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ABSTRACT 
 
A steam turbine is a critical machinery in power plants for 
generating a driving force of a generator. The high reliability 
of the turbine is a must to guarantee the availability of power 
plant in producing electricity. Therefore, a turbine condition 
monitoring (CM) system is needed to access real conditions 
and the health state of such equipment. Even though many 
CM systems have been developed, however, the current 
system was set up manually based on a determined threshold 
that was adopted from standard or best practice. The CM 
system that automatically generates the true alarm based on 
the performance of the generator is still rare. In this paper, an 
automated alarm system that uses the power output of a 
generator as a reference has been developed. The data for 
developing the alarm system is vibration data acquired by the 
SCADA system that is a very famous data acquisition system 
used in the industry. Furthermore, the method of developing 
such an alarm system is machine learning (ML) through a 
long short-term memory (LSTM) network. Validation of the 
proposed method has been conducted using a real system of 
SCADA data for training the LSTM. The trained LSTM is 
then used to generate an alarm system based on predicted data 
for turbine condition monitoring. The results show that the 
alarm generation and prediction give a plausible performance 
measured by RMSE. 
 
Key words: Vibration, condition monitoring, steam turbine, 
fault detection, long-short term memory, machine learning. 

 
1. INTRODUCTION 
 
Maintenance is a very important activity in the industry, such 
as power plant to ensure the reliability of critical machinery 
and assets. In strategic industries like a power plant, the 
division of maintenance plays an important role in extending 
the useful life of engineering assets such as machinery. 
Furthermore, the issue of reliability is also prominent in 
ensuring the operational process of the power plant. Recently, 

 
 

condition-based maintenance (CBM) has been implemented 
by many industries due to its relevance in the prediction of 
failure. CBM also provides the mitigation of the 
consequences of failure and can improve the profit and safety 
of the industry concerned. 
 
One of the critical parts of CBM is machine condition 
monitoring that can provide the information of a machine's 
condition through the sensors installed in the machine. 
Sensors send the information from the machine through 
related parameters such as vibration, temperature, current, 
voltage, acoustic emission and so on.  A robust CM system 
should involve observing the component of the machine to 
identify changes in the operation of a machine that can be 
indicative of developing faults. According to Stetco et al. 
(2018), CM can be used to fault detection in real-time or in 
the future, so the CM can be employed as tool for fault 
diagnosis and fault prognosis [1]. As a diagnosis tool, the CM 
identify the presence of failure that should be a prerequisite 
for ML in building model for prognosis. Then, the CM as 
prognosis tool where the underlying model recognize the 
patterns in the signal data that are predictive in the future. 
 
The use of ML method for prediction machine condition and 
prognosis has been listed in many research papers. 
Degradation assessment of gearbox using vibration signal and 
extreme learning machine (ELM) have been reported [2]. He 
used vibration signal and decomposed the signal to become 
intrinsic mode functions (IMFs) and performed feature 
extraction using kernel principal component analysis 
(KPCA). The research of CM using the vibration signal was 
also reported for detecting the changes in operating 
conditions of the rotating machine [3]. He constructed a 
multisensors based for monitoring strategy. He also 
performed multidimensional time-series analysis using 
autoregressive integrated moving average (ARIMA) through 
the regression process.  
 
Another research was reported that recurrent neural networks 
(RNN) was employed for predicting remaining useful life 
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(RUL) based on vibration signal [4]. It has proposed a bearing 
degradation indicator called waveform entropy as the data 
input for RNN learning to identify the degradation state. 
However, all the mentioned papers above are investigated 
based on the vibration signal which had high-frequency 
sampling during the data acquisition process. So, it was 
regarded as a full vibration signal with high resolution. 
Nevertheless, in the case of a real system in the industry, 
sometimes such data do not exist. That means it is very 
difficult to find and deals with the vibration data acquired in 
high-frequency sampling.  
 
Usually, the industry such as the power plant only provides 
the acquired vibration data from SCADA data acquisition 
with low sampling and the data has already been converted 
into feature data such as root-means squared (RMS) 
vibration. It means a feature extraction cannot be performed 
anymore from the data. The challenge is how to deal with this 
data for conducting machine CM that can generate an 
automatic alarm and predict the future condition of machine. 
In this paper, both abilities of CM will be used as an alarm 
generation for monitoring and fault detection based on 
vibration data acquired from real system. In the case of 
industrial real system, many experts performed investigation 
and research on the topics related to wind turbine systems 
with their own methods. Zaher et al. [5], Feng et al. [6], 
Zhang et al. [7], Zhang et al. [8] and Borchersen et al. [9] are 
researchers of wind turbine system who used SCADA for 
conducting fault diagnosis.  
 
Other researchers are Schlechtingen et al. [10] and Yang et 
al. [11] who conducted research work on condition 
monitoring of wind turbine based on SCADA data using 
normal behavior model. Song et al. [12] reported a research of 
wind turbine state health monitoring using SCADA data with 
Bayesian approach. Zhao et al. [13] studied prognosis of wind 
turbine based on SCADA data using an anomay index. 
Bangalore and Patricksson [14] reported a research of 
analysis SCADA system for wind turbine fault detection.  
 
Recently, Gonzalez et al. [15] conducted research of 
sensitivity study on wind turbine monitoring based on 
SCADA data. However, the research used SCADA data 
implemented on steam turbine for performing fault diagnosis 
and prognosis are still rare. 
 
The rest of the paper is presented as follows: first, the method 
of a proposal for generating an alarm prediction system based 
on SCADA data will be presented. Second, the presentation of 
vibration SCADA data and its processing are reviewed. 
Third, the analysis of the results will be discussed including 
the validation of the proposed method. Finally, the conclusion 
is drawn to highlight the finding of the present study. 
 

2. EXPERIMENTAL METHOD 
 
A neural network, as so-called long short-term memory 
(LSTM) recurrent network, has memory function and 
powerful series processing ability, which attracts much 
attentions recently. The experts of developer, the recurrent 
network are Elman networks [16] and Jordan networks [17], 
in which the activation of nodes calculates not only the 
current input but also the previous return value. Hochreiter et 
al. [18] proposed long short-term memory (LSTM) cells, 
adding three switches to hidden layer nodes. LSTM-RNN 
achieves a really good performance in sequential data 
processing because of the recurrent feedback. For instance, 
Liwicki et al. [19] applied LSTM recurrent network to 
handwritten digital recognition and achieved a state-of-art 
result. Sutskever et al. [20] constructed two multi-layer 
LSTM networks for machine translation. There are some 
documented investigations in neural network and signal 
processing that can be considered as source of reference 
[21-23]. 
 
The LSTM recurrent network employed in this present study 
is shown as Figure 1, where x1, x2, …, xm are representation of 
the inputs of the network, and y1, y2, …, yn are the outputs. 
The inputs are e.g., historian data which is originated from 
SCADA vibration, temperature and rotating speed signals 
acquired from turbine bearings and the outputs are the 
predictions of vibration signals ahead. The notation of W(1), 
W(2), and W(3) are the weights of the layer connection, which 
are represented by solid lines. In addition, Wt

(1), Wt
(2), and 

Wt
(3) are the weights of the time connection, which are 

represented by dashed lines. 
 

 
Figure 1: Architecture of recurrent neural network 

 
Figure 2 shows the hidden node of a LSTM cell and its 
structure, where ht represents the output of LSTM cell at 
current time t, xt denotes the inputs of LSTM cell at current 
time t and A is another LSTM network [24]. Conceptually, an 
LSTM has three gates, to protect and control the cell state. 
The first gate is shown as Figure 3, called the “forget gate 
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layer”, decide what information that would be throw away 
from the cell state using sigmoid layer from Eq. (1). The 
second gate is shown as Figure 4, called the “input gate 
layer”, decides what new information that would be store in 
the cell state. There two steps in the “input gate layer”. First, 
decide which values that would be update using sigmoid layer 
from Eq. (2), then second, create a vector on new candidate 
values tC that could be added to the state using tanh layer 

from Eq. (3).  We can update the old cell state 1tC  , into a new 

cell state tC using Eq. (4). Finally, the third gate is shown as 
Figure 5, called the ”output gate layer”, decide what parts of 
the cell state that would be the output using sigmoid layer 
from Eq. (5), then decide the chosen output using tanh layer 
using Eq. (6) by multiply it with the result from Eq. (5). 
 
 
 
Equations: 

( [ 1, ] )t f t t ff W h b    
        (1) 

( [ 1, ] )t f t t ff W h b    
        (2) 

( [ 1, ] )t i t t ii W h b              (3) 

1tanh( [ , ] )t C t t CC W h b  
        (4) 

1t t t t tC f C i C             (5) 
( [ 1, ] )t o t t oo W h b     ; tanh( )t t th o C    (6) 

 

 
Figure 2: Presentation of LSTM cell. 

 
 

 
Figure 3: Forget gate layer. 

 
 

tCti

 
Figure 4: Input gate layer. 

to

 
Figure 5: Output gate layer. 

 
The proposed method is shown as a flowchart in Figure 6. 
This flowchart is a modification of previous work [25].  
 
There are four steps of the method for alarm generating by 
means of LSTM neural networks. First, building a model of 
normal behavior using SCADA data without faults. This step 
is performed by LSTM training. The testing of a trained 
LSTM is also performed to validate the model of normal 
conditions. Second, the determination of the alarm setting is 
conducted by calculated the deviation of the actual signal and 
predicted signal. In this step, the threshold is introduced as a 
reference to alarm prediction in the next step. Third, the 
online SCADA data comes to the trained LSTM as a new 
input for prediction. The predicted data is compared with the 
actual then their deviation is calculated. The final step is a 
determination of alarm when the deviation reaches the 
threshold. 

 

Figure 6: The proposed method for alarm prediction. 
 
SCADA Data 
 
The data used in the present study comes from the SCADA 
CM system of specific steam turbine in power plant. The 
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measurement was conducted during nine months starting 
from April 2017 to December 2017. The collected data 
consists of 47 sensor parameters including vibration, 
temperature, power output, rotating speed, etc. All data were 
acquired in 10 minutes average and the total data was 39,600. 
The turbine is a direct-driven without gearbox which makes 
the bearing suffer most of the torque and become the 
vulnerable element. The vibration of bearing is regarded as 
the main indicator of the turbine condition with a specific 
threshold of alarm setting which is set up too low to avoid the 
catastrophic damage. Figure 7 and 8 show the presentation of 

six vibration signals of turbine bearing and rotating speed 
(RPM), respectively. 
 
3. RESULTS AND DISCUSSIONS 
 
3.1. Training and testing the model prediction 
 
LSTM model prediction was established using selected 
parameters from a lot of relevant turbine parameters collected 
by the SCADA system. The selected parameters for input and 
output LSTM training is presented in Table 1. 

 
Table 1: The selected parameters for input and output of LSTM. 

Input Model output 

Bearing vibration (t-1) 
Bearing oil drain temperature (t-1) 
Metal turbine bearing temperature A (t-1) 
Metal turbine bearing temperature B (t-1) 
Power output (t-1) 
Rotating speed (t-1) 

Bearing vibration 
(t) 
 

 
 

 
 

 
Figure 7: Vibration of six turbine bearings. 

 

 
Figure 8: Turbine rotating speed signal (RPM) 
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Figure 9: Prediction of vibration parameter of bearing 5. 
 
 

 
Figure 10: Deviation vibration parameter between actual and prediction of bearing 5. 

 

 
Figure 11: Deviation vibration parameter between actual and prediction of bearing 6. 
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Figure 12: Alarm and warning for bearing 5. 

 

 
Figure 13: Alarm and warning for bearing 6. 

 

 
Figure 14: Generator output. 

 
 

Six turbine bearings are modeled using LSTM training with 
six months (April to September) measured input parameters 
in 2017. The trained LSTM is then used to predict the output 
parameters from October 2017 to December 2017. Figure 9 
presents the prediction of the vibration parameter of bearing 5 
and the deviation between two values. It shows the good 
performance of model prediction that can capture the 
dynamic patterns of bearing 5. The root mean square error of 
the prediction is 0.7, which means the model is fair enough to 
describe the dynamics of the vibration pattern. Furthermore, 
the trend of deviation can be continuously monitored to 
indicate the development of bearing faults. 
 
3.2. Alarm and warning setting 
 
Alarm and warning settings are carried out using a deviation 
of actual and prediction data. Actually, this step needs data 
parameters included the faults in the system. The data 
parameter with faults is used to train the LSTM so that it has 

experience with faults. However, it is very difficult to obtain 
the real data including faults data in the power plant because 
the operating condition threshold was setup in safety mode. If 
the operating condition meets the signal which exceeds the 
threshold so the system will be trip soon. 
 
Figure 10 depicts the deviation of the vibration parameter 
between actual and prediction. Observing this figure, the 
distribution of deviation along time measurement is similar. 
Furthermore, there is no fault indicated in the distribution of 
deviation. The red and yellow dashed line represents the fixed 
thresholds for warning (threshold = 2) and alarm (threshold = 
3) generation. A similar phenomenon also exists in other 
bearings as presented in Figure 11 where the thresholds are 1 
and 3 for alarm and warning, respectively. 
 
Based on Figure 10 and Figure 11, the present study proposes 
an alarm prediction that is not fixed alarm or warning but 
depending on the distribution of deviation parameter 
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vibration. This idea emerges because in a real system the 
operating condition sometimes changes rapidly so that the 
dynamic alarm and warning are needed. To avoid the false 
alarm and warning, a fixed threshold cannot be directly used. 
The followings are the process of determining a dynamic 
alarm and warning based on deviation of vibration parameter 
and generator power output [25]: 
 
1. Determining the total time interval of measurements (Ttot) 
2. Finding the time for generator when producing power 

output in the time interval (Tprod). 
3. Determine Talarm and Twarn when the deviation over the 

fixed alarm and warning. 
4. Calculating the percentages of Talarm and Twarn: 

 

100%alarm
alarm

tot

TP x
T


        (7) 

100%warn
alarm

tot

TP x
T

         (8) 

 
Figure 12 and 13 shows the generation of alarm and warning 
for bearing 5 and 6, respectively. Figure 12 informs that the 
alarm and warning seem to be dynamic as operating condition 
changes. Alarm and warning change according to real 
condition determined by the deviation between actual and 
prediction of vibration parameter. When the alarm and 
warning reach the dashed blue line means the turbine 
indicates some faults. 
 
Figure 13 presents the alarm and warning of bearing 6 
indicate the warning over the threshold. It means some 
abnormalities occur and successfully be captured by the 
vibration parameter. Such abnormalities make the percentage 
of warning reach 100% that means there is no power output 
resulted from the generator as depicted in Figure 14. The 
proposed method for alarm and warning prediction is 
established relatively based on the power output of the 
generator. When the power output of the generator is 
maximum that means the power plant condition is well. 
Otherwise, the minimum power output produced by the 
generator means the system is unhealthy. 

 
4. CONCLUSION 
 
The present study proposes the method of development of 
alarm and warning prediction for the steam turbine. The data 
used in this study is vibration data acquired by SCADA 
system which is a famous data acquisition in industry. A 
machine learning method so-called LSTM is performed for 
generating an alarm and warning prediction based on 
learning from historian data of steam turbine. Six months 
historian data from April to September 2017 of vibration, 
temperature of bearing metal, generator power output, turbine 
rotating speed and bearing oil drain temperature are used for 

building the bearing model prediction. Then, the trained 
LSTM is tested using data input from October to December 
2017 to predict the output of the vibration parameter of 
bearing. The deviation of actual and prediction of vibration 
parameter is evaluated using RMSE for measuring the 
performance of prediction. The alarm and warning system is 
calculated based on the generator power output so that the 
alarm and warning system is dynamic and depends on the real 
condition of the turbine. 
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