Reliability Indices of a combined PV, Wind and Grid System

K Lokeswara Rao¹, Phanidhar S V²
¹Assistant Professor, EEE Dept, GITAM School of Technology, KA, India. lksheera@gitam.edu
²Assistant Professor, EEE Dept, GITAM School of Technology, KA, India. psudani@gitam.edu

ABSTRACT

Renewable energy extracted from the sources like sunlight, wind, sea tides, waves, and geothermal many more. These methods benefit to subsidize the global warming consequences. It benefits to improve the security of existing power scheme. But the renewable energy sources are uncertain in nature. To find a solution for these uncertainties, there are some contingency existing methods are available. In these arrangements, detailed arrangements have greater advantages. One of the existing detailed arrangements is the FLM (Failure of Load method). There are different security indices each index has its own contribution to improve the power scheme Security.

The Capacity Blackout Contingency Table (CBCT) and the Load Extent Curves (LEC) arrangements are using to evaluate power scheme indices in terms of the power scheme security including PV and wind RE schemes each has its specific Forced Blockout Rate (FBR). The intention of the recommended work is to develop PV interconnected and wind energy schemes along with the existing power scheme grid to improve its security indices by collecting required information from the load extent curves. MATLAB Program/SIMULINK blocks have been developed and the obtained results are analyzed on a sample power scheme network, and the results are analyzed.

Key words: Security in Power Generating Scheme assessment, FLM-Failure of Load method, Wind Scheme, Solar PV Power, Security indices.

1. INTRODUCTION

Power is the main source in our day to day activities to lead our life comfortable it is also one of the crucial factors of any country's growth interims of economics [1]. The load demand acting on existing power generation is continuously varies due to consumer behavior based on seasonal changes. To meet this continuous load changes the generating stations are ready to take the load variation at all the time without losing the power quality aspects such as Voltage, phase angle, frequency, and other parameters. At any point in time if the consumer disconnected from the supply it leads to loss of income to both the parties’ i.e generating stations and the small, larges scale production industries. To overcome this dynamic behavior of both the PV & wind scheme operates efficiently.

In the early days, the security of the power scheme can be improved by identifying the occurrence of disturbances with the benefit of various available deterministic arrangements. A single instant failure does not affect the performance of the entire scheme. These arrangements don’t give any information on the contingency of occurrences of single scheme failure. The influence of the power scheme considered during its failures for the assessment of the performance of power scheme network intern of its security in different approaches of procedures without power failure [2],[3]. The existing arrangement impacts scheme accuracy and power failures due to the dynamic behavior of Renewable sources compared to conventional sources. Due to its dynamic behavior of the RE schemes, the scheme accuracy and performance of the scheme is poor than conventional sources. The main intention is to improve security by introducing RE schemes sensing and evaluating data collected from the LEC curve & CBCT table. In this recommended work, the existing power scheme network security improved by operating RE schemes efficiently without interrupting existing network performance.

In the recommended scheme 200 solar panels of 810W capacity are considered rather than 50 panels having a 28% capacity factor along with 35 Numbers of wind turbines with a capacity of 2MW rather than 20 Numbers of wind turbines with a 50.6% capacity factor [4],[5].

The security of the existing power scheme network including RE schemes can be assessed with the benefit of available various detailed arrangements. The set of available security indices for power scheme analysis are as below:

(a) FOLC - Failure of Load Contingency
(b) FOLP - Failure of Load Prediction
(c) RENS - Required Energy Not Supplied

To evaluate the power scheme security indices with the benefit of data available in the LDS curves and CBCT table. These indices used to extract a point of scheme accuracy indicating RE schemes with specific Forced Blockout Rate (FBR) [6].

2. GENERATION CONTINGENCYARRANGEMENT

The power scheme is an interconnection of different generating plants with transmission and distribution schemes connected to loads to meet the required load demand without losing continuity of power supply [9],[10],[11]. With the
benefit of detailed arrangement power schemes including RE sources are assessed. The security scheme indices benefit in meeting the required load demand by operating available generating units at that instant.

During excess power production or less load demand on generating stations due to the availability of resources, power outages cannot occur. The required power generating can be obtained by CBCT; it gives the contingency of a shortage of power or power loss due to excess load demand occurrence. The load model is introduced by the LEC. This can be obtained by noting or monitoring hourly load demand. The FBR of generating unit, is represented by U it is the unit contingency in the mandatory outage stage or unapproachable stage. The FBR can be calculated as follows [12].

\[
FOR = U = \frac{\sum T_{\text{down}}}{\sum T_{\text{up}} + \sum T_{\text{down}}} = \frac{\lambda}{\lambda + \mu}
\]
(1)

\[P_{\text{up}} = \frac{\mu}{\lambda + \mu}
\]
(2)

\[P_{\text{down}} = \frac{\lambda}{\lambda + \mu}
\]
(3)

Where,
\(\lambda\) is a rate of scheme failure, \(\mu\) is a repair rate of a generating unit, \(P_{\text{up}}\) is the contingency of per-unit generator upstate, and \(P_{\text{down}}\) is the contingency of per-unit generator downstate. \(T_{\text{up}}\) and \(T_{\text{down}}\) denote the operating time of the generating units and also in the failure time.

3. FAILURE OF LOAD ARRANGEMENT
ALGORITHM – AN DETAILED ARRANGEMENT

Generating unit without fail within the considered time extent (t) is known as security. With this power scheme security is denoted as:

\[R(t) = P(T > t)
\]
(4)

Where, \(T\) is the time of failure power scheme. The contingency of total unreliable scheme given by

\[F(t) = 1 - R(t) = P(T < t)
\]
(5)

Failure of Load is a more popular detailed arrangement considered in this paper for the implements in the scheme. This capacity of generating units is considered from CBCT table. With the benefit of this arrangement security of the existing power scheme with RE scheme has been improved. From the recommended arrangement each generation scheme is represented by two state models implemented with the help of Markov arrangement. The systematic model benefits in evaluating scheme accuracy indices like FOLC, FOLP, and RENS, which can be assessed from state models. The power lost instance information in hours can be identified by considering the FOL index in the given time interval, where the maximum power demand in hours more than the generating capacity at that instance.

The FOLC can be expressed as:

\[FOLC = \sum_{i=1}^{n} (p_i * t_i) (L_{\text{max}} > C)(h/yr)
\]
(6)

where,

\(n\) is the period of instant considered in days (hours), \(p_i\) possibility of \(i_{th}\) instance of outage obtained from the CBCT table, and \(t_i\) no. of times the generating unit lost and causes power outages. Reserve capacity is the excess power readily available to meet the sudden increase in load demand which can benefit to take up the increased load demand immediately and improves the security of the scheme. These days, the FOLC index can’t use consistently due to its specific scheme failure. The FOLC index represented by the equation

\[FOL = \sum_{i=1}^{n} (p_i) (L_{\text{max}} > C)
\]
(7)

The Figure 1 shows the flow chart which explains the algorithm in a sequential manner, used to calculate the Failure of Load Contingency (FOLC) index that identifies information on the security index in the power scheme implementation in order to determine the additional required power for the upcoming year in the process of planning. The required level of FOLP that imposes the service organization denoted as FOLP.

![Figure 1: Algorithm sequential manner, used to calculate the Failure of Load Prediction (FOLP) index](image)
below it is given
\[RENS = \sum_{i=1}^{n} (ENS_i \times p_i) (L_{max} > C) (MWh/yr) \] (8)

4. ESTIMATION OF PROPOSED SCHEME WITH SOLAR AND WIND

Table 1 shows Roy Billinton Test Scheme (RBTS) is considered in evaluation process of power scheme [7],[8]. Figure 2 shows the single line diagram for the RBTS. The recommended power scheme consists of 6 Bus with a different rating of the generator

(i) 5 Buses are loaded out of available 6 Buses,
(ii) Interconnected lines are 9, and
(iii) At Bus-1 2 units of 40MW, 1 Unit 20MW and 1 Unit 10MW and at Bus-2 1 Unit 40MW, 4 Units of 20MW and 2 Units of 5MW are considered.

![Figure 2: RBTS Single line diagram](image)

For case (I): consider power scheme with RE scheme with a capacity of 80.5MW to the RBTS with 4% FRO.

Wind System \(\rightarrow \) 20 wind forms of each 2 MW total of 40MW PV system \(\rightarrow \) 50 panels of each 810 W total of 40.5 MW

For case (II): Including steam units with a capacity of 80.5MW interfaced with the RBTS scheme. The FBR was 4%. Steam unit \(\rightarrow \) 2 Units of each 40.25 MW total of 80.5MW

![Figure 3: Load model of the scheme](image)

Table 1 shows Roy Billinton Test Scheme (RBTS) is considered in evaluation process of power scheme [7],[8]. Figure 2 shows the single line diagram for the RBTS. The recommended power scheme consists of 6 Bus with a different rating of the generator

(i) 5 Buses are loaded out of available 6 Buses,
(ii) Interconnected lines are 9, and
(iii) At Bus-1 2 units of 40MW, 1 Unit 20MW and 1 Unit 10MW and at Bus-2 1 Unit 40MW, 4 Units of 20MW and 2 Units of 5MW are considered.

![Figure 2: RBTS Single line diagram](image)

For case (I): consider power scheme with RE scheme with a capacity of 80.5MW to the RBTS with 4% FRO.

Wind System \(\rightarrow \) 20 wind forms of each 2 MW total of 40MW PV system \(\rightarrow \) 50 panels of each 810 W total of 40.5 MW

For case (II): Including steam units with a capacity of 80.5MW interfaced with the RBTS scheme. The FBR was 4%. Steam unit \(\rightarrow \) 2 Units of each 40.25 MW total of 80.5MW

![Figure 2: RBTS Single line diagram](image)

For case (I): consider power scheme with RE scheme with a capacity of 80.5MW to the RBTS with 4% FRO.

Wind System \(\rightarrow \) 20 wind forms of each 2 MW total of 40MW PV system \(\rightarrow \) 50 panels of each 810 W total of 40.5 MW

For case (II): Including steam units with a capacity of 80.5MW interfaced with the RBTS scheme. The FBR was 4%. Steam unit \(\rightarrow \) 2 Units of each 40.25 MW total of 80.5MW

Table 1: RBTS Security Data for Conventional Generation Unit

<table>
<thead>
<tr>
<th>Size (MW)</th>
<th>Type of Unit</th>
<th>No of Units</th>
<th>FBR</th>
<th>MTTF/h</th>
<th>MTTR/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Hydro</td>
<td>2</td>
<td>0.010</td>
<td>4380</td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td>Thermal</td>
<td>1</td>
<td>0.020</td>
<td>2190</td>
<td>45</td>
</tr>
<tr>
<td>20</td>
<td>Hydro</td>
<td>4</td>
<td>0.015</td>
<td>3650</td>
<td>55</td>
</tr>
<tr>
<td>20</td>
<td>Thermal</td>
<td>1</td>
<td>0.025</td>
<td>1752</td>
<td>45</td>
</tr>
<tr>
<td>40</td>
<td>Hydro</td>
<td>1</td>
<td>0.020</td>
<td>2920</td>
<td>60</td>
</tr>
<tr>
<td>40</td>
<td>Thermal</td>
<td>2</td>
<td>0.030</td>
<td>1460</td>
<td>45</td>
</tr>
</tbody>
</table>

Table 2: Evaluating RENS and FOLC for all possible Cases with recommended scheme

<table>
<thead>
<tr>
<th>Security indices</th>
<th>RBTS Base case</th>
<th>Case I</th>
<th>Case II</th>
<th>Recommended Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOLP (h/yr)</td>
<td>11.4879</td>
<td>0.6201</td>
<td>0.4341</td>
<td>0.3944</td>
</tr>
<tr>
<td>RENS (MWh/yr)</td>
<td>116.817</td>
<td>5.6201</td>
<td>4.6657</td>
<td>4.2416</td>
</tr>
</tbody>
</table>

Finally, the recommended analysis justifies that the security of the power scheme was enhanced imperatively with the help of renewable energy sources and also it benefits the power scheme planners while high petrifying of grid-inter connected renewable energy sources are considered.

5. CONCLUSION

In this recommended work, the extensive power scheme loyalty using solar and wind along with other forms of power production can be calculated and studied with the benefit of FOL arrangement. The power scheme accuracy will be
assessing and investigate the security scheme indices. Both LLE and RENS benefit in identifying and finding solutions improvements in power scheme security.

The observed results are interpreting by developing MATLAB code for unlike instances by seeing the CBCT table and LEC curve data. It also supports and provides necessary power up to its maximum capacity factor including RE sources. Finally, the purposed analysis approves the security of the entire scheme improved automatically by the usage of RE sources it beneficial for power scheme planners.

REFERENCES

2. A. Kumar, Shivani Sehgal, A. Deepika, A. Soni Capacity Outage Probability Table Calculation (Copt) of Haryana Power Generation Corporation Limited Using VBA, 2013IJTR.

3. A. Almutairi, M. H. Ahmed and M. M. A. Salama Inclusion of wind generation modeling into the conventional generation adequacy evaluation, 2014EPEC, IEEE.

5. C. S. R. Atla and K. Balaraman Generation planning with intermittent renewable energy sources using probabilistic methods, 2012ICPCES.

