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 
ABSTRACT 
 
This work is aimed at mathematical simulation of 
nonstationary transfer of 1:1 electrolyte in depleted layer near 
ion-exchange membrane and determination of fundamental 
regularities of this process, including analysis of structure of 
diffusion layer and its variations in time. It is demonstrated 
that the diffusion layer in overlimiting regime is more 
complicated than in sublimiting regime, when the diffusion 
layer is comprised of two regions: electroneutrality region and 
minor boundary layer near cation-exchange membrane where 
the region of quasi-equilibrium space charge is generated. It 
is known that in overlimiting stationary regimes, the 
additional extended region of space charge is generated. For 
nonstationary problems, the interest is attracted to variations 
of boundaries of these regions in time, existence of 
asymptotics in time. This is a novelty of the nonstationary 
problem. This work describes classification of problems of 
nonstationary transfer, according to which variations of 
electroneutrality regions and spatial charge in time have been 
studied. Boundary problems are solved by finite element 
method.  
 
Key words : membrane systems, diffusion layer, 
mathematical model, overlimiting transfer, intensive current 
regimes.  
 
1. INTRODUCTION 
 

Membrane systems are referred to crucially important 
technologies. They are used for water purification, in 
microfluidic devices (lab-on-a-chip), for development of new 
biomaterials, upon development of fuel cells, etc. Upon 
current passage in these systems, a diffusion layer is 
generated [1-9]. 

Levich has demonstrated1 that when sublimiting current 
passes through electrode/solution, the diffusion layer is 
subdivided into electroneutrality region (ENR) and space 
charge region (SCR), whereas the latter region is 

 
 

quasi-equilibrium since the distribution of concentration, 
field intensity, etc. do not depend on current density. 
Rubinstein and Shtilman2 have demonstrated that in the case 
of overlimiting planes of current, in addition to ENR and 
quasi-equilibrium SCR, there appears the so-called extended 
SCR. Stationary problems are analyzed using decomposition 
method in [3, 4].  
Nonstationary problems are studied in [1, 5, 6, 7]. In these 
works, the main attention is paid to the analysis of startup 
time depending on problem variables; in [1, 4, 6], 
potentiostatic regime is analyzed, when potential jump is 
considered as constant; and in [5], galvanostatic regime with 
constant current is considered. In this work, the main 
attention is devoted to classification of problems of 
nonstationary transfer, regularities of established structure of 
diffusion layer, and kinetic regularities of transfer of salt ions 
depending on the problem type. 
 
2. METHODS 
 
2.1 Mathematical Model 
 

Mathematical model is comprised of a set of equations with 
partial derivatives of the first order, boundary and initial 
conditions. The equations are based on common conservation 
laws, thus, the classification is made with regard to boundary 
and initial conditions. 
 
2.1.1  Model equations 
 

It is known [8] that nonstationary 1D mathematical model 
of mass transfer of binary electrolyte is described as follows: 
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1 1 2 2( )cI F z j z j         (4) 
 
where (1) are the equations of material balance, (2) are the 

Nernst–Planck equations for flows of sodium ions 
 Nai 1  and chlorine ions 

 Cli 2 , the charge 

numbers of cations: 11 z , and anions: 12 z , (3) is the 
Poisson equation for potential of electric field, (4) is the 
equation of current passage, which means that current 
passing through the diffusion layer is determined by flow of 

ions. The constants: a  is the dielectric permeability of 
solution, F  is the Faraday number, R  is the universal gas 
constant. The required functions:   is the potential, 

x
E







 is the intensity of electric field, iC , ij , iD , cI  
are the concentration, the flow, the diffusion coefficient of the 
i-th ion, the current density determined by ion flow. 
 
2.1.2 Boundary conditions 

 
From considerations of physics it follows that boundary 

conditions for nonstationary problem can be determined by 
analogue with stationary problem1,3, except for the condition 
for potential jump. 

Let us assume that 0x  corresponds to the depth of 
solution where the condition of electroneutrality is valid, and 

Hx   is the conventional interphase boundary of 
solution–ion-exchange membrane (Fig. 1).  

Let us assume that cation-exchange membrane (CEM) is 
ideally selective. In general case in the nonstationary 
problem, the ion concentrations deep in solution depend on 
time. However, for most physically interesting problems they 
can be considered as constant. The value of cations at the right 

boundary ( Hx  ) is set equal to exchange capacity of 
CEM. Theoretically, the exchange capacity of membrane 
varies in time, however, for small time interval this variation 
can be neglected. It follows from ideal selectivity of CEM that 
anion flow through it is zero. While studying transfer of salt 
ions in diffusion layer, it is required to distinguish between 
two different regimes: potentiostatic regime, when the 

potential jump dttH   ),0(),(  is considered to be 
constant, independent on time t, and potentiometric regime, 
when the potential jump depends on time, that 

is )(),0(),( tttH d  . Thus, for instance, for 
calculation of current–voltage characteristic (CVC), 

tdtd )( , where d is the increment rate of potential 
jump. Since the potential function is determined with the 
accuracy up to arbitrary function depending on time (see Eqs. 

(2) and (3)), then, without loss of generality, it is possible to 

assume that 0),0( t , then )(),( ttH d  . The 

solution at the left boundary of diffusion layer ( 0x ) is 

electrically neutral, thus,   0),0(,0 21  tСtС . Hence, 
we have the following boundary conditions: 
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2.1.3 Initial Conditions 

 
Formulation of initial conditions (at t = 0) is significantly 

different depending on the research objectives, they can be 
classified, for instance, as follows:  

1) If space charge generation is analyzed, current–voltage 
characteristics are calculated, or similar problems are 
considered, then the initial state of physical process should be 
sublimiting. Therefore, the initial conditions should 
determine sublimiting state. Such boundary conditions are, 
for instance, models of transfer in diffusion layer in the cross 
section of initial segment of desalination channel of 
electrodialysis apparatus [1]. 

2) During simulation of transfer in diffusion layer in the 
cross section of initial segment of desalination channel, it 
should be taken into account that the established transfer is 
already overlimiting process and, hence, the initial conditions 
should determine overlimiting state of the diffusion layer. 

3) Mixed initial conditions, when, for instance, the initial 
distribution of concentration satisfies the condition of 
electroneutrality (which corresponds to overlimiting regime), 

and d  is so high that it corresponds to overlimiting 
regime. Such initial condition can occur, for instance, upon 
simulation of transfer using piecewise current of high 
intensity [2,7,9]. 

4) Some works4 study the influence of pulse currents on 
transfer of salt ions in desalination channel of electrodialysis 
apparatus. Upon mathematical simulation of such regime in 
diffusion layer, the initial conditions are comprised of single 
localized pulses and the problem can be interpreted as 
distribution of pulsed currents in time. 

The initial conditions in general case are written as 
follows: 

 
   xСx,С 101 0  ,    xСx,С 202 0  , 

   xx, 00                (5) 
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where these functions are determined according to items 1) 
– 3).  

Thus, for instance, for sublimiting regime it is possible to 

set   010 СxС  ,   020 СxС  ,   00  x , where 0    
is sufficiently low. Since the initial conditions satisfy the 

condition of electroneutrality and 0  is low, then we have 
sublimiting regime. 

Overlimiting initial condition can be exemplified as 
follows: 
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where inI  is the density of current passing through the 

diffusion layer at initial time, herewith,  in ultI I .  
Equations (6) – (9) were derived using the solution to 

stationary problem [1,3]. 

5) Certain interest is attracted to analysis of discharge of 
accumulated space charge upon sudden deactivation of 
external source at any time tini . In this case, variation of 
potential jump can be set, for instance, initially in the form of 
linear function of time t, to certain tini, and then zero.  

6) Stability of transfer, calculation of impedance, etc. are 
analyzed using periodic regime of potential jump variation, 

for instance,   )sin(, 0   tdHt , where 
 ,,,0 d  are the potential jump, the amplitude, the 

oscillation frequency, and the phase shift 
 

3.  RESULTS 
 
3.1 Results of Numerical Analysis 
 

Numerous calculations were performed in the work with 

many variables. However, typical concentrations 0 0.1C   

mole/m3, and thicknesses of diffusion layer 
410H  are 

retained.  
It should be mentioned that for each regime, the 

calculations are performed for different number of seconds 
and different increment depending on the purposes. 
 
3.1.1 Structure of diffusion layer 
 

The main results of the work are illustrated in Fig. 1. 

 

 
a) 

 
b) 
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c) 

 
d) 

  
Figure 1: Schematic view of diffusion layer (without scale): a) sublimiting initial state, and overlimiting continuous potential jump 
(overlimiting potentiostatic regime); b) overlimiting initial state and overlimiting potentiostatic regime; c) mixed initial state for 
calculation of CVC; d) current regime, for analysis of discharge current (see Section 5): I – ENR, II – region of extended space 

charge near CEM, III – region of quasi-equilibrium space charge (boundary layer near CEM) 
 

It follows from Fig. 1 that in all cases there is the expected 

ENR (region 1 in the figure), where ),(),( 21 xtCxtC   is, 
with high accuracy, the boundary layer (region III in the 
figure), the sizes of which do not depend on current density as 
shown by calculations, thus, it is referred to as 
quasi-equilibrium1,8 and the extended region of space charge 
(SCR) (region II in the figure). Near the left boundary of the 
extended SCR, the density of space charge has local 
maximum. As can be seen in Fig. 1, the left boundary of the 
extended SCR depends significantly on the type of boundary 
problem. The quasi-equilibrium boundary layer (region III) is 
one half of classical double electric layer8, its width 
approaches asymptotically at t  to the Debye length. 

It is aimed to substantiate these results using numerical 
analysis of boundary problem. The plots of 

),(),(),(1
21 xtCxtCxt

F


 are used (density of 
charge distribution normalized for convenience with respect 
to the Faraday number) at various angles. 

Figures 2. a)-c) correspond to Fig. 1 a). For the sake of 
convenience, Fig. 2 a) does not depict the quasi-equilibrium 
SCR (III in Fig 1a) near membrane, thus, the local maximum 
is distinctly seen near normalized density of charge 
distributing. In Fig. 2 b) and especially in Fig. 2 c), the 
quasi-equilibrium SCR near membrane can be observed, and 
it is cut off from above, otherwise, the rest could not be seen. If 
the surface 2c is correctly rotated, then its respective lines of 
level would coincide with the lines in Fig, 1 a) when the scale 
is varied. 

 
a) 

 
b) c) 
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d) 

 
e) f) 

g) h) 
 

i) 
 
 
 
 

Figure 2: plots at different angles: a), b), c) – for model with escalation, d), e), f) – for model with overlimiting initial conditions, g), 
h), i) for CVC model 

 
 

),(),(),(1
21 xtCxtCxt

F
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Considerations, similar to the above mentioned, based on 

Figs. 2 d)-i) make it possible to substantiate Fig. 1 b)-d). It can 
be made in more details but less illustratively using the cross 
section of normalized current density. 

 
3.1.2 Major regularities of transfer 

 
Let us consider at first the distribution of cation and anion 

concentrations in various regions of diffusion layer. 

 

 
a) 

 
b) 
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c) 

 
d) 

Figure 3: Variation of cation and anion concentrations with regard to x in fixed times: a) and b) – for model with escalation, c) and 
d) – corresponds to the model with zeroed potential jump 

 
It can be seen in Fig. 3 that in quasi-equilibrium SCR, the 

anion concentration is zero with high accuracy, and the cation 
concentration rapidly reaches stationary regime. The 
maximum thickness of quasi-equilibrium SCR corresponds to 
the Debye length for this case. Distribution of concentration 
outside SCR in time becomes linear, and the cation 
concentration equals to the anion concentration with high 

accuracy ( ),(),( 21 xtCxtС  ). In the extended SCR, the 
cation and anion concentrations rapidly vary, herewith, 

),(),( 21 xtCxtС  . Thus, it is possible to conclude that in 
the quasi-equilibrium SCR near membrane, the cation 

concentration varies rapidly with regard to x, and the anion 
concentration is zero (if the current is higher than the ultimate 
value), and in the extended SCR, the cation concentration 
rapidly decreases, still remaining higher than the anion 
concentration. In the ENR, the cation and anion 
concentrations vary sufficiently slowly, gradually 
approaching stationary linear distribution.  

Let us consider the plots of electric field intensity. 
Conclusions, similar to the above mentioned, are possible 
with regard to variation of cross section of electric field 
intensity (Fig. 4). 

 

 
a) 

 
b) 

Figure 4: Cross-section in electric field intensity in the ENR with regard to x at fixed times: a) and b) – for model with escalation 
 
The plot of electric field intensity (Fig. 4 a) in the 

quasi-equilibrium region varies very quickly, remaining 
convex function, and in the extended region of space charge, 
the plot is concave, being gradually stabilized. The intensities 

slowly increase in the ENR from 
210  V/m2 and sharply in 

the SCR, reaching 
510  V/m2.  
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a) 

 
b) 

 
c) 

 
d) 

Figure 5: Cross section of cation flow with regard to x in fixed times corresponding to the model with zeroed potential jump: a) 
electromigration portion of flow, b) diffusion part of flow 

 
In all cases, except for the problem of discharge of space 

charge and the problem with periodic variation of potential 

jump, the flow 1j  is the increasing function, which is convex 
in the ENR and concave in the extended region of space 
charge, there are oscillations in quasi-equilibrium region 
caused by discordance between the initial condition for 
concertation and the boundary condition at x = H. With the 
time increase, the plot of flow j1 gradually becomes constant 
(Fig. 5 a) and b)). The flow j2 is significantly lower than j1, 
and with increase in time, it approaches zero. It should be 
mentioned that in all cases in extended SCR, the electric 
migration flow is by an order of magnitude higher than 
diffusion (Fig. 5 a) and b)). Therefore, the extended region 
can be referred to as the region of electric migration. 

In the problem of discharge of space charge, after zeroing 
of potential jump, the values of cation and anion flows are 
approximately equal, moreover, the diffusion and the electric 
migration flows are approximately equal (Fig.5 c) and d)). 
Due to these flows the space charge disappears very quickly 
(in seconds).  
 
 
 

3.1.3 Numerical analysis of stability of overlimiting regime 
 
Let us analyze numerically the stability of overlimiting 

regime with regard to oscillations of potential jump. With this 
aim, let us preset the oscillations of potential jump in the form 

of   )sin(, 0 tdHt   , where  ,,0 d  are the 
jump potential corresponding to overlimiting regime, the 
amplitude and the frequency of oscillations, respectively, and 
calculate the respective oscillations of current density. Table 1 

summarizes the calculation results at 0 1.5    and 
1 , and various d .  

 
Table 1: Current density as a function of oscillations of 

potential jump 

 d 
0.05 0.0

1 
0.00
5 

0.001 

Oscillation amplitude, % 4.8 1 0.5 0.1 
Iav, % 6.5 1.3 0.7 0.1 

 
It can be seen in Table 1 that decrease in oscillations of 

potential jump leads to decrease in oscillations of current 
density. Hence, it is possible to conclude that the 
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nonstationary overlimiting transfer is stable with regard to 
oscillations of potential jump. 
 
3.1.4 Peculiar Features of Nonstationary Superlimiting 
overlimiting Regime and Algorithm of Approximate 
Analytical Solution 

 
The performed numeric analysis has made it possible to 

reveal peculiarities of nonstationary overlimiting transfer and 
to propose algorithm of approximate analytical solution to 
this problem: 

1) Diffusion layer is subdivided into the following regions: 
ENR, extended SCR, quasi-equilibrium SCR, and 
intermediate layer between ENR and extended SCR, in each 
of these regions, equations are simplified in their own ways. 
Similar subdivision was used in3 for approximate asymptotic 
solution to stationary boundary problem. In this case, the 
boundaries of regions vary in time; 

2) In the ENR, the problem is significantly simplified, its 
solution is already known;1,8 

3) As shown above, in quasi-equilibrium SCR, the solution 
actually does not depend on time and flows, hence, it is 
possible to use the Debye–Hückel solution to the problem of 
stationary double electric layer; 

4) In extended SCR, the flows actually do not depend on x 
and concentration on t, electric migration prevails over 
diffusion transfer, therefore, in the first approximation, the 
following set of equations can be applied: 

5) 
)(tjj ii   2,1i  
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Fj iiii
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6) The intermediate region confined by dashed line in Fig. 

1 is small, it can be neglected in the first approximation; 
Therefore, the main problem is in analytical determination 

of region boundaries by combination of solutions from 
adjacent regions, or by numerical solution. 

5. CONCLUSION 
This work studied nonstationary transfer of 1:1 electrolyte 

in donating layer near CEM in potentiostatic overlimiting 
regime. The main regularities of ion transfer of 1:1 salt have 

been determined. It has been demonstrated that the diffusion 
layer is comprised of the ENR and the SCR, which in its turn 
is comprised of extended region, the sizes of which are lower 
than those of diffusion layer but comparable with it, and 
moderate boundary layer near CEM. The sizes of extended 
SCR depend on the ratio of current density in circuit to 
ultimate current, whereas the size and salt ion transfer in 
boundary layer near CEM do not depend on current density 
and are entirely determined by exchange capacity of CEM and 
its selective properties. The main regularities of nonstationary 
transfer of binary electrolyte in depleted diffusion layer have 
been determined, namely: its structure, distribution of 
concentrations, electric field intensity, etc. The nonstationary 
problems of transfer in diffusion layer are classified in terms 
of various criteria.  

 
5.1. Classification in Terms of Potential Jump: 
 

1. Potentiostatic regime, constant potential jump: 
a) sublimiting regime  
b) overlimiting regime  
2. Potentiodynamic regime, alternating potential jump 
a) sublimiting regime  
b) overlimiting regime  
c) mixed regime, when some potential jumps are referred to 

sublimiting regime, and some – to overlimiting regime. This 
can be exemplified by calculation of CVC, when potential 
jump varies linearly from zero to infinity. Another example is 
analysis of pulse regime, when current in piecewise manner 
equals, for instance, to zero and is higher or lower than the 
ultimate current. The third example is reverse electrodialysis, 
when current becomes opposite, etc. 

 
5.2. Classification in Terms of Initial Conditions for 
Concentrations and Potential: 
 

1. Constant values, such formulation of conditions is 
reasonable, for instance, upon analysis of initial segment of 
desalination channel of electrodialysis apparatus. This can be 
exemplified by determination time of establishment of 
stationary regime, analysis of generation and development of 
space charge, etc. 

2. Variable initial conditions, that is, the initial conditions 
depend on x. This can be exemplified by simulation of transfer 
far from the start of channel, when the profiles of 
concentrations and potentials are already developed and can 
correspond to both sublimiting regime and to overlimiting 
regime.  

 
5.3. Peculiar Problems  
 

1. The interest is attracted to the regime when under 
sublimiting initial conditions, overlimiting potential jump is 
preset for concentration and potential, or vice versa. 
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2. Periodic regime when the potential jump varies 
periodically, and the initial conditions are coordinated with it. 
This can be exemplified by calculation of impedance. 

ACKNOWLEDGMENTS 
This work was supported by the Russian Foundation for 

Basic Research, project No. 20-58-12018 NNIO_a: The 
influence of electroconvection, water dissociation, and 
geometry of spacers on electrodialysis desalination in 
intensive current regimes.  
 
REFERENCES 
 
1. V.I. Zabolotskii, V.V. Nikonenko, Perenos ionov v 

membranakh [Ion transfer in membranes]. Moscow: 
Nauka, 1996. 

2. I. Rubinstein, L. Shtilman, Voltage against current 
curves of cation exchange membranes, Journal of the 
Chemical Society, Faraday Transactions, no. 75, pp. 
231–246, 1979. 

3. N.O. Chubyr', A.V. Kovalenko, M.Kh. Urtenov, 
Chislennye i asimptoticheskie metody analiza 
perenosa 1:1 elektrolita v membrannykh sistemakh 
[Numerical and asymptotic methods of analysis of 
transfer of 1:1 electrolyte in membranes]. Krasnodar, 
2018. 

4. V.A. Babeshko, V.I. Zabolotskii, M.A.Kh. Urtenov, R.R. 
Seidov, N.M. Seidova. Dekompozitsionnye uravneniya 
dlya statsionarnogo perenosa elektrolita v 
odnomernom sluchae [Decomposition equations for 
stationary transfer of electrolyte in 1D case], 
Elektrokhimiya, vol. 33, no. 8, pp. 855-862, 1997. 

5. A. Uzdenova, A. Kovalenko, M. Urtenov, V. Nikonenko, 
1D mathematical modelling of nonstationary ion 
transfer in the diffusion layer adjacent to an 
ion-exchange membrane in galvanostatic mode, 
Membranes, vol. 8, no. 3, p. 84, 2018. 

6. J.A. Manzanares, W.D. Murphy, S. Mafe, H.Reiss, 
Numerical Simulation of the Nonequilibrium Diffuse 
Double Layer in Ion-Exchange Membranes, The 
Journal of Physical Chemistry, no. 97, pp. 8524–8530, 
1993. 
https://doi.org/10.1021/j100134a023 

7. R. Femmer, A. Mani, M. Wessling, Ion transport 
through electrolyte/polyelectrolyte multi-layers, 
Scientific Reports, 5, 11583 (2015). 

8. J. Newman, K.E. Thomas-Alyea, Electrochemical 
Systems, Honoken, NJ: Wiley & Sons, Inc, 2004. 

9. S.M. Davidson, M. Wessling, A. Mani, On the 
Dynamical Regimes of Pattern-Accelerated 
Electroconvection. Sci. Rep., no. 6, 2016. 
https://doi.org/10.1038/srep22505 


