

 K.Rajkumar et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3253 - 3258

3259

ABSTRACT

In this paper, a new method of image steganography under
the spatial domain is introduced and added to the body of
learning. This study used a compression technique in
securing text data using the Goldbach code algorithm. Image
steganography is also performed with the use of the Least
Significant Bit (LSB) technique. To execute, the message is
first compressed using the Goldbach code, and the
compressed data is embedded inside an image using the LSB.
Simulation results revealed that the combination of the two
methods had paved the way to more secure storage and data
transmission, as evident in file size, Peak Signal to Noise
Ratio (PSNR), and MSE parameters used.

Key words: Data security, Goldbach code algorithm, hybrid
algorithms, least significant bit algorithm, steganography

1. INTRODUCTION

The present cyber environment has long identified the need
for secure communication for the exchange of information in
today’s digital era. With these, there is a need for a secure
channel with solid security in such a way that a third party
can’t access one's crucial data. The primary concern of most
security systems is the safekeeping of secret information. To
safeguard information, the three most common techniques
are widely used, which are steganography, watermarking,
and cryptography [1].

To differentiate, cryptography is the science of hiding
information by transforming data into an unintelligible
format using encryption technique [2]–[8]. Watermarking is
a technique used for copyrighting one’s property by
embedding watermark such that counterfeit measures are
detected [9]–[11]. Steganography, however, is a technique of
hiding data and information into different file types such as
images, video, audio, or text files, among others [12]–[14].
The indexed comparison of the three commonly used
techniques for security obtained from [1] is shown in Table 1.

This study focused on the implementation of steganography
in handling text data with the use of spatial domain technique,
particularly the Least Significant Bit (LSB) algorithm. LSB is

one of the widely used methods in steganography due to the
simplicity of its method where a lesser chance of degradation
of the original image is observed. However, steganography
alone cannot protect data [15]. To leverage the use of
technology in strengthening information and data security
while maintaining the secrecy of information, the
hybridization of two algorithms is performed. To protect the
storage and transmission of data, the compression of the text
file is performed using the Goldbach code algorithm prior to
the embedding of the data to the image file using LSB.

The rest of the paper is structured as follows: Section 2
presents the existing methodology used in this study. The
proposed hybrid method is discussed in Section 3, while
Section 4 presents the results and discussion. The conclusion
is shown in Section 5.

2. EXISTING SYSTEM

2.1 Goldbach G0 Code

The Goldbach G0 code was developed by Peter Fenwick in
2001. The G0 code is based on the Goldbach conjecture by
Christian Goldbach, which states that every even number
larger than four can be expressed as the sum of two odd
primes [16], [17]. For example, number 14 can be produced
and represented by adding primes 3 and 11. The G0 code
number system encodes an integer twice with an offset value,
such that 2(n+3), to generate an equivalent codeword [17]. To
identify the corresponding Goldbach G0 codeword for a
number, its two primes are mapped with an array of primes.
For example, let array A=[3,5,7,11,13,17,19,23,29,31]
contain the values of the first 10 prime numbers and array
B=[0,0,0,0,0,0,0,0,0,0] as map for the indices of the primes.
Suppose the integer 7 is encoded in G0. First, set n = 7 and
then compute for 2(n+3), wherein 2(7+3) = 20. Next, identify
from A the first two distinct primes, which are summed to get
the value 20. Based on the array A, the first two prime
numbers for the integer 20 are 7 and 13. These two primes are
mapped to B according to their relative indices represented
by the value 1, such that B=[0,0,1,0,1,0,0,0,0,0]. Finally, all
trailing zeroes from B are removed to generate the codeword.
As a result, the equivalent codeword for the digit 7 is 00101.
The first 15 integers and their equivalent Goldbach G0 code
are presented in Table 2.

LSB Image Steganography with Data Compression

Technique Using Goldbach G0 Code Algorithm

Jan Carlo T. Arroyo1, Allemar Jhone P. Delima2
1College of Computing Education, University of Mindanao, Davao City, Davao del Sur, Philippines

2College of Engineering, Technology and Management, Cebu Technological University-Barili Campus,
Cebu, Philippines

jancarlo_arroyo@umindanao.edu.ph1, allemarjpdjca@yahoo.com2

 ISSN 2347 - 3983
Volume 8. No. 7, July 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter62872020.pdf

https://doi.org/10.30534/ijeter/2020/62872020

Jan Carlo T. Arroyo et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3259 - 3264

3260

Table 1: Indexed comparison of the three commonly used technique for security
Criteria Steganography Watermarking Cryptography

Objective Secret communication Copyright protection Data protection
Secret Information Can be used with any file type Watermarks are used Text files are used
Secret Key Key is optional to use Key is optional to use Key is necessary

Carrier Object Any media can be used Digital image or audio files can be
used Text or image files can be used

Selection of cover Any type of cover can be used Restriction in cover selection No cover needed

Visibility Never perceptible to the normal human vision. May or may not be visible to
human eye.

File is noticeable due to encryption but deciphering is
difficult

Detection and
retrieval

Full retrieval of data is possible and cover is not
needed for recovery.

Cross-correlation helps in data
retrieval.

Full retrieval of data can be done without the need of the
cover

Capacity High Low High
Attacks Replacement of watermarks Steganalysis Cryptanalysis
Security Very High High High

Table 2: Goldbach G0 Code

Value n Encode 2(n+3) Sum of Primes Equivalent
Codeword

1 8 3 + 5 11
2 10 3 + 7 101
3 12 5 + 7 011
4 14 3 + 11 1001
5 16 5 + 11 0101
6 18 7 + 11 0011
7 20 7 + 13 00101
8 22 5 + 17 010001
9 24 11 + 13 00011
10 26 7 + 19 0010001
11 28 11 + 17 000101
12 30 13 + 17 000011
13 32 13 + 19 0000101
14 34 11 + 23 00010001
15 36 5 + 31 100000001

2.2 LSB in Image Steganography

The LSB is one of the renowned and simplest methods of
embedding sensitive data in other structures that works by
replacing some of the least significant bits of a cover file
[18]–[22]. Like other steganographic algorithms, the LSB
performs in such a way that small image alterations are not
obvious in the eyes of casual observers. LSB works by
looking at each pixel of the image through the RGB
colorspace. Since every RGB component is composed 8 bits
of memory, LSB can be used to manipulate the last bit of
each component to embed secret data. For example, a 9-bit
binary message 101001101 is encoded into a group of 3
neighboring pixels, as shown in Figure 1.

Figure 1: Embedding message to pixels

Each bit from the message is substituted to the least
significant bit of each RGB component. If the LSB bit is
equal to the message bit, it is skipped; otherwise, it is
replaced. Based on the given, 9-bits of data was embedded in
the sequence at the expense of masking 4 of bits (shown in
red) as presented in Figure 2.

Figure 2: Embedding message to pixels

3. PROPOSED METHODOLOGY

The proposed method involves the use of the Goldbach G0
code for text compression, and then the text equivalent is
embedded in an image using LSB. Figure 3 shows the
flowchart of the proposed process.

Figure 3: Process of the proposed methodology

To perform, the following steps must be executed:

a. Identify a text and a cover image.
b. Using the text, count the frequency of each character.
c. Arrange the characters according to the frequency and its

order of appearance in the text. The most frequent
character shall be n=1 in G0.

d. For each character in the G0 list represented by n, compute
for 2(n+3) and find the first two prime numbers of the
result.

e. Map the two primes to the list of prime numbers > 2 to
retrieve the equivalent codeword in binary format.

 K.Rajkumar et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3253 - 3258

3261

f. Substitute equivalent codeword of each character in G0 to
every character in the text.

g. Embed the result of step f to the image by traversing
through each pixel and replacing the LSB

The proposed method is implemented in Python. Three
512x512 sample test images from [23], [24] were
downloaded to wit: Lena, Peppers, and Zelda. These images
were converted into grayscale. The secret message to be
embedded varies to sizes where 16kb, 32kb, and 48kb
plaintext messages are used. The simulation was performed
in an i7-7000HQ 2.8 GHz 16GB RAM 4GBVRAM
Windows 10 laptop computer. The Peak Signal to Noise
Ratio (PSNR) test and file size comparison were executed to
validate the feasibility of the proposed method. The PSNR is
used to assess the quality of an image by comparing the
similarity between the original and altered images [25]. If the
value of the PSNR is high, the higher the image quality and
the more it is closer to the actual image. A PSNR of 100
means there is no significant noise detected between the two
images. The PSNR is defined by a mean squared error
(MSE), which finds the magnitude of error between the
images. The equation used to find PSNR value is:

(1)

where MAXC refers to the maximum possible value of the
pixel in the image and MSE is expressed as:

(2)

where, m and n are the number of rows and columns
respectively, C(a,b), and S(a,b) are the pixels located at index
a and b given cover image C and stego image S.

4. RESULTS AND DISCUSSION

The histogram, PSNR, MSE, and file size analyses for the
images Lena, Peppers, and Zelda encoded using the lone
LSB, and the proposed method is presented in this section.

4.1 Image Steganography using the Lena Image Dataset

A 16kb, 32kb, and 48kb secret messages were embedded in
the Lena image dataset and were tested using the proposed
methodology. Simulation results revealed that the stego
images generated using LSB, and the proposed method have
no visible trace of modifications. However, it is evident in the
histogram results shown in Figures 4-6 that significant
changes were made to the images wherein the lone LSB
method had more noise since it obtained lower PSNR value
as compared to the proposed methodology.

Figure 4: Histogram plot for Lena image dataset with 16kb secret
message

Figure 5: Histogram plot for Lena image dataset with 32kb secret
message

Figure 6: Histogram plot for Lena image dataset with 48kb secret
message

When embedded with a 16kb secret message, the lone LSB
method has obtained a PSNR value of 58.94 decibels (dB) as
against the proposed method with 60.72 dB, which is 3.02%
higher than the former. Extent on the file size generated, the
proposed method is 0.19% lower in size, with 488,056 bytes
as against the lone LSB method with 489,002 bytes. Also, the
proposed method revealed a lower MSE value with a
difference of approximately 37% as compared to the lone
LSB method. The summary of results is presented in Table 3.

When a 32kb secret message is encoded to the Lena image
dataset, the stego image generated using LSB, and the
proposed method shows no visible trace of modifications.

Jan Carlo T. Arroyo et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3259 - 3264

3262

However, it is evident in the histogram results that significant
changes were made to the image wherein the lone LSB
method had more noise as compared to the proposed method.
The image steganography technique using the lone LSB
method produced a stego image with 55.92 dB PSNR. In
contrast, a 57.71 dB PSNR is depicted on the stego image
generated using the hybrid method. Extent on the size of the
stego images, the proposed method generated a smaller file
size due to the compression technique with a size of 490,590
bytes as against the lone LSB method with 492,862 bytes.
Further, the proposed method revealed a lower MSE value
with a difference of approximately 31% as compared to the
lone LSB image steganography technique. The summary of
simulation results is presented in Table 4. When a 48kb
message is encoded in the Lena image dataset, the lone LSB
method gained 54.15 dB PSNR, while the proposed method
obtained 56.96 dB, which is 5.18% higher than the former.
This denotes that the lone LSB method has a higher noise. As
for the file size, the proposed method generated a stego image
that is 0.67% lower than the LSB method alone. Extent on
error measures, the proposed method revealed to have a
lower MSE with a value of 0.16 as compared to the lone LSB
method, as evident in Table 5.

Table 3: Lena image dataset with 16kb secret message summary of

results
 LSB Proposed Method Variance

PSNR 58.94 dB 60.72 dB +3.02%
MSE 0.08 0.05 -37.50%
File Size 489,002 B 488,056 B -0.19%

Table 4: Lena image dataset with 32kb secret message summary of

results
 LSB Proposed Method Variance
PSNR 55.92 dB 57.71 dB +3.20%
MSE 0.16 0.11 -31.25%
File Size 492,862 B 490,590 B -0.46%

Table 5: Lena image dataset with 48kb secret message summary of

results
 LSB Proposed Method Variance
PSNR 54.15 dB 56.96 dB +5.18%
MSE 0.24 0.16 -33.33%
File Size 496,640 B 493,284 B -0.67%

These findings show that the proposed method gains higher
PSNR values, lower error rates, and smaller file sizes in all
test cases, which denotes effectiveness as it produced higher
quality images with lesser noise and better file size reduction.

4.2 Image Steganography using the Peppers Image
Dataset

The histogram, PSNR, MSE, and file size analyses for the
Peppers image dataset encoded using LSB and the proposed
method are presented in Figures 7-9, and Table 6. The
histogram and actual images generated using LSB and the
proposed method show no visible trace of modifications.
However, it is evident in the PSNR values and file sizes that
the proposed method performed better when compared to
LSB image steganography alone. Also, the proposed method
revealed lower MSE values as compared to the lone LSB
method.

With the integration of a 16kb secret message to the cover
image, the lone LSB method produced a stego image with
58.93 dB PSNR. The proposed method produced a stego
image that is 3.03% higher than the former. Extent on the size
of the file, the stego image provided by the proposed method
has a file size of 494,760 bytes. By embedding a 32kb secret
message, the lone LSB method produced a stego image with
peak signal to noise ratio value of 55.91 dB, while the
proposed method produced a stego image that is 3.18%
higher at 57.69 dB. Further, simulation results revealed that
the stego image generated by the proposed method has a
lower error rate.

Figure 7: Histogram plot for Peppers image dataset with 16kb

secret message

Figure 8: Histogram plot for Peppers image dataset with 32kb secret

message

Figure 9: Histogram plot for Peppers image dataset with 48kb secret

message

 K.Rajkumar et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3253 - 3258

3263

With a 48kb secret message, the stego image produced by the
lone LSB method gained 54.15 dB PSNR, while the proposed
method is 3.30% higher at 55.94 dB. Extent on the size of the
file, the proposed method produced a stego image with a
smaller file size of 498,932 bytes as against the lone LSB
method with 501,526 bytes. The results show that the
proposed method produced stego images with higher PSNR
values, lower error percentages, and smaller file sizes, which
denotes higher quality images with lesser noise and better
storage management.

Table 6: Peppers image dataset summary of results

 LSB Proposed Method Variance
Peppers image dataset with 16 kb secret message

PSNR 58.93 dB 60.72 dB +3.03%
MSE 0.08 0.05 -37.50%
File Size 495,598 B 494,760 B -0.16%

Peppers image dataset with 32 kb secret message
PSNR 55.91 dB 57.69 dB +3.18%
MSE 0.16 0.11 -31.25%
File Size 498,465 B 496,811 B -0.33%

Peppers image dataset with 48 kb secret message
PSNR 54.15 dB 55.94 dB +3.30%
MSE 0.24 0.16 -33.33%
File Size 501,526 B 498,932 B -0.51%

4.3 Image Steganography using the Zelda Image Dataset

The histogram, PSNR, MSE, and file size analyses for the
Zelda image dataset encoded with 16kb, 32kb, and 48kb
secret messages using LSB and the proposed method are
presented in Figures 10-12, and Table 7. The stego images
generated using LSB, and the proposed method shows no
visible trace of modifications. However, it is evident in the
histogram results that there are significant changes made to
the cover images wherein the stego images produced by the
lone LSB method had more noise as compared to the stego
images generated by the proposed method. The PSNR values
and file sizes affirm that the proposed method produced
better stego images than that of the lone LSB image
steganography technique. With a 16kb message, the lone
LSB method produced a stego image with 58.91 dB PSNR
value as against the proposed method with peak signal to
noise ratio value of 60.73 dB. Further, the stego image
produced by the latter has a smaller file size as against the
former.

Figure 10: Histogram plot for Zelda image dataset with 16kb secret

message

Figure 11: Histogram plot for Zelda image dataset with 32kb secret
message

Figure 12: Histogram plot for Zelda image dataset with 48kb secret
message

With a 32kb secret message, the stego image produced by the
proposed method revealed a peak signal to noise ratio value
of 57.70 dB, which is 3.22% higher than the stego image
generated using the lone LSB method. Furthermore, the
proposed method produced a stego image that is 0.61%
smaller, with 452,656 bytes as against the stego image
generated using the LSB method alone. With a 48kb secret
message embedded to the cover image, the lone LSB method
produced a stego image with peak signal to noise ratio value
of 54.15 dB. The stego image generated using the proposed
method revealed a PSNR value of 55.94 dB, which is 3.30%
higher against the latter. Extent on the error metric used, the
stego image from the proposed method show a lesser error
rate against the stego image generated using the lone LSB
image steganography technique.

Table 7: Zelda image dataset summary of results
 LSB Proposed Method Variance

Zelda image dataset with 16 kb secret message
PSNR 58.91 dB 60.73 dB +3.08%
MSE 0.08 0.05 -37.5%
File Size 451,173 B 450,075 B -0.24%

Zelda image dataset with 32 kb secret message
PSNR 55.90 dB 57.70 dB +3.22%
MSE 0.16 0.11 -31.25%
File Size 454,499 B 452,656 B -0.61%

Zelda image dataset with 48 kb secret message
PSNR 54.15 dB 55.94 dB +3.30%
MSE 0.24 0.16 -33.33%
File Size 457,726 B 454,910 B -0.61%

Jan Carlo T. Arroyo et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3259 - 3264

3264

The simulation result shows that the proposed method
produced stego images that has higher PSNR values, lower
error percentages, and smaller file sizes.

5. CONCLUSION

In this paper, the use of the LSB and Goldbach code
algorithms as a new method of hiding data is presented. The
proposed approach introduces a more secure technique of
obscuring data away from perpetrators as data are hidden
twice. First, the data is compressed to hide meaningful
information that may be blatantly used by unwanted users.
Second, the compressed data is hidden in an image for
safeguarding during data transmission or when simply hidden
as protection against the unauthorized person. The simulation
results revealed that the proposed method produced stego
images with smaller file sizes, lower MSE percentages, and
higher PSNR values, which denotes higher quality images
with lesser noise and better storage management.

REFERENCES

[1] A. Saini, K. Joshi, and S. Allawadhi, “A Review On

Video Steganography Techniques,” Int. J. Adv. Res.
Comput. Sci., vol. 8, no. 3, pp. 1015–1020, 2017.

[2] R. Rahim and A. Ikhwan, “Cryptography Technique
with Modular Multiplication Block Cipher and
Playfair Cipher,” Int. J. Sci. Res. Sci. Technol., vol. 2,
no. 6, pp. 71–78, 2016.

[3] O. Reyad, “Cryptography and Data Security: An
Introduction,” 2018.

[4] W. Stallings, Cryptography and Network Security
Principles and Practices. Prentice Hall, 2015.

[5] J. F. Dooley, History of Cryptography and
Cryptanalysis. 2018.
https://doi.org/10.1007/978-3-319-90443-6

[6] S. A. Babu, “Modification Affine Ciphers Algorithm
for Cryptography Password,” Int. J. Res. Sci. Eng.,
vol. 3, no. 2, pp. 346–351, 2017.

[7] O. Toshihiko, “Lightweight cryptography applicable
to various IoT devices,” NEC Tech. J., vol. 12, no. 1,
pp. 67–71, 2017.

[8] S. N. Kumar, “Review on Network Security and
Cryptography,” Int. J. Adv. Res. Comput. Sci. Softw.
Eng., vol. 8, no. 6, p. 21, 2018.

[9] Q. Su, X. Zhang, and G. Wang, “An improved
watermarking algorithm for color image using Schur
decomposition,” Soft Comput., vol. 24, pp. 445–460,
2020.

[10] E. H. Rachmawanto, D. R. I. M. Setiadi, C. A. Sari,
and N. Rijati, “Imperceptible and secure image
watermarking using DCT and random spread
technique,” Telkomnika (Telecommunication
Comput. Electron. Control., vol. 17, no. 4, pp.
1750–1757, 2019.

[11] R. Bairagee and M. Gupta, “Review of Digital Image
Watermarking Techniques,” Int. J. Sci. Res. Eng.
Trends, vol. 5, no. 3, pp. 1075–1079, 2019.

[12] S. Karakus and E. Avci, “A new image
steganography method with optimum pixel similarity
for data hiding in medical images,” Med. Hypotheses,
2020.
https://doi.org/10.1016/j.mehy.2020.109691

[13] R. Cogranne, Q. Giboulot, and P. Bas,
“Steganography by Minimizing Statistical
Detectability : The cases of JPEG and Color Images,”
in ACM Information Hiding and MultiMedia Security
(IH&MMSec), 2020.

[14] S. M. A. Al-Nofaie and A. A. A. Gutub, “Utilizing
pseudo-spaces to improve Arabic text steganography
for multimedia data communications,” Multimed.
Tools Appl., vol. 79, pp. 19–67, 2020.

[15] A. Baby and H. Krishnan, “Combined Strength of
Steganography and Cryptography- A Literature
Survey,” Int. J. Adv. Res. Comput. Sci., vol. 8, no. 3,
pp. 1007–1010, 2017.

[16] M. A. Budiman and D. Rachmawati, “On Using
Goldbach G0 Codes and Even-Rodeh Codes for Text
Compression on Using Goldbach G0 Codes and
Even- Rodeh Codes for Text Compression,” IOP
Conf. Ser. Mater. Sci. Eng., vol. 180, 2017.

[17] P. Fenwick, “Variable-Length Integer Codes Based
on the Goldbach Conjecture, and Other Additive
Codes,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp.
2412–2417, 2002.
https://doi.org/10.1109/TIT.2002.800483

[18] S. Goel, S. Gupta, and N. Kaushik, “Image
Steganography -- Least Significant Bit with Multiple
Progressions,” in Proceedings of the 3rd
International Conference on Frontiers of Intelligent
Computing: Theory and Applications (FICTA) 2014,
2015, pp. 105–112.

[19] I. J. Cox, M. L. Miller, J. A. Bloom, J. Fridrich, and
T. Kalker, Digital Watermarking and
Steganography, Second Edi. Burlington: Morgan
Kaufmann, 2008.

[20] W. Bender, D. Gruhl, N. Morimoto, and A. Lu,
“Techniques for data hiding,” IBM Syst. J., vol. 35,
no. 3.4, pp. 313–336, 1996.
https://doi.org/10.1147/sj.353.0313

[21] C. C. Chang, J. Y. Hsiao, and C. S. Chan, “Finding
optimal least-significant-bit substitution in image
hiding by dynamic programming strategy,” Pattern
Recognit., vol. 36, pp. 1583–1595, 2003.

[22] K. Curran, X. Li, and R. Clarke, “An Investigation
into the Use of the Least Significant Bit Substitution
Technique in Digital Watermarking,” Am. J. Appl.
Sci., vol. 2, no. 3, pp. 684–654, 2005.

[23] “Public-Domain Test Images for Homeworks and
Projects,” Retrieved from
https://homepages.cae.wisc.edu/~ece533/images/. .

[24] “The USC-SIPI Image Database,”
http://sipi.usc.edu/database/.

[25] K.-H. Jung and K.-Y. Yoo, “Data hiding method
using image interpolation,” Comput. Stand.
Interfaces, vol. 31, no. 2, pp. 465–470, 2009.
https://doi.org/10.1016/j.csi.2008.06.001

