
clock is a major element to control the entire architecture.
Trigger data helps to set and reset the respective tap window
and enable the output values in the output simulation window.
Trigger representation is given in Table 5.

A Murali et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3468- 3477

3474

Figure 10: Net selection process

Table 5: Trigger name and respective functions

Trigger name Function
1TP0 Reset

TP1-TP8 Tap selection
TP9 Filter output
TP10 UART
TP11 I2C
TP13 Serial communication protocol output

Among the 14 trigger signals, TP0 is used to reset the design
structure and helps to process the interior input terminal. TP1
– TP8 represented as the tap selection process. Every trigger is
used to select the respective taps to perform the filter output.
Based on the tap values, the filer output is generated which is
triggered in TP9. After that, major blocks of this research work
are triggered in TP10 and TP11. The UART and I2C bus
protocols are used to transmit the data from one place to
another place. In this research work, the bug can be identified
in the protocols itself. If the wrong input is given to the filter
module, the FIR filter architecture also produces the wrong
output. In this kind of situation, the error can be checked and
debugged in the bus protocols.

The waveform parameters are explained below,

• rst_IBUF – Reset signal
• From t0_IBUf to t7_IBUF – Taps
• t8_IBUF – UART protocol
• t10_IBUF – I2C protocol

Figure 11: UART error signal

Generally, the UART protocol has affected by two kinds of
errors such as synchronization mismatch and data mismatch.
In synchronization mismatch, the start and stop bits are
needed to be checked and the bug can be rectified. If the start
and stop bit has changed from the input data, it has been
inverted and given to the FIR filter terminal. Moreover,
intermediate data also should be check to identify the error in
the UART protocols. Based on the error correction code, the
errors have been solved and the FIR filter architecture
produces the error-free output. When the t8_IBUF trigger is 0,
the UART protocol is enabled and helps for the data
communication. The debugged output is shown in Figure 11.

Figure 12: UART error-free output

Serial port output (F) is generated wrongly that caused the
wrong FIR filter output. The error free UART output is shown
in Figure 12. For certain cases, an error has occurred in UART
protocol. At that time, the data can be transferred to the I2C
bus protocol is shown in Figure 13, which can be enabled
when the t10_IBUF is triggered to zero. For all the waveform
windows, the FIR filter outputs are delivered in the filter_out
variable and the serial port indicates the bus protocol
operation.

A Murali et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3468- 3477

3475

Figure 13: I2C output waveform

Figure 14: UART protocol hardware output

Figure 15: I2C protocol hardware output

The respective hardware outputs are shown in Figure 14 and
Figure 15. For I2C protocols are working in 5 tap operation
mode. 4th and 5th tap input is considered as 3, and 4.
Similarly, the co-efficient is considered as 4 and 5. These
input and co-efficient have performed the filter operation.
The different kind of tap input is given to the serial port to
perform the filter operation. After processing the filter
operation, the perfect output is delivered to the filter output
terminal without any bug. Finally, due to the usage of the RD
technique in serial communication protocols, the hardware
utilization of entire architecture has improved and operated at
high speed.

6. CONCLUSION AND FUTURE SCOPE

In recent years, the debugging process has been applied to the
DSP processor unit which contains a different kind of
processing blocks. All the processing blocks are doesn’t
contain unique characterization. Some of the blocks are
processing the analog signal as an input and some of the

modules are operated in digital signals. So, bus protocol is one
of the major ports to transfer the information from one
processing unit to another processing unit. The bug may be
present in bus protocols also which affects the system
performances and data loss has occurred. So, this research
work concentrates on identifying and rectifies the bug in the
UART, I2C, and SPI bus protocols. All the types of signal
input can transfer to the DSP processing unit which designed
with the FIR filter module. If the bug is identified in the UART
protocol, the data can transfer through the SPI protocol.
Reconfigurable buffer insertion technique helps to reduce
hardware utilization. I2C bus protocol occupied 754 LUTs,
539 flip flops, 427 slices which are too less than other
protocols. SPI protocol worked in the operating frequency of
330.12 MHz. According to the power consumption, the UART
protocol consumes 0.0135W which is better than other
protocols. In the future, different optimization techniques will
be implemented to verify MpSoC architecture.

REFERENCES
1. Anumothu, Murali, Kishore, K.H. and Reddy, D.V.,

2016. Integrating FPGAs with trigger circuitry core
system insertions for observability in debugging
process. Journal of Engineering and Applied
Sciences, 11(12), pp.2643-2650.

2. Pandey, B., Pandey, N., Kaur, A., Hussain, D.A., Das,
 B. and Tomar, G.S., 2019. Scaling of Output Load in
Energy Efficient FIR Filter for Green Communication
on Ultra-Scale FPGA. Wireless Personal
Communications, 106(4), pp.1813-1826.
https://doi.org/10.1007/s11277-018-5717-2

3. Eslami, F. and Wilton, S.J., 2018. Rapid triggering
capability using an adaptive overlay during FPGA
debug. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 23(6), pp.1-25.

4. Hung, E. and Wilton, S.J., 2012. Scalable signal
selection for post-silicon debug. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 21(6),
pp.1103-1115.

5. Mahat, N.F., 2012, September. Design of a 9-bit UART
module based on Verilog HDL. In 2012 10th IEEE
International Conference on Semiconductor
Electronics (ICSE) (pp. 570-573). IEEE.
https://doi.org/10.1109/SMElec.2012.6417210

6. Oudjida, A.K., Berrandjia, M.L., Tiar, R., Liacha, A.
and Tahraoui, K., 2009, December. Fpga
implementation of i 2 c &spi protocols: A comparative
study. In 2009 16th IEEE International Conference on
Electronics, Circuits and Systems-(ICECS 2009) (pp.
507510). IEEE.

7. Aguirre, M.A., Tombs, J.N., Baena-Lecuyer, V., Mora,
J.L., Carrasco, J.M., Torralba, A. and Franquelo, L.G.,
2005. Microprocessor and FPGA interfaces for
in-system codebugging in field programmable hybrid
systems. Microprocessors and Microsystems, 29(2-3),
pp.75-85.
https://doi.org/10.1016/j.micpro.2004.06.009

8. Monson, J.S. and Hutchings, B.L., 2018. Enhancing
debug observability for HLS-based FPGA circuits

A Murali et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3468- 3477

3476

through source-to-source compilation. Journal of
Parallel and Distributed Computing, 117, pp.148-160.

9. Farooq, U., Chotin-Avot, R., Azeem, M., Ravoson, M.
and Mehrez, H., 2018. Novel architectural space
exploration environment for multi-FPGA based
prototyping systems. Microprocessors and
Microsystems, 56, pp.169-183.

10. Kourfali, A. and Stroobandt, D., 2019. In-circuit fault
tolerance for FPGAs using dynamic reconfiguration
and virtual overlays. Microelectronics Reliability, 102,
p.113438.
https://doi.org/10.1016/j.microrel.2019.113438

11. Khan, H.U.H. and Göhringer, D., 2017, April. FPGA
Debugging with MATLAB Using a Rule-Based
Inference System. In International Symposium on
Applied Reconfigurable Computing (pp. 106-117).
Springer, Cham.

12. Hung, E., Goeders, J.B. and Wilton, S.J., 2014, April.
Faster FPGA debug: Efficiently coupling trace
instruments with user circuitry, International
Symposium on Applied Reconfigurable Computing
(pp. 73-84). Springer, Cham.

13. Goeders, J. and Wilton, S.J., 2016. Signal-tracing
techniques for in-system FPGA debugging of
high-level synthesis circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 36(1), pp.83-96.
https://doi.org/10.1109/TCAD.2016.2565204

14. Podlubne, A. and Göhringer, D., 2019. Intrusive
FPGA-in-the-loop debugging using a rule based
inference system. Microprocessors and Microsystems,
64, pp.185-194.

15. Hung, E. and Wilton, S.J., 2013. Incremental
trace-buffer insertion for FPGA debug. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 22(4), pp.850-863.

16. Chella Santhosh, K. Hari Kishore, G. Pavani Lakshmi,
G.Kushwanth, P. Rama Krishna Dharma Teja, R. S.
Ernest Ravindran, Sree Vardhan Cheerala, M. Ravi
Kumar “Detection of Heavy Metal Ions using
Star-Shaped Microfluidic Channel” International
Journal of Emerging Trends in Engineering Research,
ISSN: 2347-3983, Volume-7 Issue-12, Page No:
768-771, December 2019.
https://doi.org/10.30534/ijeter/2019/067122019

17. B. Srikanth, M. Siva Kumar, J.V.R. Ravindra, K. Hari
Kishore “Double Precession Floating Point Multiplier
using Schonhage-Strassen Algorithm used for FPGA
Accelerator” International Journal of Emerging Trends
in Engineering Research, ISSN: 2347-3983, Volume-7
Issue-11, Page No: 677-684, December 2019.
https://doi.org/10.30534/ijeter/2019/437112019

18. Radhika Rani Chintala, Lakshmi Sri Ram Janjanam, Sai
Kousik G, Sai Pawan S ‘’FPGA Implementation of
Katan Block Cipher for Security in Wireless Sensor
Networks’’ International Journal of Emerging Trends in
Engineering Research , ISSN: 2347-3983, Volume-7
Issue-11 Page No: 492-497, December 2019.
https://doi.org/10.30534/ijeter/2019/157112019

19. Mahesh Madavath, K Hari Kishore “RF Front-End
Design of Inductorless CMOS LNA Circuit with Noise
Cancellation Method for IoT Applications” International
Journal of Innovative Technology and Exploring
Engineering, ISSN: 2278-3075, Volume-8, Issue No: 6,
Page No: 176-183, April 2019.

20. K.Sarath Chandra, K Hari Kishore “Electrical
Characteristics of Double Gate FINFET under Different
Modes of Operation” International Journal of Innovative
Technology and Exploring Engineering, ISSN:
2278-3075, Volume-8, Issue No: 6S, Page No: 172-175,
April 2019.

21. P.Ramakrishna, M. Nagarani, K Hari Kishore “A Low
Power 8-Bit Current-Steering DAC Using CMOS
Technology” International Journal of Innovative
Technology and Exploring Engineering, ISSN:
2278-3075, Volume-8, Issue No: 6S, Page No: 137-140,
April 2019.

22. Avinash Yadlapati, K Hari Kishore “Implementation of
Asynchronous FIFO using Low Power DFT”
International Journal of Innovative Technology and
Exploring Engineering, ISSN: 2278-3075, Volume-8,
Issue No: 6S, Page No: 152-156, April 2019.

23. P Ramakrishna, K Hari Kishore “Implementation of
Low Power and Area Efficient 7-Bit Flash Analog to
Digital Converter” Journal of Computational and
Theoretical Nanoscience, ISSN: 1546-1955,
Volume-16, Issue No: (5-6), Page No: 2213-2217, June
2019.

24. Mahesh Madavath, K Hari Kishore “Design and
Analysis of Receiver Front-End of CMOS Cascode
Common Source Stage with Inductive Degeneration
Low Noise Amplifier on 65 nm Technology Process”
Journal of Computational and Theoretical Nanoscience,
ISSN: 1546-1955, Volume-16, Issue No: (5-6), Page No:
2628-2634, June 2019.
https://doi.org/10.1166/jctn.2019.7942

25. K Hari Kishore, Fazal Noorbasha, Katta Sandeep, D. N.
V. Bhupesh, SK. Khadar Imran, K. Sowmya “Linear
convolution using UT Vedic multiplier” International
Journal of Engineering and Technology(UAE), ISSN
No: 2227-524X, Vol No: 7, Issue No: 2.8, Page No:
409-418, March 2018.

26. K Hari Kishore, B. K. V. Prasad, Y. Manoj Sai Teja, D.
Akhila, K. Nikhil Sai, P. Sravan Kumar “Design and
comparative analysis of inexact speculative adder and
multiplier” International Journal of Engineering and
Technology(UAE), ISSN No: 2227-524X, Vol No: 7,
Issue No: 2.8, Page No: 413-426, March 2018.
https://doi.org/10.14419/ijet.v7i2.8.10472

27. G Siri Vennela, K Hari Kishore, E Raghuveera “High
Accurate and Power Efficient ECG-Based Processor for
Predicting Ventricular Arrhythmia” Journal of
Advanced Research in Dynamical and Control Systems,
ISSN No: 1943-023X, Vol No: 10, Issue No: 2, Page No:
1180-1121, May 2018.

28. Avinash Yadlapati, K Hari Kishore “Low Power
Synthesis for Asynchronous FIFO using Unified Power
Format (UPF)” International Journal of Engineering and

A Murali et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3468- 3477

3477

Technology (UAE), ISSN No: 2227-524X, Vol No: 7,
Issue No: 2.8, Page No: 7-9, March 2018.

29. Chella Santhosh, K. Hari Kishore, G. Pavani Lakshmi,
G.Kushwanth, P. Rama Krishna Dharma Teja, R. S.
Ernest Ravindran, Sree Vardhan Cheerala, M. Ravi
Kumar “Detection of Heavy Metal Ions using
Star-Shaped Microfluidic Channel” International
Journal of Emerging Trends in Engineering Research,
ISSN: 2347-3983, Volume-7 Issue-12, Page No:
768-771, December 2019.
https://doi.org/10.30534/ijeter/2019/067122019

30. B. Srikanth, M. Siva Kumar, J.V.R. Ravindra, K. Hari
Kishore “Double Precession Floating Point Multiplier
using Schonhage-Strassen Algorithm used for FPGA
Accelerator” International Journal of Emerging Trends
in Engineering Research, ISSN: 2347-3983, Volume-7
Issue-11, Page No: 677-684, December 2019.
https://doi.org/10.30534/ijeter/2019/437112019

31. Nadhindla Bala Dastagiri, Kakarla Hari Kishore, Vinit
Kumar Gunjan and Shaik Fahimuddin, “Design of a
Low-Power Low-Kickback-Noise Latched Dynamic
Comparator for Cardiac Implantable Medical Device
Applications”, Lecture Notes in Electrical Engineering,
ISSN No: 1876-1100, E-ISSN: 1876-1119, pp. 637-645,
2018.

32. Avinash Yadlapati, Hari Kishore Kakarla “Low-power
design-for-test implementation on phase-locked loop
design” Measurement and Control, ISSN: 0020-2940,
Volume-52, Issue No: (7-8), Page No: 995-1001, June
2019.

33. Nan Jiang, Abdol Ghaffar Ebadi, Kakarla Hari Kishore,
Qahtan.A.Yousif, Mohammad Salmani
“Thermomechanical Reliability Assessment of Solder
Joints in a Photo-voltaic Module Operated in a Hot
Climate” IEEE Transactions on Components,
Packaging and Manufacturing Technology, P-ISSN:
2156-3950, E-ISSN: 2156-3985, Vol No: 10, Issue No:
1, Page No: 160-167, January 2020.

34. Mahesh Madavath, Hari Kishore Kakarla, Azham
Hussain, C.S. Boopathi “Design and Analysis of CMOS
RF Receiver Front-End of LNA for Wireless
Applications” Microprocessors and Microsystems
(SCI), ISSN: 0141-9331, Volume-75, June 2020.
Article number 102999.
https://doi.org/10.1016/j.micpro.2020.102999

35. K Divya Madhuri, K Hari Kishore “Implementation of
4-bit Ripple Carry Adder by Adopting Sub threshold
Adiabatic Logic for Ultralow-Power Application”
Journal of Advanced Research in Dynamical and
Control Systems, ISSN No: 1943-023X, Vol No: 12,
Issue No: 6, Page No: 11-17, May 2020.

36. B Srikanth, M Siva Kumar, J V R Ravindra, K Hari
Kishore “The enhancement of security measures in
advanced encryption standard using double precision
floating point multiplication model” Transactions on
Emerging Telecommunications Technologies,
ISSN: 2161-3915, Volume: 31, Feb 2020.
https://doi.org/10.1002/ett.3948

