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ABSTRACT 
 
The “Istituto Idrografico della Marina Militare” (IIMM) 
secures the Italian hydrographic service through the execution 
of bathymetric surveys, the production of nautical charts and 
publications, and the dissemination of nautical information, 
aimed at the safety of navigation and of human life at sea. The 
datasets of depth points acquired with bathymetric surveys are 
useful to model sea-bottom starting from the interpolation 
methods available in Geographic Information System (GIS) 
software. In this paper, a single-beam dataset from IIMM is 
used with the aim to compare different interpolation methods 
for sea bottom GIS modelling. The study area is the sea close 
to the east coast of Isola del Giglio in Tuscan Archipelago 
(Italy). The following nine different interpolation methods are 
selected and applied using ArcGIS software, version 10.3.1: 
Inverse Distance Weighting (IDW), Local Polynomial 
Interpolations of different orders (from the first to the fifth 
order), Ordinary Kriging, with three different Variogram 
models (Gaussian, circular, exponential). The result accuracy 
is tested via cross-validation leave-one-out, so statistical 
values (minimum, maximum, mean and root mean square 
error) are calculated for each interpolation method, taking into 
account the residual given for each sampling point between 
measured and interpolated value. Finally, a 3D model is 
created from the best interpolating algorithm. The results 
remark the role of the cross validation as preliminary way to 
select the most preforming interpolation method that is 
difficult to identify in other way.  
 
Key words : Single-beam, Interpolation, GIS Modelling, 
Bathymetry.  
 
1. INTRODUCTION 
 
When dealing with geophysical sciences, it is essential to 
introduce spatial interpolation, which can be defined as the 
estimation of the variables at undetected locations in 
geographic space based on the values at observed locations 
[1]. Spatial interpolations can be classified in accordance with 
their basic hypotheses and mathematical natures in two 
categories: deterministic and geostatistical methods [2, 3]. 
Deterministic interpolation techniques apply mathematical 
functions to find the values at unknown locations based on 
relation to nearby data points [4]. Geostatistical methods, 

 
 

based on the theory of regionalized variables [5], are 
probabilistic statistical methods that allow to take advantage 
of the spatial correlation between neighboring observations to 
predict attribute values at unsampled locations [6].  
In the case of geostatistical modeling, the uncertainty of the 
interpolation result can be modeled with a much higher level 
of detail [7], as reported from several authors [8, 9, 10]. 
Spatial interpolation is a concept strongly related to the digital 
terrain model (DTM), introduced by Miller & Laflamme [11], 
or more generally to the digital elevation model (DEM). DEM 
can be defined as the digital representation of the land surface 
elevation with respect to any reference datum [12]. Many 
techniques permit to acquire data for DEM, such as land 
survey [13], LIDAR [14], photogrammetry [15], UAV 
surveys [16], etc. 
Interpolation techniques that permit to generate different 
kinds of DEM, can be also used for seabed models: this can be 
indicated as Digital Depth Model (DDM) since it describes 
the variability of the distance between the sea surface and sea 
bed [17]. As a matter of facts, according to the International 
Hydrographic Organization (IHO), interpolation techniques 
permit to obtain a bathymetric model which can be defined as 
“a digital representation of the topography (bathymetry) of the 
seafloor by coordinates and depths” [18]. Bathymetric data 
can be achieved with different techniques, from optical 
satellite sensors [19], nautical maps [20], multi-beam 
echo-sounders [21], etc. 
The aim of this article is to compare different interpolation 
methods from a single-beam dataset evaluating their 
accuracy. The most performing model is then used to acquire 
a 3D view of the sea floor. All the operations are carried out in 
ArcGIS version 10.3.1 using the extension Geostatistical 
Analyst. The paper is structured as follows. In the next 
section, we present the study area and the dataset. In section 3, 
we examine nine interpolation methods, resuming their 
principal characteristics: Inverse Distance Weighting (IDW), 
Local Polynomial Interpolations of different orders (from the 
first to the fifth order), Ordinary Kriging, with three different 
Variogram models (Gaussian, circular, exponential); in 
addition, we define the methodological approach to assess the 
accuracy provided by their application. In section 4, we 
analyze and discuss the results obtained with the application 
of the considered methods. Finally, we conclude the paper in 
section 5, remarking the highlights of the study and 
delineating future developments. 
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2. STUDY AREA AND DATASET 
 
2.1 Study area 
 
Isola del Giglio is an Italian island, the second largest in the 
Tuscan Archipelago, lying within the Arcipelago Toscano 
National Park, situated in the Tyrrhenian Sea (Figure 1).  

 
Figure 1: Isola del Giglio collocation in Tuscan Archipelago. 

 
The island has an area of 21.2 Km2, the coastline has an 
approximate extension of 27 Km and is located 15 Km off the 
promontory of Monte Argentario [22]. Mainly mountainous, 
it consists almost completely of granite, crowning in the 
Poggio della Pagana, which has an elevation of 496 meters 
[23]. Its coasts are predominantly high and rocky with 
numerous small bays and inlets.  

The study area is located off the coast of the town of Giglio 
Porto, which is characterized by a steep rocky slope that drops 
quickly to a 100 m depth at a distance of about 350 m from the 
coast [24].  

An aerial view of the island is shown in Figure 2. 
 

 
 

Figure 2: Aerial view of Isola del Giglio. 

The considered study area concerns the sea floor inside and 
neighboring the gulf  known as “Cala delle Cannelle”, 
between “Punta dello Smeraldo” and “Punta di Capo Marino” 
in the east side of the island (Figure 3). 

 
Figure 3: The study area (in orange). 

The area has an extension of about 0.34 Km2 (714 m x 478 
m). Its conformation resembles a bowl, becoming deeper 
moving away from the shoreline. The shallower area has a 
minimum depth of 4.5 meters, is really close to the coast, 
while the deepest point has a depth of 98 meters. 

2.2 Dataset 
The dataset for this work was provided by “Istituto 
Idrografico della Marina Militare” (IIMM), acquired during a 
survey off the coasts of Giglio Island. The acquisition was 
carried out with single-beam technology. It comprises a total 
of 1609 points with a depth precision of 10 cm and refers to a 
cartographic scale of 1:2000 defined in a UTM/WGS84 
representation system. From the starting dataset 883 points 
are chosen: the ones located in the central area of the survey 
and sampled as regularly as possible (Figure 4). 

 
 
Figure 4: The selected 883 points of the starting dataset. 
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3.  METHODS 
 
3.1 Interpolation methods 
 

The selected dataset is interpolated by the use of the 
following models: 

 Inverse Distance Weighting (IDW);  
 Local Polynomial Interpolation of the First Order 

(LPI-1); 
 Local Polynomial Interpolation of the Second Order 

(LPI-2); 
 Local Polynomial Interpolation of the Third Order 

(LPI-3); 
 Local Polynomial Interpolation of the Fourth Order 

(LPI-4); 
 Local Polynomial Interpolation of the Fifth Order 

(LPI-5); 
 Ordinary Kriging with Gaussian model (OK-G); 
 Ordinary Kriging with circular model (OK-C); 
 Ordinary Kriging with exponential model (OK-E). 

 
IDW is one of the most commonly used methods for surface 
modelling. It is based on the intuitive concept that the closest 
known values must carry more weight in determining the 
interpolated value for any unmeasured location [25]. 

Local polynomial interpolation (LPI) uses a selected sample 
of known points from the entire dataset and a polynomial 
equation to estimate unknown values. In other terms, it permit 
to fit many polynomials, each within specified overlapping 
neighborhoods [26]. It is similar to Global Polynomial 
Interpolation, except that it does not use the entire dataset, but 
only a part of them included in a window that is shifted across 
the map area [27]. A minimum number of points is required in 
reference to the order of the polynomial: three points for a first 
order polynomial, six points for a second order, ten points for 
a third order, etc. [28]. In the case of big data, that, as is well 
known, are characterized by a huge volume [29, 30], 
polynomial interpolation would represent the data succinctly 
[31].  

Similarly to IDW, the Kriging interpolation weights the 
neighboring measured values to develop a prediction for an 
unmeasured location [32]. However, in Kriging the weights 
are built on the total spatial arrangement of the measured 
points too [33]. In fact, Kriging assumes that spatial 
correlation can be used to describe the variation in the surface, 
that is a reflection of the distance or direction between sample 
points [34]. The semi-variogram model is used to best fit the 
empirical semi-variogram that plots the variance of the 
difference between field depth values at two locations against 
the distance [17]. Among the semi-variogram models 
available in literature, three of them are considered in this 
study: Gaussian Model, circular model, exponential model. 

The applications of all considered methods are carried out in 
Geostatistical Analyst, extension powered by ArcGIS [35]. 
Particularly, a specified number of points, or all points within 
a specified radius, are used to determine the output value of 
each location. Fixing the value of this radius, the number of 
the neighbors is defined. In addition, the neighborhood can be 

divided into sectors to include values from all directions [36]. 
Four sectors (with offset = 45°) are introduced when required. 
Other parameters, such as maximum and minimum number of 
neighbors, are set with specific values in every case to 
optimize the results. 

 
3.2 Accuracy evaluation 
 
To evaluate the accuracy of the interpolated models, 
cross-validation, a statistical validation technique for 
assessing the interpolation model performance [37], is used. 
Different approaches are typically adopted for cross 
validation. Leave-one-out method omits a point and calculates 
the value at this location using the remaining points. The 
procedure is repeated for a second point, and so on. The 
difference between the predicted and actual values at the 
location of the omitted point in turn (residual), is calculated 
for evaluating the goodness of the adopted interpolation 
method [38].  

Root mean square error (RMSE), that is just the square root of 
MSE [39], is the best indicator to evaluate the interpolation 
method performance. It is given by the following formula: 
 

푅푀푆퐸 =
∑ (푧 (푥, 푦)− 푧 (푥,푦))

푁  

 
 
Where: 

 N is the number of the depth points; 
 zi (x,y) is the measured depth at the location i(x,y); 
 z푖′  (x, y) is the estimated depth at the same location 

i(x,y). 

 

4. RESULTS AND DISCUSSION 
The results of interpolations computed by Geostatistical 
Analyst are 2D models. Finally, nine 2D bathymetric models 
are obtained in this study and reported below (Figures 5 to 
13). 

 
Figure 5: 2D bathymetric model resulting from Inverse 

Distance Weighting interpolation. 
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Figure 6: 2D bathymetric model resulting from Local 
Polynomial Interpolation of the First Order. 

 

 
 

Figure 7: 2D bathymetric model resulting from Local 
Polynomial Interpolation of the Second Order. 

 

 

Figure 8: Figure 8 - 2D bathymetric model resulting from 
Local Polynomial Interpolation of the Third Order. 

 

 
Figure 9: 2D bathymetric model resulting from Local 
Polynomial Interpolation of the Fourth Order. 

 

 
 

Figure 10: 2D bathymetric model resulting from Local 
Polynomial Interpolation of the Fifth Order. 

 

 
Figure 11: 2D bathymetric model resulting from Ordinary 

Kriging (Gaussian Model) Interpolation. 

 



Emanuele Alcaras et al.,  International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 591 - 597 
 

595 
 

 

 
 

Figure 12: 2D bathymetric model resulting from Ordinary 
Kriging (Circular Model) Interpolation. 

 
 

Figure 13: 2D bathymetric model resulting from Ordinary 
Kriging (Exponential Model) Interpolation. 

 

For each interpolation method, the following statistic values 
calculated for the residuals generated by the cross-validation 
approach are considered: mean, minimum (Min), maximum 
(Max), standard deviation (St. Dev.), root mean square error 
(RMSE). Those values are reported in Table 1. 

 

Table 1: Statistical values of residuals resulting from cross 
validation 

Interpolati
on method 

Min 
(m) 

Max 
(m) 

Mean 
(m) 

St. 
Dev. 
(m) 

RMSE  
(m) 

IDW -9.400 6.052 -0.123 1.772 1.776 

LPI-1 -7.093 6.208 0.139 1.889 1.894 

LPI-2 -7.448 5.959 -0.003 1.186 1.186 

LPI-3 -7.076 6.586 0.022 1.310 1.310 

LPI-4 -6.985 7.637 -0.004 1.321 1.321 

LPI-5 -7.554 22.874 0.025 1.549 1.549 

OK-G  -7.592 7.782 0.235 1.667 1.683 

OK-C  -6.785 6.356 0.006 1.215 1.215 

OK-E -6.784 6.155 0.002 1.219 1.219 

 

The results of the elaborations permit to understand which 
method better fits this single-beam dataset. Particularly, the 
range of minimum values goes from -9.400 m obtained for 
IDW, to -6.784 m resulting from OK-E. The range of 
maximum values goes from 5.959 m obtained for LPI-2, to 
22.874 m resulting from LPI-5. The range of mean values 
goes from –0.123 m obtained for IDW, to 0.235 m resulting 
from OK-G. The range of RMSE goes from 1.186 m for LPI-2 
to 1.776 m resulting from IDW. 

By analyzing the RMSE values, LPI-2 seems to be the most 
performing interpolation method. However, other algorithms 
seems to perform well too, e.g. OK-C and OK-E. Generally, 
kriging interpolators work better than polynomial 
interpolators, but different results can be achieved, such as in 
this case, because the particular morphology of the 
sea-bottom.  

Because it presents the best accuracy level, the 3D model 
resulting from LPI-2 algorithm application is built in the 
ArcGIS tool named ArcScene [40], and reported in figure 14.  

 
Figure 14: 3D representation of the seafloor using Local 
Polynomial Interpolation of the Second Order. 

 5. CONCLUSION 
Interpolation algorithms available in GIS software allow to 
easily model sea bottom starting from single-beam data. The 
analysis of the specific situation to define a-priori the most 
suitable interpolation tool is difficult, so the comparison of the 
accuracy level obtained by the application of each algorithm 
is to prefer. In fact, cross validation implemented by 
leave-one-out method permits to select the most performing 
interpolation algorithm for accurate sea bottom model.  

In this paper, the attention is focused on the interpolation 
techniques for a dataset acquired by IIMM using a 
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single-beam echo-sounder, off the coast of Isola del Giglio, in 
the Tuscan Archipelago (Italy). Nine algorithms are applied to 
883 depth points, contained in an area of about 0.34 square 
kilometers. As an outcome of the elaborations, LPI-2 model 
results the most adaptive to this specific dataset, probably due 
to the particular conformation of the investigated area. 
Ordinary Kriging gives also a good response, ratifying the 
great flexibility and adaptableness of kriging methodology to 
interpolate depth points that are not equally distributed.  

However, this experiment remarks the limits of the IDW 
algorithm, and the limit given by the conformation of the area 
to other methods i.e. the Local Polynomial interpolation of the 
First Order. 

Improvements for the future could be dedicated on the 
relationship among interpolation methods and sea bed 
morphology as well as on the relationship between point 
density and model accuracy. 
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