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  ABSTRACT 

 
Power oscillation damping is a challenging task for a micro 
grid when connected to grid. Here the micro grid modeling is 
based on synchronous generation that includes governor & 
excitation parameter also. This work proposes that effective 
setting of governor parameters of micro grid can damp 
system oscillations heavily pertaining to disturbance such as 
changes in input mechanical prime mover power. 
Optimization technique  PSO, GWO have been employed to 
tune governor parameters & have been compared with 
proposed hybrid PSO with improved GWO technique in this 
work. It has been observed in this work that changes in input 
mechanical power of micro grid excites system oscillations & 
the governor with optimal settings of its parameter can 
efficiently damp these oscillations. Eigen values analysis 
have been conducted to justify the efficiency of proposed 
optimal governor & the control law has been compared with 
standard techniques & proposed techniques. 
 

Key words : Governor, power system oscillations, turbine, micro 
grid 

1. INTRODUCTION 

The MG concept has been solving many power qualities 
issues & also has been adoptable pertaining to reliability & 
economic operation of power system including voltage 
&frequency stabilities [1]. The crisis in conventional energy 
needs energy management and a technique is presented in 
[2]. But, dynamic interaction of low inertia MG with existing 
grid has been a challenging issue for power system operators. 
In [3] synchronization of a grid connected PV system is 
presented. The MG may be based on synchronous, induction 
generator or generations based on power electronics-based 
converters. The stability study with MG penetration in low 
frequency domain demands linear modelling of MG 
components with existing power system. Many researches 
have been done regarding linear model of power system [4], 
[5]. The Heffron-Philips transfer function model has been 
adopted by many researchers for linear model of power 

system [6]-[8] for single multi machine system based on 
synchronous generation. Generalized model of MG in this 
regard has been performed in [9]. In [10] the MG model is 
based on KVL & KCL. But, estimation of MG parameters 
along with control actions were presented in [11], [12]. In 
[13] the estimation of parameters has been proposed on 
measurement basis. Researchers have proposed several 
techniques pertaining to equivalent modeling of MG. Such 
kind of approaches employing black-box theory being 
presented in [14]-[16]. The equivalencing may employ 
mathematical or dynamic modelling of MGs as reported in 
[17], [18]. A linear equivalent model of MG with grid 
connected has been reported in [19] employing modifications 
in Heffron Phillips model. In this model governor & 
excitation systems have been also included which can be 
used to study of power system stability in low frequency 
domain. But the next issue is implementation of this model 
for   enhancing   small   signals  stability. In this work the  
governor parameters are employed with the effective optimal 
settings to damp oscillations of such grid connected micro 
grid subject to variation in input mechanical power. For 
tuning governor parameters an efficient hybrid PSO-IGWO 
technique [20] has been proposed which has been compared 
with PSO & GWO techniques. 
 
2. SYNCHRONOUS GENERATOR BASED MG 

MODELING 
 
The model of MG includes modeling of turbine, governor 
and excitation systems.  Modified Heffron-phillips model has 
been implemented for MG modeling[19]. The Figure 1 and 
Figure 2 present standard IEEE-ST6B excitation system and 
turbine governor modeling respectively 
In this work the initial operating condition is taken as Po=0.8 
pu and Q0=0.17pu. In this model, the excitation system (E-
EXS) and turbine governor system are also included. The 
state equations describing the model are given as: 

 Dem TTT
Hdt

dw
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By Kirchoff’s voltage law te parameters are presented as: 
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 (4)            
As per [23, 24] the voltage and currents in d and q axis are 
stated as: 
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By combining Eq-4 and Eq-5 the equations are presented as 
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And which can be linearized as 
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In the Heffron –Phillips model the input signals have the 
relations with the variables by the K-constants. So the torque 
and real powers are presented Eq-5 
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The equation of internal voltage in Eq-1 is linearized as 
    dddfdqd iXXEesT  '''

01
                  (10) 

And using Eq-7 we can write Eq-11 as: 
    43
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The state variables can be linked with output reactive power 
as Eq-12.  
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In the above equations K1 to K5 are constants of constants of 
Heffron-Phillips model for SG. Finally the SG based grid 
connected MG can be modeled as in Figure 3 employing Eq 
(9), (11) and (12). Figure 4 shows MG with infinite bus. The 
real and reactive power and their changes at the point of 
common coupling can be presented as Eq-13 and Eq-14: 
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Figure 4: Microgrid with infinite bus                                                                
 

 
3. TURBINE GOVERNOR CONTROLLER AND 

OBJECTIVE FUNCTION 
 

The turbine governor model is presented in Figure 2 and the 
microgrid model in Figure 3. Kpg, t1g, t2g, t3g are equivalent 
governor parameters which are to be tuned by an 
optimization technique for damping oscillations. Here Kpg, 
t1g, t2g, t3g are equivalent governor parameters. In this work 
the objective is to damp system oscillations at the generator 
output by tuning governor parameters. A step change of 10 
percent in turbine power is considered for objective function. 
The speed deviation Δɷ is to be minimized as given by Eq-
15 below: 

dttJ
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max 
t3g

min   ≤ t3g    ≤ t3g
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                                                                                 (16) 

 J is to be minimized considering the constraints in 
parameters. The gains range is taken from 1 to 10 for Kpg, 0.1 
to 1 for t1g, t2g, t3. 
      

4.  HYBRID PSO-IGWO ALGORITHM 
 
According to the researched study , PSO is very basic and 
can be executed  effectively thus most powerful to varieties 
in parameters. GWO providing a very good balancing in 
exploration & exploitations, simplifying calculations. PSO & 
GWO has chances of getting trapped in the local minima. 
IGWO adding an additional element to GWO for avoiding of 
getting trapped with changed hunt operations. So, the 
controlling law has been motivating by the hybridising of 
PSO & IGWO in order of avoiding of getting trapped in local 
optima and having persistent global optimisation subjected to 
the critically solar integration power system. This work 
proposing this hybridising optimisation algorithm for the 
elimination of the optimising values of the UPFC controlling 
gains. For having the optimal valuating of the controlling 
gains ; this hybridisation PSO-IGWO (20)strategy is applied 
in this work. The approach of the hybridising technique is 
shown in the flow chart in Figure 5.  
For PSO the swarm velocity and position are given by 
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For IGWO update position of alpha ,beta and delta wolfs are 
given by  
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The final position is presented by 
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The steps which is describing the fulfilment of this algorithm 
are stated beneath:- 
Step1:-Initializing the size[NpXD] of randomised population. 
Step2:-Initialising for every particles involving in the PSO 
algorithm of the randomised positioning and velocity. 
Step3:-PSO Operation 
• Evaluating the fitness function for each particles 
basing of the objective function  
• Computing of each best (P best) & globally best (G 
best). 
• Updating of velocities of each swarm  
• Updating of the swarm positioning computed fitness 
values of each particles based on the objective functioning  
• Choose the best solution for the next iteraised 
fitness value for comparing  
Step4:- IGWO operations 
• Considering the initial population of IGWO as the 
finalised population of PSO. 
• A,C& a are updated. 
• Generating random positioning of each searching 
agent. 
• Use of objective function for computing the fitness 
values of grey wolves 
• Update of positioning of grey wolves D’α,D’β,D’δ. 
• Comparing of fitness function by selecting the best 
solution for the next iteration. 
• Update of Xα,Xβ,Xδ. 

• Update the finalised positioning of the total 
population. 
• Unless stopping criterion reaching continuing steps  
Step 5:-Obtain finalised optimum values of the controlled 
parameter.  
 
5. RESULT AND DISCUSSION 
 
In this work optimal governor action is proposed to damp 
low frequency oscillations. To justify the effect of governor 
action on stability different cases have been considered in 
this work. ITAE type objective function has been taken to 
optimize governor parameters. PSO, IGWO and hPSO-
IGWO algorithms are employed to tune governor gains and 
hPSO-IGWO is proposed here. The initial operating 
condition is 0.8 pu for real power and 0.17 pu reactive power 
generation. The disturbance taken here is change in input 
power to generator. In case-1, the input power is suddenly 
changed by 1 %. In case-2 the input power is suddenly 
changed by 5 % and in case-3 the input power is suddenly 
changed by 10 %. Figure 6 presents deviations in speed for 
three cases without governor control actions and Table-1 
shows corresponding damping response parameters. This 
shows that oscillations are much aggravated without 
governor actions. Figure 7 and Figure 8 present real power 
and speed deviations for case-1, Figure 9 and Figure 10 
present speed deviations for case-2 and case-3 with proposed 
governor action and system eigen values are given in Table-
2. It is observed that system oscillations being much 
enhanced with sudden rise of input power by a large extent 
and governor is able to damp system oscillations. Also 
optimization of governor gains are compared with PSO and 
IGWO optimizations. It is observed that hybrid PSO and 
IGWO algorithm enhances the damping capability of 
governor by a large extent.  
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Figure 5: Flowchart of hybrid PSO-IGWO algorithm 
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Table  2: System eigen values 

 

0 1 2 3 4 5 6 7 8 9 10-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Time(s)

Sp
ee

d 
de

vi
at

io
n(

ra
d/

s)

 

 

Case-1
Case-2
Case-3

 
Figure  6:Speed deviation without control action 
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Figure  7:Real power deviation for case-1 
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Figure  8:Speed deviation for case-1 
 

Table  1: Optimal governor parameters
  

Case-1 
 

PSO IGWO hPSO-IGWO 
   -3.6441 
  -0.6712  
  -1.2679           

  -1.3223 + 4.2792i 
  -1.3223 - 4.2792i 

  -0.9884  
  -0.9518  
 -16.2071           
 -13.0848           
  -0.5556           

        0           
  -0.1000 

 

    -4.4341 
  -0.7623  
  -1.2879           

  -3.3223 + 2.7792i 
  -3.3223 - 2.7792i 

  -0.9464  
  -0.9543  
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  -0.5576           

        0           
  -0.1000 
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Figure  9:Speed deviation for case-2 
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Figure  10:Speed deviation for case-3 

 
 
6. CONCLUSION 
 
In this work optimal setting of governor parameters is 
proposed for a  grid connected synchronous generator based 
micro grid for damping power system oscillations. The 
disturbance considered here is step change in input 
mechanical power. The governor parameters are tuned by 
hybrid PSO with improved GWO technique. It is observed 
that governor has the capability to damp oscillations much 
efficiently and optimal setting of its parameters can enhance 
its efficacy by a large extent. Also parameter tuning by 
proposed algorithm provides much better response in contrast 
to standard PSO and improved GWO algorithms. 
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