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 
ABSTRACT 
 
This research article explores on the validation of homotopy 
perturbation procedure to solve the ordinary differential 
equations  i) nonlinear electrical phenomenon in nonlinear 
inductor circuit  and ii) movement of a ball bearing oscillating 
in bent tube with smoothness where restoring force is directly 
proportional to the displacement’s cube. This approach gives 
periodic solution and period of the motion as a function of 
amplitude of oscillation also. The Homotopy method works 
very well for the cubic oscillator and good agreement of the 
approximate frequencies with the exact ones. The significant 
features of homotopy method are simplicity and its excellent 
accuracy for the complete range of oscillation amplitude 
values. This technique is very effective and convenient for 
solving truly nonlinear oscillatory systems. Here a 
comparative analysis has been made between two methods 
namely homotopy perturbation and the formal methods. More 
interestingly an isomorphism can be seen between the two 
methods of solution in this paper. Furthermore the uniformity 
of the validation of solution technique by homotopy 
perturbation process on entire domain has been depicted and 
it has been observed that the methods proposed here can be 
applied to strong systems which are not linear as well as for 
the weak systems which are considerably weak.  
 
Key words: Homotopy perturbation method (HPM); 
Modified differential transform method (MDTM), Phase 
diagram, Truly nonlinear system, Perturbation Method (PM) 
 
1. INTRODUCTION 
 

The study of nonlinear systems has a large number of 
applications in many branches of applicable mathematics 
namely physical sciences, management and engineering 
 

 

sciences. The nonlinear. The nonlinear problems are too 
complex to get the analytic solution but their numerical 
solution can be obtained by some techniques. On the other 
side finding the governing differential equations and solving 
by using the different techniques is also interesting one in 
mechanics and mathematics. Most of the researchers are 
working on finding the solutions to these nonlinear equations 
by using the methods such as Variational iteration method, 
Modified differential transform method and Homotopy 
analysis method and so on. 

Several researchers have been trying to solve nonlinear 
systems possessing low nonlinearity. As the small parameter 
takes a vital role in the PM. This parameter decides the 
accuracy and the validation of the PM. 

 
2. HOMOTOPY PERTURBATION METHOD 

 
He [10] proposed a technique namely hompotopy 

perturbation which is a amalgamation of traditional PM and 
homotopy. In employing this technique, the required solution 
is treated as a sum of an infinite series. Besides this infinite 
series converges to the exact solution rapidly. A large number 
of different LDE and NonLDE can be solved by using HPM. 
To illustrate the Homotopy method let us choose a NonLDE  

 ssgxE ,0)()(                                      (1) 
With boundary conditions  


 sn
xxF ,0),(                                      (2) 

Symbol Description 
E GENERAL DIFFERENTIAL 

OPERATOR 
F BOUNDARY OPERATOR 
x ANALYTIC MAPPING 
s DOMAIN’S BOUNDARY 
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E is divided into P and Q where Q and P are nonlinear and 
linear respectively. Therefore (1) is put as 

0)()()(  sgxQxP                                (3) 
Liao (1) presented his homotopy technique as given below 

.He, built a homotopy as  
),( qsy  maps ]1,0[ to  following, 

  0)()()()()(),( 00  sgyQqzqPzPyPqyH           (4) 
q is embedding parameter, 
q lies between 0 and 1, 

0z is the starting approximation of (1) 

Boundary conditions are satisfied by q and 0z  

(4) )()()0,( 0zPyPyH    (5) 

           0)()()1,(  sgyEyH            (6) 
The two process of variations namely “ q moves from 0 to 

1” and “ q moves from 0z to )(sz ” are one and the same and 
this phenomenon, in TOPLOGY, is depicted by 
DEFORMATION. 

Besides )()( sgyE   is called homotopic. The 
embedding parameter is introduced in such a way that it is not 
effected by any feigned factor and it is treated for minute 
parameters ]1,0[q . Then solution of the equation (4) is 
written in specific form as  

.....2
2

1  yqqyyy             (7) 
The nearest solution of equation (1) is given by  







01
lim

l
lq

yyz                                                (8) 

 
3. ILLUSTRATIVE EXAMPLES 
 
Example-1 
 

A simple example of electrical circuit is a charged 
capacitor C connected to a coil of N turns wrapped around an 
iron core. The current (i) versus flux (ϕ) relation for the iron 
core inductor has the form , In the following Figure 1 there is 
a electrical circuit which possesses a charged capacitor C and 
is connected to a coil of N. ϕ and i maintains the following 
relationship. 

iENP  31
0                                                  (9)  

  
Figure 1 .Nonlinear inductor circuit 

If the cube term does not appear then the linear relationship 
iPQ 0  

 
symbol Description 
P Coil’s own inductance 
  

flux 

The appearance of iron core generates the cube term. The 
compact form of the nonlinearity is completely decided by the 
core’s nature. 

From Kirchhoff’s law one can see  

01  NqC             (10) 

As qi  , by differentiating (10) and considering (9) one 
can see 

03                      (11) 

Where 
CL0

1
 ; 

NC
A

 ; 

In the above equation (11) if  ;1  and 3.0  then 
the equation (11) becomes  

03.0 3    
And by taking the initial conditions as  

A)0(   and 0
0









tdt
d

 

Applying the homotopy perturbation method to the 
equation (11) with the following boundary conditions  

A)0(   and 0
0









tdt
d

              (12) 

Now a homotopy   R 1,0  is bulid with the following 
equations 

0)()()( 3
00  qvqLPyP       (13) 

Where    )(P   and    33.0)(  Q  
Assuming the initial approximation of equation (1) is of the 

form  
)cos()(0 tAt               (14) 

here 0)(   not known constant and  at 0 is unity. The 
nearest solution of (3) can put as 

...2
2

10  vqqvyy                (15)  

And  





01
lim

l
lq

yy           (16) 

Substituting (15)   in (13) & comparing like powers of q  
0)0(,)0(,0)()( '

0000  yAyPyP      (17) 

0)0()0(,03.0)()( '
11

3
001  yyyPyP               (18) 

From equation (4) we have tAy  cos00   
Then from the equation (18) we have  
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03cos
4
3.0cos)

4
9.01(

32
2

12
1

2

 tAtAAy
dt

yd
      (19) 

Solving the equation (19) one gets  

tAtAAtv 





 3cos
)19(4

3.0cos
)1(

)
4
9.01()( 2

3

2

3
2

1 





     (20) 

To remove the secular term this can occur in the coming 
computations, we put  α equals 0. Then the first order 
approximation for the equation (19) is  

)()()( 10 tytyt  Then we have 

tAtAt 





 3cos
)19(4

3.0cos
)1(4

9.0)( 2

3

2

3





       (21) 

In (15) when A=1, then the solution becomes 
ttt )72025.2cos(01117192.0)10756.1cos(99255.0)(   (22) 

 
3.1 Generation of phase diagram  
 

The restoring force function in the equation of motion (1) 
considering 1  and 3.0  is 

33.0)(  f ,                                           (23) 
Which is a cubic polynomial. For both +ve and –ve 
amplitudes. The nature of oscillations is one and the same. 
DE (1)’s singular point is the phase diagram (i.e  versus   

curve) obtained from the roots of )(yg is (0,0). The 

derivative of he behavior of )(g wrt   is 

  23.01  g and 23.01)0( g and 

01)0( g  which implies that the singular point (0,0) 

becomes a centre. If 0)( *  g  then * is a saddle point. In 
the present problem there is no saddle point and hence no 
separatrix formation. This implies that there is no boundary 
formation between the stable ad unstable regions of the 
motion of the oscillator.  

Define the potential energy function, 
 

 
4
3.0

2
)()(

42

0

  
e

dfI ,  

(which implies that )(


f
d
dI

 ), the equation of motion 

(1) can be written in the form  

02

2





d
dI

dt
d

                                    (24) 

Multiplying equation (24) by 2  and applying the initial 
conditions (2), one gets after integration  

    0)0()(212
 II                        (25) 

Equation (25) for the DUFFING equation of motion (1) 
with the starting conditions (2) are written by 

 
)13246.11)(13246.01(

15.01
22

422








                       (26)  

Equation (26) represents the phase diagram (i.e., 

 versus  ) for the differential equation (1) with initial 

conditions (2). Versus plot generated from equation (26) 
shows closed boundary, which implies the existence of the 
periodic solution. Equation (26) gives equal magnitude of the 
positive and negative amplitudes (i.e. 

)0,9397.0    . 
 
 

 

 
 

Figure 2. Comparison of the Phase diagram for the 
solutions obtained by the Homotopy method to the exact 
method  

 
 

Example 2: 
Suppose there is a curved glass tube and a ball bearing 
oscillates in it. We know that the restoring force completely 
depends on the displacement’s cube. We neglect frictional 
losses here. The controlling expressions are 

 

03
2  cz

dt
dz

  

Where c=1 
At t=0 and distance 0u the ball bearing falls from rest and 

the auxiliary parameters 
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0,)0(  tatzerois
dt
dzAz  

Whineray built a mechanical oscillator and in that the 
restoring force is almost close to the proposition of 
displacement’s cube. He constructed, with springs, an air 
track oscillator which is linear. Here the springs are put at 
right angles to route rather than on it. This can demonstrate 
effectively the principles of the cube law oscillators. By 
applying the homotopy method to the above equation it is 
modified as  

3
2

2

zzz
dt

zd   with   

00)0(  tat
dt
dzandAz  

We consider    R 1,0  satisfying   

0)()()( 3
00  qyzqPzPyP               (27) 

Where  z
dt

zdzP  2

2

)(   and    

33.0)( zzQ  Assuming the initial approximation of 
equation (1) as  

)cos()(0 tAtz                        (28) 
 
Where 0)(  , unknown, constant, .0)(   
The nearest solution of equation (3) is put as   

...2
2

10  yqqyyy                              (29) 

....lim 2101



yyyyz

q
                        (30) 

Put (15)   into (13) and compare the expressions with equal 
powers of q, one can see  

0)0(,)0(,0)()( '
0000  yAyzPyP             (31) 

    
zerosareyandy

yyzPyP
)0()0(

,)()(
'
11

3
0001                             (32) 

From (4) one can see tAzy cos00  ,then from the 
equation (18) we have  

tAtAtAy
dt

yd
 cos

4
33cos

4
cos

33
2

12
1

2


                (33) 

Solving (32) one can see 





















 tAtAAty 





 3cos

)19(4
cos

)1(4
3)( 2

3

2

2
2

1

         (34) 

Secular expression might come in the foregoing iterations. 
To remove this makes the cost’s coefficient as  

4
3 2A


 

Then the first order approximation for the equation (27) is  
)()()( 10 tytytz   

Then we have 

tAtAtz 


 3cos
)19(

1
4

cos)( 2

3


   

If we put A=1 then  
tttz )598.2cos(0322.08660.0cos)(       (35) 

 
3.2 Generation of PHASE DIAGRAM 
 

To study the fit of the SOLUTION (35) of the truly 
NLODE, the phase diagrams are to be constructed. Figure1 
depicts the differences between PHASE DIAGRAMS come 
out of equation (7), (28).The true value of dtdz /  are plus or 
minus 0.7071 at the instant u is zero. But from the modified 

differential transform method y  values are computed as 
-0.850 and 0.9393 respectively. There are known to be 
distinct in their magnitudes for the particular greatest +ve 
amplitude of units the real PHASE DIAGRAM depicts the 
–ve amplitude as minus1.  

 
Figure 3. Comparison of the Phase diagram for the 

solutions got by HPM and the formal method  
 

4. CONCLUSION 
 
The solutions got by HPM for above two applications, have 
coincidence with the solutions obtained by the direct method. 
For the first example the solution obtained by the homotopy 
method is close to the solution obtained by the direct method 
whereas for the second example the solution is near to the 
exact solution. Hence the homotopy method is able to provide 
the periodic solutions of the nonlinear differential equations. 
Appendixes, if needed, appear before the acknowledgment. 
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