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 
ABSTRACT 
The article discusses the procedure for building a neural 
network control system for dynamic objects. The methods of 
continuous adaptation of a neural network controller with 
neural network adjustment to changes in the dynamic 
characteristics of an object and adaptation to a mismatch 
signal are compared. To eliminate the shortcomings of the 
first method, the control loop is supplemented with a block for 
detecting changes in the state of the control object, designed 
to detect the signal of mismatch with the "set point". In order 
to ensure the reliability of detection of the mismatch signal, 
paired response is taken into account within the calculated 
value of the average delay time. The neural network model of 
the control object is adjusted outside the control loop. To 
detect mismatch in a timely manner, an algorithm of 
cumulative sums is configured, in which the defining 
characteristics are the average delay time and the average 
time between false positives. 
Key words : Control object, dynamic process, steady state, 
closed loop, stationary mode, neural network controller, 
neural network identifier, neural networks, optimal neuro 
controller, information collection algorithm, cumulative sum 
algorithm, sets, training sets, bimodal form, control loop, 
approximation, undefined function, mismatch, adaptation 
method.  
 
1. INTRODUCTION 
 
On the basis of the research carried out for the control of 
non-stationary objects, a new method of neural network 
control is proposed, adapting to establish the mismatch 
between the state of the object and the "set point". An 
approach is proposed for the rational collection of 
information for adapting the object after detecting the 
mismatch, based on the properties of the cumulative sum 
algorithm. Computational studies on an unevenly changing 
linear control object with the implementation of continuous 
adaptation and adaptation methods for detecting mismatch 

 
 

showed that the first method has a higher performance 
compared to the adaptation method for detecting mismatch, 
but less stability. Identification was carried out under 
stationary conditions with continuous adaptation and 
adaptation by detection of mismatch, and also the 
root-mean-square error of control was determined for various 
adaptation options, which showed that the control errors do 
not exceed the permissible limits (in this case, it is 0.55). 
 
2. METHODS AND MATERIALS 
The solution to the problem posed is quite difficult, for its 
solution the method of continuous adaptation of the neural 
network controller is often used when the neural network 
adjusts to changes in the dynamic characteristics of the object 
[1-4]. This method involves the use of a neural network, when 
connections between neurons do not form closed loops, and 
information propagates in only one direction from inputs to 
outputs. Using direct or indirect neural network inversion of 
the control object within the framework of the neural network 
control tuning algorithms, an adaptation method can be 
implemented. 
The regulation of the neural network of a non-stationary 
object is carried out using a trained neural network acting as a 
control object. In contrast to stationary conditions when 
neural network identification can be carried out once, in 
dynamic conditions when the features of an object are not 
constant, both the neural network control and the neural 
network identifier must be adapted [5]. If the adaptation 
algorithm works incorrectly, all neural networks are 
constantly in the tuning mode. Below is a diagram of a control 
system with a continuous adaptation algorithm. 

 
Figure. 1: Control loop with continuous adaptation 

scheme. 
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External signals of the control system are the "set point" and 
additive interference of the object output under consideration. 
To minimize the control error, the controller generates a 
control effect u on the CO. Based on the control effect and 
previous measurements of the object's outputs, the ID neural 
network enabled in parallel with the object predicts the [6] 
future behavior of the system. The scheme is supplemented 
with neural network adjustment algorithms: direct training of 
the neural network ID based on the ID error, and indirect 
training of the control neural network, when the propagation 
of the control error e occurs by the reverse method through the 
NNO to the NNC and the error between the actual and 
predicted [7] responses is minimized. 
Figure 2. shows the architecture of the control's neural 
networks. In order to improve the quality of modeling the 
dynamic modes of the controlled object, signals u and y of the 
last few moments of time are sent to the inputs. (Fig. 2a). The 
value of the control error is fed to the input device of the 
neural network control, together with the "set point" (Fig. 2b), 
which predetermines the dynamics of regulation when 
feedbacks are unavailable in neural [8] networks. 
In accordance with the above training scheme, the problem of 
minimizing the control error is assigned to the neural network 
of the control, whose coefficients are intentionally changed 
for these purposes.  Therefore, corrections of weight 
coefficients are calculated independently and do not have a 
mutual effect. In this case, the preparation takes place in real 
time and without a control sample. Moreover, over a number 
of cycles of operation of the digital control system, there is a 
constant addition of variations in weight coefficients. The 
result is used with a certain frequency, as it happens in the 
batch method, which allows stabilizing the control loop 
(accidental incorrect changes in the NRS can lead to an 
incorrect change in the NDS). This makes it possible to get rid 
of irregular atomic changes in weight coefficients. Analysis of 
the constant adaptation method shows that it is not entirely 
economical due to the constant inclusion of the training 
algorithm for both neural networks. It should also be noted 
that the parameters of the object are undergoing rapid and 
significant changes. This often leads to the loss of the control 
system from stability. It follows from the above that this 
method is acceptable for cases with a gradual and slow [9] 
change in the parameters of the object. 

 
                         а)                      b) 
Figure. 2: The architecture of neural networks 
To eliminate the disadvantages of the above method, a block 
for detecting changes in the states of a controlled object (Fig. 
3) was introduced into the circuit, which, upon detecting an 
error signal with the “set point”, collects additional 
information in order to train the identifier neural network 
outside the control loop. Upon completion of the training of 

the identifier neural network, the block is included in the 
NNC adaptation scheme, which is in the active mode (Fig. 4), 
similar to the scheme for the synthesis of the optimal 
neuro-control in the stationary case. 

 
Figure: 3: Control loop in a stationary system. 

It should be emphasized that the presented scheme uses 
neural networks that correspond to the architecture in the 
method with continuous adaptation (Fig. 2).  

 
Figure. 4: The control scheme in the steady state. 
In order for the scheme to function reliably in non-stationary 
situations, it is necessary to determine the periods of changes 
in the object's characteristics as accurately as possible and 
adjust its model accordingly. The problem of detecting 
mismatch is solved using the cumulative sum algorithm. To 
ensure the reliability of detecting the mismatch signal, the 
pair response within the calculated value is taken into account 

adT . The neural network model of the control object must be 
adjusted outside the control loop. Qualitative prediction of the 
behavior of the control object and training of the neural 
network controller, produced on a sufficiently large amount of 
training data, provides training for the neural network. To 
automate the adaptation procedure, it is necessary to develop 
a reasonable algorithm for collecting information.  
In order to timely detect the mismatch, it is necessary to 
appropriately adjust the cumulative sum algorithm, for which 
the main controllable parameter is the decision boundary 
(threshold). The main characteristics of the cumulative sums 
algorithm are the average delay time and the average time 
between false alarms, which affect the duration of losses 
resulting from the transformation [10,11] of the parameters of 
the controlled object. 
To configure the cumulative sum algorithm, it is imperative 
to enter the numerical value of the controlled parameter 
before the discrepancy, the predicted value of the same 

parameter in case of discrepancy, 0H  in addition, it is 
necessary to select a threshold that could provide the desired 

parameters adT  and faT
. 

The parameter that qualitatively determines the change in the 
values of the control object can be the variance of the 
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recognition error  . 


 yyd . At the same time, the variance 

calculated for the stationary state of the system 
2
0  should be 

taken as the initial numerical value, and for the nominal 
discrepancy - its increase in a given number of times (for 
example 2K ). 
The magnitude of the mismatch can be calculated from the 
variance of a random process with a normal distribution. To 
do this, the terms of the equation displaying the distribution of 
points calculated by the cumulative sum algorithm must be 
calculated by the formula: 
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In this case, the equation for performing an elementary 
verification procedure, which displays points in the classical 
algorithm of cumulative sums, is expressed by the ratio: 
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The mismatch criterion is the point Si reaching the decisive 
boundary H. 
When this condition is met, the mismatch is considered 
detected, the check procedure ends if there is no need to start 
the next one. With an increase in the threshold, the delay 
between the actual change in the parameters of the random 
process and the moment of occurrence of the mismatch 
increases, and its small value leads to an increase in the 
number of false alarms due to the randomness of the process. 

Based on a certain compromise value between  adT and faT
 

the selection method H, the cumulative sum algorithm is 
adjusted. To ensure the reliability of mismatch diagnostics, it 
is necessary to analyze its presence by means of a test run of 
the algorithm. A mismatch is considered confirmed if a signal 

about it appears in the interval up to 3 adT , while the actual 
delay time is doubled. 
In papers, a method is proposed for calculating the 
characteristics of the cumulative sums algorithm for 
uncorrelated random processes, based on the distribution 
parameters of a random process. 
As a result of our experiments, some discrepancy between the 
measured and calculated characteristics of the algorithm was 
revealed. This deviation, in our opinion, lies in the fact that 
the inaccuracy of identification in the studied control system 
is random, and the technological process is correlated. 
The studies carried out made it possible to determine the 

dependence of the characteristics adT and faT
 on the value 

of the threshold H and use them to correct the algorithm (Fig. 
5, 6). 
As a result of changes in the characteristics of the object and 
the adjustment of neural networks, the variances of the 
identification error characterizing the new steady state can 

also change. In this case, correction of the algorithm 
parameters is required. 

 
Figure: 5:. Dependence of the average delay time on the 

threshold H for various nominal disturbances K. 

 
Figure: 6: Dependence of the average time between false 
positives on the threshold H for various nominal layouts K. 
The formation of a training sample for adjusting the NNO 
when a mismatch is detected [12-13] depends on the size of 
the training sample N and the method of its formation. 
The standard approach of using a training sample of a 
constant length is not suitable in this case, since the NNO 
adjustment must be followed regularly with the detection of 
an error signal. The appearance of a mismatch means that the 
system has gone out of optimal mode and must be optimized 
in the shortest possible time. The quality of  NDS training 
depends on how the NSS is configured, and the quality of the 
NSS tuning, in turn, depends on the length of the training 
sample. With an increase in the length of the training sample, 
the control efficiency decreases, and in some cases this can 
lead to a loss of stability. 

Taking this into account, the components  ku N and 
 ky N were used in the work as the defining sample, 
representing the segment from the starting point of reference 

0t  of the last control procedure of the AKC to the moment of 

receiving a signal  1t about the presence of a mismatch plus M 
similar values that appeared before the moment, since the 
AKS issues an error signal with a delay relative to the start 

time of the process 0t  characteristics change. 

Since the time interval 01 tt   is a random value, the training 
sample will also be of a random length  MN 2 , the size 
that can be taken as the minimum size of the training set. It 
can be used to configure the identifier neural network as soon 
as the mismatch signal is detected. With a very small length 

of the interval 01 tt  , the size of this sample may not be 
sufficient for high-quality training of the NNO. In this case, it 
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becomes necessary to estimate the parameter of the bivariate 

distribution   yu, from the previously obtained data and 

collect the values kk yu ,  of the observed parameters before 
filling the selected area with the required density. From figure 

7., where the two-dimensional density of the point  yu,  
spread is shown, it can be seen that it has a bimodal 
appearance. On the basis of the presented algorithm, it is 
possible to dynamically form a training set, which is used 
when setting up the NNO outside the control loop, to 
approximate an undefined function that can predict the 
behavior of the control object.  

 
Figure: 7: Two-dimensional distribution (u, y) with contours 
of equal coverage density 
In order to study the properties and obtain numerical 
estimates of the quality of neural network control for the case 
with constant adaptation and with adaptation by detecting the 
mismatch on a computer model, a number of computational 
experiments were carried out. To assess the quality, two 
criteria were chosen: the standard deviation of the control, 
showing information about integral errors and the values of 
the spread of the control error, showing the possible 
maximum values of errors fraught with the OA going beyond 
the limits allowed by the technological regulations. In 
experiments with a stationary object of regulation, the action 
of neural networks with control systems in means that do not 
require reconfiguration [14-17] was investigated. When using 
a neural control network with continuous adaptation (Fig. 8), 
there were significant fluctuations in the regulation feature 
with a torque of 2 × 105 ... 5 × 105 sub reports and an 
amplitude from 0.05 to 6.  

 
Figure 8: Root mean square error of regulation and 
identification in stationary conditions with continuous 
adaptation (PA) and adaptation for mismatch detection (AR). 

Analyzing the graph, it can be noted that fluctuations in the 
mean-square inaccuracy of identification d in the continuous 
adaptation system occurred in the opposite phase of the 
control inaccuracy, and the neuro-control provided minor 
fluctuations near the mean-square error of regulation 0.121. 
when studying the statistical distribution of the control error, 
it was found that the error was distributed according to a law 
approaching the Gaussian distribution (Fig.9).  
 

 
Figure 9: The spread of the control error during adaptation to 
determine the mismatch in stationary states. 
 The conducted research has confirmed that the statistical 
distribution of the error in the modes of continuous adaptation 
does not mean that it is constant, and with a decrease in the 
quality of regulation, its mean values strongly differ from 
zero. In fig. 4.10 shows the graphs of the spread of the control 
error in two time intervals and for a full sample. Analysis of 
the figure allows us to conclude that in the area of the period 
of better regulation quality [0.4 × 105] (Fig. 8), the 
distribution of points occurs according to the normal law, and 
in periods of the worst quality of regulation [4 × 105.8 × 105] 
- distribution is multimodal.  

 
Figure 10: The spread of the control error with continuous 
adaptation in a steady state. 
Table 1 shows the probabilistic parameters of the control error 
spread 
Table 1:Probabilistic parameters of the control error spread 
  Mini

mum 
Maxi
mum 

Avera
ge 

Dispersio
n 

Continuous 
adaptation 

-2.03 5.43 0.33 0.30 

Misalignment 
adaptation 

-1.46 1.52 -0.01 0.12 
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The research carried out with non-stationary control lenses 
showed that in the period of time 500 its values changed 
abruptly. Figure 11 shows the root-mean-square errors under 
three different circumstances: no adaptation of the neural 
network control, continuous adaptation of values after 
mismatch diagnostics, and learning the NNO outside the 
system. Time transformations of the object characteristics and 
the beginning of adaptation of the neural network control in 
combination with mismatch adaptation are marked with 
vertical lines. 
 
 

 
Figure. 11: Root mean square error of control with different 
adaptation options. 
It follows from the analysis of the figure that the neurocontrol 
with continuous adaptation responds to changes in the object 
rather quickly and does not allow the regulation error to grow 
more than 0.55. Nevertheless, after a while, the control error 
begins to grow. To apply the adaptation method based on the 
determination of the mismatch, the collection of information 
is required for reconfiguring the neural network controller. In 
our experiment with a volume of 600 samples for training, the 
root mean square error of control increased to 0.6. Then, 
conditionally, we can say that the reconfiguration of the 
neural network identifier occurs instantly and at the 1100 
mark, the adaptation of the neural network control begins. 
During this period, the error increased to 0.7, which is similar 
to the indicator of a neural network control without 
adaptation. After that, the control error began to decrease at a 
faster rate than when using the continuous adaptation 
method. The distribution parameters of the control error in 
the adaptation process under non-stationary conditions are 
given in Table 2.  
Table 2: Parameters of control error distribution in 
non-stationary conditions. 

  Mini
mum 

Maxim
um 

Avera
ge 

Dispersi
on 

Continuous 
adaptation 

-12.3
1 

3.62 -5.23 10.51 

Misalignme
nt 
adaptation 

-1.98 2.00 -0.01 0.46 

 
3. CONCLUSION 
 
On the basis of the research carried out for the control of 
non-standard objects, a new method of neural network control 
is proposed, adapting to establish the mismatch between the 

state of the object and the "setting". An approach is proposed 
for the rational collection of information for adapting an 
object after detecting the mismatch, based on the properties of 
the cumulative sum algorithm. Computational studies were 
carried out on a non-uniformly varying linear control plant 
with the implementation of continuous adaptation and 
adaptation methods for detecting mismatch showed that the 
first method has a faster response compared to the adaptation 
method for detecting mismatch, but less stability. 
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