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ABSTRACT 
Search of sub-classes within Type Ia Supernovae is a topic 
of debate in cosmology. Researchers have considered diverse 
perspectives while searching for sub-classes in various 
studies. In the present study, SNe Ia have been investigated 
based on morphology of host galaxy and location of the 
progenitor within the host galaxy. Hierarchical 
Agglomerative Clustering technique has been applied on a 
sample of 43 type Ia Supernovae for the purpose. Our results 
show that spiral galaxies (Sb, Sc, Sd) favour brighter SNe Ia 
as compared to S0 and ellipticals. Also, the frequency of 
occurrence of brighter SNe is less towards the outer regions 
of the host galaxies. The reason could be the difference in 
metalicity among the host galaxies as well as the variation in 
metalicity at different locations within the host galaxy. 

Key words: Clustering, luminosities, supernovae, 
morphology. 

1 INTRODUCTION 

Supernovae (SNe) explosions are among the most violent 
astronomical events and are linked with the death of stars. A 
particular sub-class referred as Supernova Type Ia plays a 
major role in Cosmology. SN Ia results from the 
thermonuclear explosion of carbon-oxygen white dwarf that 
accretes mass from its neighbouring donor or from merger of 
stars in a binary system. Explosion takes place when the 
mass of progenitor white dwarf exceeds over the 
Chandrasekhar limit of 1.4M⊙ [11]. The light-curve of 

Supernova Ia shows a sharp maximum and decays afterward. 
Observations indicate that the shape of light curve of all SNe 
Ia are similar and can be calibrated to measure the 
luminosity at the peak [4]. Thus, Supernova 1a can be 
considered as standard candles. 

However, recent studies have shown deviations from the 
above standard candle approach [2, 10, 12, 13]. The decline 
rate of SNe Ia light curve is calculated in terms of a 
parameter termed as ∆m15, and it is strongly correlated with 
the peak luminosity, (MB), of the explosion. Both parameters 

have played a vital role in establishing SNe Ia as standard 
candle. In this work, we are investigating whether the peak 
luminosity or decline rate depend on the nature of host 
galaxy or on the position of the supernova in the galaxy? An 
efficient classification technique is required, to find sub-
types by using properties of SNe Ia. We propose to use the 
hierarchical agglomerative clustering technique to search for 
possible subgroups in the data. This is an unsupervised 
clustering technique as it does not require the training 
examples. We introduce this technique in section 3. The SNe 
Ia data used for our analysis is presented in section 2. The 
results and conclusions have been presented in section 4 and 
section 5 respectively. 

2 DATA SET 

A dataset of 43 Supernovae has been collected from various 
well-established research work and catalogue in the field. 
The dataset has been presented in Table 1. Column 1 
contains tag of SN Ia [1–3]. Column 2 and 3 contains SN 
offset from the galaxy nucleus, in the E/W and N/S direction 
respectively [5]. Supernova offset is determined using 
equation: 
 offset= √(x2 + y2).                     (1) 

where 'x' is supernova offset from the galaxy nucleus in the 
E/W direction and 'y' is supernova offset from the galaxy 
nucleus, in the N/S direction, respectively.  

Column 4 provides information about morphology type code 
(T) of the host galaxy [6] (RC3). Column 5 and 6 contain 
decline rate (∆m15) i.e. the amount in magnitudes of B-band 
light curve decays in the first 15 days after maximum light 
(defined by [4]) [1–3] and its measurement errors. Column 7 
provides information about absolute B-band peak 
magnitudes (MB) of the SN [1–3]. Column 8, 9 and 10 
specify SN parent galaxy name, morphology type of the host 
galaxy and supernova type respectively [5, 6]. 
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Figure 1: A graph between ∆m15 and MB with best fit line 

2.1 Data pre-processing 

Pre-processing of data is a critical process in data science 
and machine learning. It transforms the data into some 
relevant format that can be easily rendered to algorithm. 
Clustering process calculates distance between feature 
values, so it is imperative to normalize these values at some 
scale. This process is also referred as scaling or 
standardizing the dataset. Scaling is done in our analysis 
using following equation 2. 

                          (2) 
Where i ranges from 1 to n, ’n’ is the number of rows 

in dataset and ’xs’ is the new scaled value of parameter. In 
this case resultant feature values are not restricted with in 
some range. This method enables feature values centred 
around the mean with a unit standard deviation 

2.2 Dealing with measurement errors 

It is an obvious fact that data is prone to sampling errors. 
Data collection, especially in the case of astronomical data 
where controlled experiments are not possible, is itself a 
complicated process and bound to have measurement errors. 
To get effective clustering results, dealing these 
measurement errors is essential. We weight the data values 
according to the error, so that the data points with large error 
gets smaller weight. This is achieved by dividing the original 
data value by the square of its error as shown in the 
following equation 3. 

 , (3) 

where ’xi’ is the measured value and ’ei’ is measurement 
error. Here ’xnew

i’ is new recalculated feature value. The 
decline rate (∆m15) is the most vital parameter in clustering 
process, so its value is recalculated using equation 3. In this 
study, algorithm is implemented on recalculated value of this 
parameter. Graphs plotted in fig 9, 10 and 11 are also using 
the new recalculated value of ∆m15. 

3 METHODOLOGY 

Hierarchical Agglomerative Clustering (HAC) is a bottom 
up approach that starts from one cluster and iteratively 

merges clusters with other clusters until all the data items 
belong to one cluster [8, 9]. It is an unsupervised learning 
technique that uses dendrograms-a tree like structure to 
represent the process of clustering. In HAC, the inter-cluster 
distance is calculated during each step. For three-
dimensional cartesian space, distance can be calculated 
using Euclidean distance formula given in equation 4. 

   dist= √(a2 + b2 + c2).                           (4) 

   Other measures like Manhattan distance can also be used for 
distance calculation. Based on distance, HAC uses following 
techniques to calculate linkage among clusters: 

  
1. Single nearest distance or single linkage – It is 

distance between closest members of two clusters. If C1 
and C2 are two clusters then single linkage is calculated 
as: 

    min{dist(x,y) : x ∈C1, y ∈C2}.             (5) 

2. Complete farthest distance or complete linkage – It is 
distance between the farthest members of the two given 
clusters. If C1 and C2 are two clusters then it is calculated 
as: 

    max{dist(x,y) : x ∈C1, y ∈C2}.             (6) 

3. Average distance or average linkage – It is the average of 
distance between all pairs of one cluster to every pair in 
other cluster. If C1 and C2 are two clusters then it is 
calculated as: 

             (7) 

2. Ward linkage - It is the distance between clusters which 
is calculated as summation of square of differences 
within all clusters. If C1 and C2 are two clusters then it is 
calculated as: 

           (8) 

 
Steps in HAC are: 

1. Find two data points with minimum/maximum 
distance (based on above-mentioned techniques). 

2. Join these two data points to form one cluster. 

3. Consider this new cluster as one data point. 

4. Repeat steps 1-2 until all data points get clustered into a 
single cluster.  
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Table 1: Table of 43 Supernovae  

SN Name x y T ∆m15 ∆m15-errors MB Galaxy Morphology-Type SN-Type 

SN1992A 3 62 -1.9 1.47 0.05 -18.81 NGC1380 S0 Ia 

SN1990N 63.2 1.8 3.8 1.08 0.05 -19.23 NGC4639 SBbc Ia 

SN1994D 9 7 -2 1.32 0.05 -19.06 NGC4526 S0 Ia 

SN1998bu 4.3 55.3 2 1.04 0.05 -19.12 NGC3368 Sab Ia 

SN1981B 41 41 4.5 1.11 0.07 -19.21 NGC4536 SBbc Ia 

SN1991bg 2 57 -4.7 1.93 0.1 -16.81 NGC4374 E Ia pec 

SN1993H 1 12.3 1.9 1.7 0.1 -18.2 E445-G66 SBab Ia 

SN1989B 15 50 3 1.34 0.07 -18.87 NGC3627 SBb Ia 

SN2003kf 9.2 14.3 3 1.01 0.05 -19.37 M-02-16-02 Sb? Ia 

SN1996X 52 31 -5 1.25 0.05 -19.24 NGC5061 E0 Ia 

SN1999ee 13 3.5 4 0.94 0.04 -19.46 IC5179 Sbc Ia 

SN2003du 8.8 13.5 8 1.06 0.06 -18.93 UGC 9391 SBdm Ia 

SN2001el 22 19 5.9 1.15 0.04 -18.71 NGC1448 Sc Ia 

SN1997br 20.6 51.6 7 1.04 0.15 -19.62 E576-G40 SBd:pec Ia pec 

SN1999cw 21.1 1.5 1.5 0.94 0.05 -19.24 M-01-02-01 SBab pec: Ia 

SN1991T 26 45 3.8 0.95 0.05 -19.62 NGC4527 SBbc Ia pec 

SN1983G 17 14 -2.2 1.37 0.1 -18.62 NGC4753 S0 Ia 

SN2002bo 11.6 14.2 1 1.17 0.05 -19.42 NGC3190 Sa pec Ia 

SN2002er 12.3 4.7 1 1.33 0.04 -19.45 UGC10743 Sa? Ia 

SN1984A 15 30 1 1.21 0.1 -19.46 NGC4419 SBa Ia 

SN1989A 21 18 4.1 1.06 0.1 -19.21 NGC3687 SBbc Ia 

SN2002dj 8.9 2.8 -5 1.12 0.05 -19.05 NGC5018 E3: Ia 

SN1999by 100 91 3 1.87 0.1 -16.64 NGC2841 Sb Ia pec 

SN1997cn 6.8 11.7 -5 1.86 0.1 -16.95 NGC5490 E Ia pec 

SN1986G 120 60 -2.2 1.78 0.07 -17.48 NGC5128 S0 Ia pec 

SN1990O 21.8 3.9 1 0.96 0.1 -19.4 M+03-44-03 SBa Ia 

SN1990T 24.8 1.9 -2 1.15 0.1 -19.17 PGC0063925 S0 Ia 

SN1991S 4.4 17.3 1.8 1.04 0.1 -19.24 UGC 5691 Sab Ia 

SN1991U 2.2 5.8 3.8 1.06 0.1 -19.49 IC4232 Sbc Ia 

SN1991ag 4.4 22.1 7.9 0.87 0.1 -19.4 IC4919 SBd Ia 

SN1992K 1.9 15.4 1.9 1.93 0.1 -17.72 E269-G57 SBab Ia pec 

SN1992P 4.3 9.8 4 0.87 0.1 -19.34 IC3690 Sbc Ia 

SN1992al 19 12 5.1 1.11 0.05 -19.47 E234-G69 SBc: Ia 

SN1992bc 16 5 5 0.87 0.05 -19.64 E300-G09 Sc Ia 

SN1992bk 12 21 -5 1.57 0.1 -19.03 E156-G08 E Ia 

SN1992bl 15 22 1 1.51 0.1 -19.13 E291-G11 SBa Ia 

SN1992bo 47.3 54.7 -1.5 1.69 0.05 -18.76 E352-G57 S0/a Ia 

SN1993ah 1 8 -2 1.3 0.1 -19.28 E471-G27 S0 Ia 

SN1937C 30 40 8.9 0.87 0.1 -19.39 IC4182 Sm Ia 

SN1960F 38 24 8.2 1.06 0.12 -19.67 NGC4496A SBd Ia 

SN1972E 38 100 8 0.87 0.1 -19.44 NGC5253 Sd Ia 

SN1998aq 18 7 3 1.12 0.03 -19.35 NGC3982 Sb: Ia 

SN1974G 32 14 5 1.11 0.06 -19.7 NGC4414 Sc Ia 
 

 

 

 
Hierarchical Agglomerative Clustering (HAC) creates 
clusters at different levels with granularity while disclosing 
the hidden structure in dataset in detail. Some experts’ tools 
like R, MATLAB and Python are available with user 
friendly libraries to implement Hierarchical Agglomerative 
Clustering (HAC) [19, 20] and other clustering algorithms 
[18]. The process followed from data collection to result 
interpretation is displayed in figure 2. 

3.1 Validation of clustering results. 

Validation of clusters obtained after applying algorithm is 
done to justify the clustering results. In Hierarchical 
Agglomerative Clustering (HAC), dendrograms display the 
process of clustering and can also act as validity tools to 
optimise the process of clustering [15]. 
In HAC, as groups become larger, they become more 
dissimilar. The height of dendrograms represents 
dissimilarity/distance and width represents the sample index 
[16]. The height of every parent node in dendrograms is 
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proportional to the value of dissimilarity between itself and 
its children. Generally, in dendrograms, longest vertical lines 
that are not intersecting any horizontal line (horizontal line 
represents clusters formation) are searched. Then a new 
horizontal line (the cut-off) is drawn through these vertical 
lines at both extremities [15]. The number of vertical lines 
passed by this new horizontal line is optimal number of 
clusters. 
Another technique commonly used for validation of clusters 
is silhouette score technique [7,18]. Silhouette Score 
Coefficient finds how much the data points are integrated in 
their respective cluster as compared to other clusters. 
Silhouette coefficient value lies between +1 and -1. The best 
score is +1 and the worst score is -1. Value 0 shows that 
clusters are overlapping. The Silhouette Coefficient is 
calculated as: 

                            (9) 
where ’a’ is the mean value of intra-cluster distance and ’b’ 
is the mean value of nearest-cluster distance. Figure 3, 4 and 
figure 5, 6 shows dendrogram and silhouette score plot for 
morphology code vs. decline rate (T -∆m15) and location 
within galaxy vs. decline rate (offset-∆m15) respectively. 
 
 

   
Figure 2.:  Flowchart of Research Process 

 
Figure 3: Cluster validation with Dendrogram for T and ∆m15 

Similarly, figure 7, 8 shows dendrogram and silhouette score 
plot when HAC is implemented on combination of three 
parameters i.e. morphology code, decline rate and location 
within galaxy (T, offset and ∆m15). 

 

Figure 4: Cluster validation with Silhouette score for T and ∆m15 

 

Figure 5: Cluster validation with Dendrogram for offset and ∆m15 

 

Figure 6: Cluster validation with Silhouette score for offset and 
∆m15 
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Figure 7: Cluster validation with Dendrogram for T, offset and  
∆m15 

 

Figure 8: Cluster validation with silhouette score for T, offset and  
∆m15 

 

Table 2: Correlation among various parameters of 43 SNe 
SN.Parameters Correlation 
∆m15 – MB 0.8506 
T - ∆m15 -0.5971 
T - MB -0.4333 

offset - ∆m15 0.2790 
 

 

4 RESULTS 

First, correlation coefficient is calculated among various 
columns of the data presented in table 1. The numerical 
values of these coefficients are presented in table 2. A strong 
correlation between ∆m15 and MB as expected can be seen in 
the first row of table 2 and in figure 1 as well. However, 
there exist a significant correlation between ∆m15 and T that 
indicates the dependence of SNe decline rate on galaxy 
morphology. Firstly, Hierarchical Agglomerative Clustering 
(HAC) is implemented on the pair of ∆m15 and T. Figure 3 
shows the dendrogram of this implementation which exhibits 
6 clusters within the set of 43 SNe. Figure 4 validates this 
result through Silhouette score. The properties of these 
clusters in terms of correlations among various parameters 
are shown in table 3. Table 4 shows the gross properties of 
these clusters. It shows that on average the brighter SNe 
(smaller Mb) favour high value of T. This means that brighter 
SNe prefer the spiral galaxies (Sb, Sc and Sd). On the other 
hand, the fainter SNe with larger Mb favour host galaxies 

with smaller T which belong to either elliptical or lenticular 
(S0) galaxies. 

Next, the HAC is applied on the pair of offset and 
∆m15. The dendrogram along with the Silhouette score graph 
is shown in figure 5 and 6 respectively. Here also 6 clusters 
are observed within the set of 43 SNe of table 1. The 
correlations among various parameters for these 6 clusters 
are shown in table 5 and the gross properties of these clusters 
are presented in table 6. Again, it is observed that the 
brighter SNe belong to smaller offset values, i.e. close to the 
centre of the host galaxy. Then, HAC is implemented on 
three parameters i.e. T, offset and ∆m15. Table 7 contains 
correlation that is quite good, within clusters when HAC 
algorithm is implemented on T, offset and ∆m15. Table 8 
shows the mean value of parameters within each cluster and 
it also shows that higher luminosities exists at lower value of 
offset and higher value of morphology T. Figure 9, 10 and 11 
displays the graph showing clusters formation for each case. 

5 CONCLUSIONS 

HAC technique is implemented on a set of 43 Type Ia SNe 
to test the dependence of SNe brightness on host galaxy 
morphology and the location of SNe in host galaxy. Results 
indicate that most luminous SNe (smaller absolute 
magnitude) occur in spiral (Sb, Sc, Sd) galaxies, i.e., late 
type galaxies. On the other hand, dimmer SNe Ia occur in 
both spiral (S0) as well as elliptical galaxies. 

Table 3: Correlations within clusters when HAC is implemented 
on T and ∆m15. 

Cluster no. Data points ∆m15, MB T, ∆m15 
1       11 0.5643 -0.1193 
2 6  0.7946 0.7588 
3  4  0.0673 -0.5536 
4 6 0.0398 -0.4299 
5 6  0.9117 -0.8822 
6 10 0.8663 -0.2499 

 
Table 4: Mean values within clusters when HAC is implemented 

on T and ∆m15. 
Cluster no. Clusters MB  T  

1 11 -19.3536 3.4273 

2 6 -18.7333 -2.9333 

3 4 -19.2425 3.475 

4 6 -19.4083 8 

5 6 -18.31 -3.4833 

6 10      -18.783 2.35 
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  Figure 9: A graph between T and ∆m15 with six clusters 

 

 
Figure 10: A graph between offset and ∆m15 with six clusters.

Figure 11: A graph between T, offset and ∆m15 with four clusters. 
 

Table 5: Correlations within clusters when HAC is implemented 
on offset and ∆m15. 

 
Cluster no. Data 

points 
∆m15, MB    offset,MB offset,∆m15 

1 3 -0.4934 0.9642 -0.7064 
2 6 0.8767 0.7848    0.8714 
3 10 0.3852 -0.6365 -0.0857 
4 3 0.9769 0.9653 0.9988 
5 15 0.8417 -0.2569 -0.1199 
6 6 0.9577 0.4761 0.4399 
 

 
 

Table 6: Mean values within clusters when HAC is implemented 
on offset and ∆m15. 

 

Cluster no. Clusters MB  offset  

1 3 -19.17 20.5165 
2                                       6 -19.13 60.9317 
3 10 -19.334 18.0966 
4 3 -17.8533 125.449 
5 15 -18.9093 19.1865 

6 6 -18.9283 52.954 

 
Table 7: Correlations within clusters when HAC is implemented 

on T, offset and ∆m15. 
 

Cluster 
no. 

Data 
points 

∆m15,MB T, ∆m15 offset,MB offset,∆m15 

1 11 0.8464 -0.2426 0.1252 0.3659 
2 25 0.8277 -0.4261 -0.2236 -0.150 
3 
4 

3 
4 

0.9769 
0.0672 

-0.8159 
-0.5536 

0.9653 
0.9682 

0.9988 
0.0248 

 
Table 8: Mean values within clusters when HAC is implemented 

on T, offset and ∆m15. 
 

Cluster no. Clusters MB  offset  T  

1 11 -18.62 33.216 -3.3 

2 25 -19.24 30.929 3.928 

3 
4 

3 
4 

-17.85 
-19.24 

127.63 
18.753 

2.933 
3.475 

 

Variation in the composition of different types of galaxies 
could be a leading cause of this distribution. In terms of 
location within galaxies, it conclude that brighter 
Supernovae Ia occur near the nucleus of galaxies due to 
abundance of heavy elements On moving towards outer 
regions of galaxies the abundance of heavy elements 
decreases, and hence, luminous supernovae Ia are rare in the 
outer regions. On comparing the results with previous 
literature [14, 17] it is found that our results coincide with 
the results of previous existing studies. Thus, it reckons that 
there is a good proportion of possibility on existence of sub-
classes with in SNe Ia based on variation in metallicity. 

REFERENCES 

1. Mario Hamuy et al, “The absolute luminosities of the 
calan/tololo Type la Supernovae”, The Astrophysical 
Journal Vol. 623, no. 2, pp.1011–1016, 2005. 

2. S.Benetti et al, “The diversity of Type Ia Supernovae: 
evidence for systematics?” The Astrophysical Journal Vol. 
112, no. 6, pp.2391–2396, 1996. 



Neha Malik et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020,  5248 – 5254 

5254 

 

3. A.Saha et al,, “Cepheid Calibration of the Peak Brightness 
of SNe Ia. XI. SN 1998aq in NGC 3982”, The Astrophysical 
Journal Vol. 562, no. 1, pp.314, 2001. 

4. M.M. Phillips et al, “The Absolute Magnitudes of Type Ia 
Supernovae.” The Astrophysical Journal Vol.413, no.2, p.p. 
L105–L108, 1993. 

5. Barbon et al, “Asiago Supernova Catalogue.” Astronomy 
and Astrophysics Supplement Vol.81, no. 3/DEC, p.p. 421, 
1989. 

6. Harold G. Corwin, Jr. et al, “Corrections and Additions to 
the Third Reference Catalogue of Bright Galaxies”, The 
Astrophysical Journal Vol. 108, Number 6, p.p. 2128-2144, 
1994. 

7. Peter J.Rousseeuw, “Silouettes: a graphical aid to the 
interpretation and validation of cluster analysis”, Journal 
of Computational and Applied Mathematics, Vol. 20,p.p. 53–
65, 1987. 

8. Daniel Mullner, “fastcluster: Fast Hierarchical, 
Agglomerative Clustering Routines for R and Python”, 
Journal of Statistical Software, Vol. 53, no. 9, May 2013. 

9. Daniel Mullner, “Modern hierarchical, agglomerative 
clustering algorithms”.stat.ml, 2011. 

10. Chiaki Kobayashi1, “Subclasses of Type IA Supernovae as 
the origin of [α/FE] ratios in dwarf spheroidal 
galaxies”.The Astrophysical Journal Letters, Vol. 804,p.p. 
L24, 2015. 

11. P.A.Mazzali et al, “A Common Explosion Mechanism for 
Type Ia Supernovae”, Science Vol. 315 (5813): 825–828, 
2007. 

12. X. Wang et al, “Improved Distances to Type Ia Supernovae 
with two Spectroscopic Subclasses”, The Astrophysical 
Journal, Vol. 699, p.p.L139–L143, 2009a. 

13. David Branch et.al, “Comparative Direct Analysis of Type 
Ia Supernova Spectra. II. Maximum Light”, Publications 
of the Astronomical Society of the Pacific, Vol. 118, Number 
842, 560-571, 2006. 

14. Hideyuki Umeda et.al. “The Origin of Diversity of Type IA 
Supernovae and Environmental Effects”, The 
Astrophysical Journal Letters, Vol. 522, Number 1,1999. 

15. Antoine E. Zambellia, “A data-driven approach to 
estimating the number of clusters in hierarchical 
clustering”, F1000 Research, Vol. 5, 2016. 

16. NuraKawa, “Agglomerative Hierarchical Clustering”, 
Online tutorials, 2017. 

17. M. Sullivan et al, “The Dependence of Type Ia     
Supernova Luminosities on their Host Galaxies”, Monthly 
Notices of the Royal Astronomical Society, Vol. 406, Issue 2, 
p.p. 782-802, 2010. 

18. Neha Malik et.al, “Supernova Type Ia Diversity: A Study          
using DBSCAN Algorithm”, IJATCSE, Volume 9, No.3,     
p.p. 3398-3402, May-June  2020. 

19. Aida Mustapha et al, “Machine Learning    Supervised        
Analysis for Enhancing Incident Management Process”,     
International Journal of Emerging Trends in Engineering       
Research, Vol. 8, no. 1.1, pp. 199-204, 2020. 

20. AzrelAiman Azeman et al, “Football Match Outcome 
Prediction by Applying Three Machine Learning 
Algorithms”, International Journal of Emerging Trends in 
Engineering       Research, Vol. 8, no. 1.1, pp. 73-79, 2020.

 


