
B. Srikanth et al., International Journal of Emerging Trends in Engineering Research, 7(11), November 2019, 677- 684

677


ABSTRACT

The Double Precession Floating Point (DPFP) multiplication
algorithm generally use in several applications like arithmetic
logic unit, scientific calculators, signal processing and so on.
The major limitation of the DPFP arithmetic operation is
difficult to calculate 53 x 53 mantissa multiplication, which
requires more area. In this research work, a High Speed
Schonhage – Strassen Algorithm used for FPGA accelerator
(HS-SSA-FPGA) was implemented to provide a low amount
of multiplication hardware compared to the conventional
methods. The main advantage of the Schonhage Strassen
multiplication is that, the multiplication of integer values
greater than 5 digits ranging from 2215 to 2217 bit values
proves to be efficient. This experimental research work
describes SSA architecture and implementation of the FPGA
accelerator to get a better output in terms of area and system
speed. The FPGA accelerator Control Unit (CU) maximized
the Processing Elements (PEs) based on external task request
generated from Control Processing Unit (CPU). The
SSA-FPGA method was implemented in Xilinx based on
Virtex-5 xc5vlx20T by using Verilog HDL Code. The
experimental result showed that the proposed method
improved the performance of the system in FPGA accelerator
compared to the existing methods: Karatsuba and Vedic
multiplier. The HS-SSA-FPGA works at 230.14 MHz. The
HS-SSA-FPGA multiplication speed is increased by 49
percentages compared with Karatsuba based floating point
multiplication..

Key words : Control processing unit, Control unit, Double
precision floating point, Processing element, and Schonhage
Strassen algorithm.

1. INTRODUCTION

Digital arithmetic operations are most important in the design
of digital processors and application specification systems.
An arithmetic circuit forms a significant class of circuits in
the digital systems [1]. The real numbers denoted in binary
format known as Floating Point (FP). Based on IEEE-754

standard, FP formats categorized into binary and decimal
interchange formats. The FP multipliers are most important
in DSP applications [2]. The FP arithmetic mostly used in
several areas, signal processing and scientific computation. A
multiplication operation is the second fundamental operation
of the arithmetic unit. However, most of these advanced
applications require low latency, high-frequency operations
with low area [3], [4], [5]. The FP arithmetic depends on
FPGA implementation that defines different arithmetic
operations such as addition, subtraction, multiplication, and
division. The FP-FPGA arithmetic unit is used for single,
double, quad precision. These precisions identify various bits
of operation [6].

The FP- Multiply-Add Fused (MAF) based FPGA suitable for
low-precision formats based on combining the addition,
subtraction and multiplication operations are needed in the
Mantissa-Data path processing into a single operation. This
method requires one or more arithmetic operations, which
occupy more area [7]. The DPFP using the Karatsuba
algorithm requires more area and consume less power [9].
The FPGA devices have the benefit of reconfigurability
compared to the ASIC platform. In the present days, new
FPGA devices such as Virtex-4, Virtex-5, Virtex- 6 can
provide a huge amount of high-speed logic resources and
Intellectual Property (IP) core [10]. In this paper, the
SSA-FPGA method introduced to overcome the
above-mentioned problems. This method does not need
several CPU cores. The PE requires the addition and
multiplier blocks that are arranged like pipeline architecture.
The DPFP multiplier by employing SSA used in PE module
for efficient power and area. The SSA-FPGA method
implemented in Xilinx Virtex-5 FPGA by using Verilog
Code.

2. RELATED WORK

Researchers have suggested several methods on the DPFP. In
this section, a brief evaluation of some significant
contribution in this field presented below.

Srinivas et al, [11] proposed design and performance analysis
of DPFP multiplier by employing Urdhva Tiruyagbhyam
Sutra based on FPGA Virtex-5 platform. The performance of

Double Precession Floating Point Multiplier using Schonhage – Strassen

Algorithm used for FPGA Accelerator

B. Srikanth1, M. Siva Kumar2, J.V.R. Ravindra3, K. Hari Kishore4
1Research Scholar, K L University, Guntur, Andhra Pradesh, India, srikanth.vlsi.2011@gmail.com

2Associate Professor, K L University, Guntur, Andhra Pradesh, India, siva4580@kluniversity.in
3Professor, Vardhaman College of Engineering, Hyderabad, Telangana, India, jvrravindra@gmail.com

4Professor, K L University, Guntur, Andhra Pradesh, India, kakarla.harikishore@kluniversity.in

 ISSN 2347 - 3983

Volume 7, No. 11 November 2019
International Journal of Emerging Trends in Engineering Research

Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter437112019.pdf
https://doi.org/10.30534/ijeter/2019/437112019

B. Srikanth et al., International Journal of Emerging Trends in Engineering Research, 7(11), November 2019, 677- 684

678

the Vedic Sutra multiplier is excellent with the proficient
utilization of resources. This multiplier design was
completely compatible with the standards of IEEE. In this
paper, the Vedic multiplier was compared with karatsuba
multiplier. The multiplication was difficult when the system
became complex which was the major limitation of the
proposed method.

Jovanovic, and V. Milutinović [12] presented the FPGA
accelerator used for DPFP matrix multiplication. This
architecture reduced the resource utilization and increased
the clock frequency. In this research work, the architecture
has a symmetric communication pattern, it was well suited for
the Full Duplex (FD) communication link. The matrix
multiplication was much more difficult to implement.

Jaiswal et al. [13] proposed VLSI implementation of double
precision floating-point multiplier using karatsuba technique.
In this paper, the multiplication process done by using
Karatsuba and designed in FPGA platform. The karatsuba
algorithm reduced the cost of the multiplier blocks, which
requires extra subtractors and adders. This method requires a
number of adder and subtractors that increased the slice
count.

Ramesh et al. [14] proposed a high- speed IEEE 754 DPFP
multiplier employing tiling method that was implemented in
the FPGA Xilinx tool by using Verilog code. This design
achieved 436.815 flip-flops with low latency of seven clock
cycles, it was 97% faster compared to Xilinx floating point
multiplier core. But the drawback of the proposed method
required more area.

The SSA algorithm based DPFP used for FPGA accelerator to
overcome the above-mentioned problem. This algorithm
implemented to improve the FPGA performance parameters
such as LUT, slice, flip-flop, and frequency.

3. SSA-FPGA METHODOLOGY

Now a days, there are many algorithms available on DPFP to
minimize the multiplications in which SSA is one of the most
suitable and popular algorithms. This SSA based DPFP
multiplier consume low area compared to the conventional
normal multiplication method. The SSA-FPGA method
implemented using the Xilinx ISE synthesis tool, a simulation
tool, and Xilinx Virtex-5 xc5vlx20T FPGA platform. The
Figure.1 shows the block diagram of the FPGA accelerator
with CPU. The FPGA accelerator consists of CU and PE. The
CU of the FPGA accelerator searches the arithmetic operation
in the CPU.

3.1 Control Unit Process
The CU of FPGA accelerator block performs following below
operations. The CU can search for arithmetic operation in the
CPU. The CU Sends the request data to CPU to perform an
arithmetic operation in the PEs. Once the acknowledgment

receives from the CPU, the CU diverts all arithmetic
operations from the CPU to PEs in the FPGA accelerator. The
CU sends the PEs arithmetic outputs to CPU immediately
after arithmetic operations are calculated. Increment the PE
in FPGA accelerator based on external other task generated
from the CPU. The limit of the PEs is based on the
input-output block of targeted FPGA devices.

Figure 1: Block diagram of FPGA accelerator communication with

CPU

3.2 Processing Element Process
The PEs of FPGA accelerator performs following below
operations. The PEs receives the request from CU to perform
an arithmetic operation such as addition and multiplication.
Once CU receives an acknowledgment (ready) from the PE,
and then the CU sends an entire arithmetic operation to PEs.
Each and every PE has addition and multiplier blocks ordered
as pipelined to decrease the clock latency. Multiplier block is
implanted by employing SSA floating point multiplication
technique. The PEs are generated in a generic manner based
on request raised by the CU to perform the arithmetic
operation. The main challenge in DPFP operations in all
processors is hardware implementation. The FP
multiplication is much difficult to develop between the FP
arithmetic operations. In this experimental research paper,
mainly focus on multiplications due to the multiplication
operation consumes more area and power compared to other
arithmetic operations.

3.3. Schonhage – Strassen Multiplication Algorithm
The Strassen algorithm is one of the most suitable options for
huge integer multiplication. General multiplication schemes
such as Karatsuba, classical school book multiplication are
not much suitable for large number multiplication. So, an
efficient NTT multiplication process based Stassen approach
choose from large operand sizes, which achieves low area,

B. Srikanth et al., International Journal of Emerging Trends in Engineering Research, 7(11), November 2019, 677- 684

679

power and increase the system speed. The procedure of
Strassen Algorithm includes five steps: the first step
conventional theorem consists of two vectors such as X and Y.
In the second step, FFT used for every vector. In the third step,
multiply the resulting vectors element by element. In the
fourth step, take the inverse FFT of the product and integrate
the vector, and finally got the multiplication result. The SSA
is Number Theoretic Transform (NTT) based huge integer
multiplication algorithm with a runtime of O(NlogNloglogN).
For an N - digit number, NTT is calculated by employing the
RN = Z / (2N+1) Z, here N represents a power of 2. The SSA
described as follows:

In the SSA, for the NTT computation, sample the numbers X
and Y that fits into N - digit with a sampling size. The
selected q is a prime number with a Primitive Root (PR) u, for
example uq = 1(mod q). Then, NTT forms of the number
represents as,

k

N

k

k
k xuX 






1

0

 (1)

k

N

k

k
k yuY 






1

0

 (2)

After that, the elements are multiplied to form ck : ck =
Xk.Yk(mod q). By using inverse NTT to compute following
below equations (3)

k

N

k

k
k zuZ 






1

0

 (3)

As the final step, accumulate the carry additions finalize the
evaluation of Z. The fast NTT and inverse NTT calculation
method used in SSA multiplication. In this work, the
significant general method is used for calculating the Fast
Fourier Transform (FFT). The SSA computes the FFT of a
sequence A:









1

0

2N

j

N
jki

jk eaA

By turning the length N transform evaluation into two N/2
size Fourier Transform (FT) computations as follows the

equation(4),

2
212

0
2

22/
212

0
2 1

2

N
mkiN

oddm
m

m

N
N

m
ki

N

evenm
j

mk eaeeaA
ik









 


 (4)

From the equation (4), change
Nike /2

with power of u and
perform the divisions into 2-halves odd and even indices,
recursively. In this research work, the Strassen multiplication
evaluated in O(NlogNloglogN) time with the help of the FT
technique.

3.3.1 Number Theoretic Transform
The NTT is the type of the FFT that performs with integer
number in the domain modulo. The significant form of NTT
is the fermat transform modulo 2n+1. So, this NTT takes place
in the field of integers modulo (2n+1), it is commonly
employed in the SSA approach. The NTT function presented
in equation (5) as follows,

)(mod
1

0
qgCC ij

N

i
ij 






 (5)

In this equation (5), the array of N transformed into the array
Cj, it consists of N numbers, Where both i and j range from 0
to N-1. The array of Cj can be taken as input while the array
Cj considered as throughput. Moreover, g is the Nth root of
unity mod q, wherever q is a number of the form 2n+1. The
number of the output array Cj is in the form mod q.

3.3.2 Root of Unity
The nth root of unity is the number that raised to the nth
power as result is 1. The Primitive Root of Unity is
introduced, nth root of unity C is primitive if Cn=1 and all
powers < n do not result in 1. An nthroot of unity modulo q is
a number of q, which raised to the nth power (mod q) has 1 as
output. The nth root of unity S is primitive if Cn = 1(mod q)
and power value is smaller compared to n doesn’t yield 1(mod
q).

3.3.3 Twiddle-Factor and Inverse NTT process
The twiddle factor is the nth primitive root of unity. For any
value of N, the twiddle factor is N/2. In this paper, the SSA
multiplication method uses product of X and Y (mod 2n+1),
when input number X and Y both are ≤ 2n+1. The
multiplication of two numbers with a maximum of n bits
results in a number of 2n bits at maximum, so the modules are
different. Hence, applying the acyclic conventional in this
SSA multiplication process. It splits into N/2 equal parts and
each part consists of an equal number of bits. Then the first
half elements with ‘content bits’ and last half with zeros
called as ‘zero padding’. In the SSA algorithm, an inverse
NTT evaluation used for input sample a and b, C = ab(mod q)
by using inverse NTT equation (6),

n
N

n
nn wCC 






1

0 (6)

 Algorithm.1. Schonhage Strassen Algorithm
Input: Multiplicand operands X and Y, base R=2k
Output: Product Z
1. Calculate the NTT of the digit (respect to the base) of
 X and Y
2. Multiply the NTT outputs, element by element:
3. Set Z[i] NTT(A)[i]*NTT(B)[i]
4. Calculate Inverse NTT of the Z
5. Set Z` = INTT (Z)
6. Accumulate the carries
7. if Z[i] ≥R then
8. Set Z [i+1] = Z[i+1]+ [Z[i] / R]
9. Set Z[i] = Z(mod R)
10. return Z

B. Srikanth et al., International Journal of Emerging Trends in Engineering Research, 7(11), November 2019, 677- 684

680

In the final step, this algorithm accumulates the carry
addition to finalize the computation of the C.In this paper an
efficient SSA implemented by utilizing fast NTT and inverse
NTT computation method. In section 4, described about the
results and discussion of SSA-FPGA method.

4. RESULT AND DISCUSSION

In this work, the DPFP using SSA approach is implemented
in the Xilinx ISE 14.5 tool based on the Virtex5 xcvlx20T by
using Verilog Code. The Strassen multiplication employed to
design the FPGA accelerator to improve the FPGA
performances such as slice, LUT, flip-flop, frequency. In this
work, both the exiting and SSA-FPGA methods implemented
by using Verilog code and the outputs tabulated in Table 1.

The Table.1 shows the comparison of the parameters like
LUTs, slices, flip-flop and operating frequency of existing
methods such as Karatsuba and Vedic multiplier and
SSA-FPGA method in the Virtex-5 xc5vlx20T. Two 53-bits
given to the input of the SSA circuit, which produced the
105-bits output. The number of LUT, flip-flop and slice
reduced in the SSA-FPGA method compared to the existing
method, which is shown in the Table.1. Due to the reduction
of those FPGA parameters, the area optimized in the
SSA-FPGA method. The operating frequency also computed
in the Virtex-5 xc5vlx20T. Figure.2 shows the FPGA

performance for existing and SSA-FPGA method. These
results took for Virtex-5 from the Xilinx tool. From the
Figure.2, it is clear that all the FPGA performance improved
in the SSA-FPGA method compared to the existing method.
Figure.2 shows the comparison of the operating frequency for
the existing and proposed method. Table.2 results taken from
cadence RTL compiler tool. The comparison graph of area
and power for various floating point multiplication
techniques are shown in Figure.3.

Figure 2: Comparison graph of FPGA performance for existing and

SSA-FPGA method.

Table 1: Logic utilization comparison of existing and SSA-FPGA methods

FPGA Target Methodology Slice LUT Flip Flop (FF) Frequency
(MHz)

Virtex5
xc5vlx20T

Karatsuba [13] 390/7200 1456/28800 1613/28800 154.2
Vedic [11] 373/7200 617/28800 684/28800 198.54
SSA-FPGA 97/7200 327/28800 16/28800 230.14

Table 2: Comparison of Area and Power Analysis for various floating point multiplication techniques

Instance Cells
Leakage
Power
(nW)

Dynamic
Power
(nW)

Total
Power
(nW)

Normal Floating Point
Multiplication 11125 515.57 6079.66 6595.23

Karatsuba Floating Point
Multiplication 9144 412.88 1362.81 1775.7

Schonhage – Strassen Floating
Point Multiplication 5314 153.349 6592.238 6745.588

Table 3: Experimental results of FPGA performance of SSA-FPGA Accelerator

Circuit FPGA Device Slices / Slice
registers LUT FF/ FF-LUT

Pairs
Frequency

(MHz)

SSA-FPGA
Accelerator

Virtex4- xc4vfx12 645/5472 819/10944 760/10944 58.65
Virtex5-xc5vlx20t 1014/12480 9754/12480 463/10305 15.33
Virtex6–xc6vcx75t 884/93120 2299/46560 579/2604 10.835
Virtex7–xc7vx330t 884/408000 2299/204000 579/2604 12.262

B. Srikanth et al., International Journal of Emerging Trends in Engineering Research, 7(11), November 2019, 677- 684

681

Figure 3: Comparison graph of Area and Power for various floating
point multiplication techniques

Figure 4: FPGA experimental result for SSA-FPGA Accelerator

The Table.3 shows the experimental results of FPGA

performance for SSA-FPGA accelerator. In this research
work, the FPGA accelerator design implemented in the
Xilinx tool based on different FPGA devices such as Virtex-4,
Virtex-5, Virtex-6, and Virtex-7. In the FPGA accelerator,
two 53-bit given to the input of the FPGA accelerator, which
produced the 106-bit output. In Figure.4 denotes the RTL
schematic of 64-bit multiplier using SSA multiplication
technique. In the Figure.5, the XL-53bits and RL-53bits are
the input operand, and Y = 105 bits represent the output
multiplier. The Figure.6 shows the internal block of the SSA
multiplier. In this blue colored wires are interconnecting
wiring network of the SSA circuit. The SSA components are
internally connected through wiring network to build the real
circuit.

Figure 5: RTL schematic of 64-bit SSA multiplier

Figure 6: Internal blocks of SSA

The Figure. 7 shows the RTL schematic of the FPGA
accelerator taken from Xilinx tool. In this work, the FPGA
accelerator designed by using 16-bits address data, 32-bits
write data are the input of the FPGA accelerator, it has
provided accel_out 64-bits. The figure shows the internal
blocks of the FPGA accelerator design. Figure.8 shows how
the components are internally associated. It also shows how
the circuits are actually arranged in the FPGA accelerator.
The Figure.9 took from Xilinx tool shows the Virtex-5 FPGA
results for verification purpose.

Figure 7: RTL schematic of the FPGA accelerator.

B. Srikanth et al., International Journal of Emerging Trends in Engineering Research, 7(11), November 2019, 677- 684

682

Figure 8: An internal block of the FPGA accelerator

Figure 9: Virtex-5 FPGA results

B. Srikanth et al., International Journal of Emerging Trends in Engineering Research, 7(11), November 2019, 677- 684

683

Figure 10: RTL schematic diagram of SSA-FPGA method

In Figure.10 shows the RTL schematic diagram of the
SSA-FPGA method, which is taken from the synplify pro tool.
The 3-bit input value gives to the counter. A counter is a
device which is stores the number of times a particular has
occurred, often in relationship to a clock cycle. The counter
outputs are stored in the register. Next, the xR and xL bits are
connected into extract digit module. That extract digit value
gives to the mux module. The FFT is applied to the mux
output which value is stored in the RAM. Find the mod of the
RAM output after that IFFT algorithm is applied. At the final
stage, then add all values based on the recombination
technique. This work is further proceeded to generate GDS-II
file using cadence Encounter tool gpdk 90nm technology. In
this process, we have simulated SSA module using cadence
NCLaunch tool. We have generated net-list file using cadence
RTL compiler using gpdk 90nm technology. Later, we have
done floor planning, added power rings strips, placement and
routing using Encounter Tool. We have eliminated negative
slack by choosing proper clock frequency. The SSA-FPGA
Accelerator chip layout diagram is taken encounter tool
shown in Figure.11.

Figure 11: SSA-FPGA Accelerator Chip Layout

B. Srikanth et al., International Journal of Emerging Trends in Engineering Research, 7(11), November 2019, 677- 684

684

5. CONCLUSION
In this research work, the proposed SSA-FPGA method
implemented in Xilinx Virtex-5 xc5vlx20T by using Verilog
code. The DPFP using SSA multiplier for FPGA accelerator
reduced the number of LUT, slices, flip-flop and increases the
operating frequency in the FPGA accelerator. Furthermore,
the FPGA accelerator synthesized in the Xilinx tool for
different Virtex devices such as Virtex-4, Virtex-5, Virtex-6,
and Virtex-7. The HS-SSA-FPGA method achieved low area
and increase the system speed compared to the existing
methods. In this experimental research work, the proposed
method improved the FPGA performances such LUT, slice,
flip-flop which has less area compared to karatsuba and Vedic
multiplication algorithm. The future scope of FPGA
accelerator is, it can play in diverse workloads in machine
learning, cloud segments and other applications.

ACKNOWLEDGMENT
The authors express sincere gratitude to Dept. of. ECE at K L
University for their encouragement during this work. Further,
M. Siva Kumar would like to express his gratitude to DST
through grant EEQ/2016/000604.

REFERENCES
1. Ramesh, Addanki Purna, A. V. N. Tilak, and A. M. Prasad.

An FPGA based high speed IEEE-754 double precision
floating point multiplier using Verilog, Emerging Trends in
VLSI, Embedded System, Nano Electronics and
Telecommunication System (IC4EVENT), 2013 International
Conference on. IEEE, 2013.
https://doi.org/10.1109/ICEVENT.2013.6496575

2. Addanki, Purna Ramesh, Venkata Nagaratna Tilak
Alapati, and Mallikarjuna Prasad Avana. An FPGA
based High Speed IEEE-754 double precision floating
point Adder/Subtractor and Multiplier using Verilog,
International journal of advanced science and technology
52.1 (2013): 61-74.

3. Ramesh, Addanki Purna, A. V. N. Tilak, and A. M.
Prasad. FPGA based Implementation of High Speed
Double Precision Floating Point Multiplier with Tiling
Technique using Verilog, International Journal of
Computer Applications 58.21 (2012).
https://doi.org/10.5120/9407-3814

4. Pratas, Frederico, Aleksandar Ilic, Leonel Sousa, Horácio
C. Neto, and Rua Alves Redol. Double-precision
floatingpoint performance of computational devices:
FPGAs, CPUs, and GPUs, Proc. of REC2010-VI
Jornadas sobre Sistemas Reconfiguráveis (2010): 83-90.

5. Doröz, Yarkin, Erdinç Öztürk, and Berk Sunar.
Evaluating the hardware performance of a million-bit
multiplier, Digital System Design (DSD), 2013
Euromicro Conference on. IEEE, 2013.
https://doi.org/10.1109/DSD.2013.108

6. Rathor, Ajay, and Lalit Bandil. FPGA implementation of
Floating-Point Arithmetic, International Journal of
Advanced Research in Computer Science and Electronics
Engineering (IJARCSEE) 1.9 (2012): pp-67.

7. Amaricai, Alexandru, Oana Boncalo, and
Constantina-Elena Gavriliu. Low-precision DSP-based
floating-point multiply-add fused for Field
Programmable Gate Arrays, IET Computers & Digital
Techniques 8.4 (2014): 187-197.
https://doi.org/10.1049/iet-cdt.2013.0128

8. Zhang, Hao, Dongdong Chen, and Seok-Bum Ko. High
performance and energy efficient single-precision and
double-precision merged floating-point adder on
FPGA, IET Computers & Digital Techniques 12.1 (2017):
20-29.
https://doi.org/10.1049/iet-cdt.2016.0200

9. B. Srikanth, Dr. M. Siva Kumar, Dr. K. Hari Kishore, Dr.
J.V.R. Ravindra, Towards Reducing Area and Power of
A Multiplier With Double Precision Floating Point
Computations Using Fpga Accelerators, Journal of
Advanced Research in Dynamical and Control Systems
Vol. 9. Sp– 18 / 2017.

10. Zhang, Hao, Dongdong Chen, and Seok-Bum Ko.
Area-and power-efficient iterative
single/double-precision merged floating-point
multiplier on FPGA, IET Computers & Digital
Techniques 11.4 (2017): 149-158.
https://doi.org/10.1049/iet-cdt.2016.0100

11. Srinivasa Rao, T Subhashini, K Rambabu, Design and
Performance Analysis Of Double Precision Floating
Point Multiplier Using Urdhva Tiryagbhyam Sutra,
International Journal Of Vlsi And Embedded
Systems-Ijves, Vol 05, Article 10470, October 2014.

12. Jovanović,Ž. and V. Milutinović. FPGA accelerator for
floating-point matrix multiplication, IET Computers &
Digital Techniques 6.4 (2012): 249-256.
https://doi.org/10.1049/iet-cdt.2011.0132

13. Jaiswal, Manish Kumar, and Ray CC Cheung. "VLSI
implementation of double-precision floating-point
multiplier using karatsuba technique, Circuits, systems,
and signal processing 32.1 (2013): 15-27.
https://doi.org/10.1007/s00034-012-9457-3

14. Ramesh, Addanki Purna, A. V. N. Tilak, and A. M.
Prasad. FPGA based Implementation of High Speed
Double Precision Floating Point Multiplier with Tiling
Technique using Verilog, International Journal of
Computer Applications 58.21 (2012).
https://doi.org/10.5120/9407-3814

15. Ramireddy Venkata Suresh, K.Bala, VLSI
Implementation of High Speed and Area Efficient
Double-Precision Floating Point Multiplier,
International Journal of Advanced Research in
Electronics and Communication Engineering (IJARECE)
Volume 5, Issue 10, October 2016.

16. Arish, S., and R. K. Sharma. An efficient binary
multiplier design for high speed applications using
Karatsuba algorithm and Urdhva-Tiryagbhyam
algorithm, In Communication Technologies (GCCT),
2015 Global Conference on, pp. 192-196. IEEE, 2015.
https://doi.org/10.1109/GCCT.2015.7342650

