
Mylara Reddy C et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5143 – 5148

5143

ABSTRACT

Day by day every individual and small to large organizations
are moving towards the use of cloud computing systems for
their daily activities. Cloud computing paradigm provides
different service models such as Platform-as-a-Service,
Software-as-a-Service, Infrastructure-as-a-Service, and etc.
Platform-as-a-Service enables users to host their software
systems. It’s important to ensure that the software systems
hosted on cloud environment provide reliable service to users.
There are different fault tolerance techniques which help
software engineering to prevent software systems failure. In
this research article an attempt is made to compare
performance of the following software fault tolerance
techniques: 1) Retry Block (RtB) and 2) N-copy
programming. The performance of these approaches was
measured in time taken to recover from failures which are
introduced into Fibonacci numbers at random to impersonate
failures. Based on the results of experiments conducted on
Amazon cloud using the Merit Trac's LMS portal, it is found
that RtB approach is the most optimal when retry blocks are
smaller in size compared to N-Copy. In case of few failures
Retry is better than N-Copy and N-Copy perform better than
Retry block technique in case of frequent failures.

Key words: Reliability, fault tolerance, Retry-block, N-Copy

1. INTRODUCTION

Due to the increased complexity and size of software systems,
the reliability of software systems has recently become a
looming and unsolved problem in any computing
environment for example, cluster computing, cloud
computing, and high performance computing. There are
several software fault tolerant methods proposed by
researchers which are broadly categorized based on criteria
such as reactive, proactive, design diversity, data diversity,
static, dynamic, and hybrid fault tolerance techniques.
Further, under each category, there exist several approaches
contributed by the research community since 1980's. The

cloud computing paradigm has become the most prominently
used technology due to it's easy to access anywhere at any time
and cost-benefit. As a result of it, private clouds are expected
to host large and complex proprietary software systems and
software development platforms for large business
organizations to meet their customer requirements. As the
number of users at a given instant of time increase, cloud
based software systems should be scalable well to meet the
demand during peak time. With increased number of users
and increased complexity of software systems, there are
higher chances of occurrence of hardware and software
failures.
There are several reasons which attribute to the failure of
software systems or software applications that are designed
and developed for distributed computing environment,
particularly cloud computing environment. In [1] O. Gadish
list the following top Nine reasons for cloud application
failure: 1) Operator or Human Errors, 2) Application Bugs, 3)
Cloud Provider Downtime, 4) Extreme Dynamics in
Customer Demand, 5) Quality of Service, 6) Third Party
Service Failures, 7) Security Breaches, 8) Hardware Failures,
and 9) Lack of Disaster Recovery Plan. In addition to the
above nine reasons, real time applications fail due to time out.
Traditional distributed software fault tolerant systems were
able to successfully thwart the effects of software system
failures by the execution of static and dynamic fault tolerance
techniques such as redundancy, checkpoint restart, migration,
software rejuvenation, self checking techniques on
extra/additional computing resources. However, due to
decrease of mean time between failures (MTBF) of distributed
computing systems like cloud computing technology, grid
computing, and cluster computing traditional fault tolerant
techniques for software resilience either do not scale to meet
systems increased demand for performance or require too
much of resources like hardware, energy, and time to be
feasibly implemented.
Several software fault tolerance techniques that are
contributed by researchers are based on design diversity and
data diversity. Many of these techniques in recent works were
able to handle failures associated with cloud based software
systems [2]. However, their relative performance, reliability

Performance Comparison of Retry and N-Copy Software

Fault Tolerance Techniques
Mylara Reddy C.1*, Y. Vamsidhar2, Mohan Gowda V.3, B. Ramesh Naik4

1Department of CS,. GITAM University, India, mchinnai@gitam.edu
2 Department of CSE, GITAM University, India, vyendapa@gitam.edu
3 Department of CSE, GITAM University, India, mgowda@gitam.edu

4 Department of CSE, GITAM University, India, rameshnaik.bhukya@gitam.edu

 ISSN 2347 - 3983
Volume 8. No. 9, September 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter42892020.pdf

https://doi.org/10.30534/ijeter/2020/42892020

Mylara Reddy C et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5143 – 5148

5144

and fault tolerance capability and scale of resource
requirements of fault tolerant techniques, particularly
techniques which work based data diversity, when compared
with one another is unknown or unclear.
Each fault tolerant technique's performance is simulated with
varying system sizes as well as varying degrees of severity due
to software system failures. Strengths and weakness of each
fault tolerant technique is analyzed and compared.
In this work we make the following contributions:

 We design and develop a model for simulating
the each technique in terms of time taken to
complete the task of recovering from failures,
particularly in a cloud computing environment

 We provide a relative comparison of the
performance of software fault tolerance
techniques in cloud computing environment.

2. RELATED WORK

Although there are several other techniques for mitigating the
effects of system failures, in this article we work on software
fault tolerance techniques that are considered to be
transparent to software application programmers and users of
software systems. We refer the interested reader to the
summaries provided for all such techniques in [3, 4, 5, 6, 7, 8,
9]. Device layer or sensing layer in IoT networks is one of the
critical places at which faults may occur. Handling
failures/faults in this layer is very important. Satry et al. [12]
have proposed fault tolerant approaches using sub-nets
topologies to determine level of fault tolerance of IoT
networks. Ramesh B. et al. have presented an approach to
improve the reliability of object detection and classification
using image processing[13]

2.1 Retry Blocks (RtB)

The RtB technique is one of the two original data diverse
software fault tolerance techniques proposed by Ammann and
Knight [10]. It is the data diverse complement of design
diversity and it is categorized as dynamic technique. It makes
use of acceptance test and backward recovery approach to
achieve fault tolerance. Retry technique consists of following
components to accomplish fault tolerance: 1) Primary
Algorithm, 2) Data Repression Algorithm (DRA) 3) A
Watchdog Timer (AWT), 4) Backup algorithm, and 5)
Acceptance Tests (AT). Figure 1 shows the structure of a retry
block. Figure 1 shows the pictorial representation of retry
block technique.

Figure 1: Retry block technique

In RtB approach primary algorithm executes and evaluates its
output at the end of every execution using acceptance test. If
the acceptance test passes, then the retry block is complete. In
case of acceptance test failure, primary algorithm executes
again using re-expressed data as input. This process continues
until specified number of attempts exhausted, thereby
invoking the backup algorithm or produces a valid output.

2.2 N-Copy Programming (NCP)

N-copy programming, as shown in figure 2, is a data diversity
complement of N-version programming that is design
diversity based technique. Each copy of N copies of a program
executes in parallel on a data set produced by data
re-expression algorithm. The output of the N-copy
programming is selected by using voting mechanism. Figure
2
shows the structure of the N-copy programming system.

Figure 2: N-Copy Programming

To determine the performance of the N-copy system, we have
considered three-copies of a program and compare it with a
single version system. Inputs of N copies can map to A + UA

Mylara Reddy C et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5143 – 5148

5145

different outputs. A of the N outputs are accepted by the
system and the probability that the ith copy produces
acceptable output is ai for i=1...A. Similarly F of N outputs are
not acceptable by the system and the probability that ith copy
produces unacceptable output is fi for i=1...F

Three copies are run separately using one of three data sets as
an input. These data sets are generated by the data
re-expression algorithm. The voter selects the output that has
occurred most frequently. In case of a tie in the output, the tie
is resolved in random fashion. Given the probabilities ri and
fi, the system will select an acceptable output in one of the
four possible choices.

1. All the three copies of a program maps all three
re-expressed data sets to acceptable outputs. This is
achieved with probability expressed using the
equation 1.

A

i

A

j

A

k
akajaiP

1 1 1
**1 (1)

2. Of all the three copies of a program, two copies
mapped to two of the three re-expressed data sets to a
same acceptable output and one data set to an
unacceptable output. It is possible with probability
expressed using the equation 2.

A

i

F

j

fjaiP
1 1

*2 (2)

3. Of all the three copies of a program, two copies
mapped to two of the three re-expressed data sets to
different acceptable outputs and one data set to an
unacceptable output. It is possible with the
probability expressed by using the equation 3.

A

i

A

j

F

k
fkajaiP

1 1 1
**3 (3)

such that i ≠ j.
4. Of all the three copies of a program one copy map one

of the three re-expressed data sets to acceptable
output and two data sets to an unacceptable output. It
is possible with the probability expressed by using
the equation 4.

A

i

F

j

F

k
fkfjaiP

1 1 1
**4 (4)

such that j ≠ k.
The probability that a three copy system will produce
an acceptable output is expressed by using the
equation

 Pacceptableoutput = P1+P2+P3+P4

2.3 Data Re-expression Algorithm (DRA)

Data re-expression is the process of transforming input
data into logically equivalent data sets. Figure 4 shows the

basic structure of data re-expression. In simplest form, an
input x given to a re-expression algorithm, say P, it
generates an output P(x). Data re-expression algorithm
(DRA) transforms the input x into output y=DRA(x). The
original input x and transformed input y are equivalent,
but approximates of each other. Using data diversity,
output, P(y), of transformed input y may tolerate faults
when its output is suitable but output P(x) of x is not
suitable. Requirements of data re-expression algorithms
are driven by the output of applications or an execute since
outputs are very important. Therefore, requirements for
data re-expression algorithms are gathered from the
output of a given application.

3. OVERVIEW OF THE PROPOSED WORK

Although there are several techniques to mitigate effects of
system failures, in this article we work on software fault
tolerant techniques that are considered to be transparent to
software application programmers and users of software
systems. In this work we measure the time complexity of a
program that generate the Fibonacci numbers and count the
number of Fibonacci numbers within the given input range.

3.1 Software Failures Model

An unsigned integer is divided into four groups of one byte
each. Further severity of an error quantified based on the
position of the byte in which an error is occurred. In this work,
an error or a fault is induced into the system by flipping the
value of a bit. Selection of a particular group and one or more
of its bits to induce an error is done in a random manner. The
probability of failures occurring in a software system is
modeled according to the exponential distribution [11].
Failures are classified into following four categories:

i. Ignorable Failures: Presence of errors in group 1 are
ignored since the chances of mismatching program
output with correct output is less.

ii. Minor Level Failures: Change in the value of bit(s) that
belong to the second group (second least significant
byte). Minor faults will be corrected by re-iterating
few iterations of the Fibonacci number generation
process and appropriately resetting the count of
Fibonacci numbers

iii. Medium Level Failures: Change in the value of bit(s)
that belong to group 3 considered as medium level
failures. Medium level failures will be corrected by
beginning execution from the previous checkpoint.

iv. High Level Failures: Change in the value of bits(s) of
most-significant byte (fourth byte) considered as
high level failures. These failures are eliminated by
reexecuton of Fibonacci number generation process
from the beginning

Mylara Reddy C et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5143 – 5148

5146

4. EXPERIMENTAL SETUP AND RESULTS
DISCUSSION

In this section we present the details of implementation of
proposed work in detail and discussion of the results in detail.

4.1 Retry Blocks

To measure the performance of RtB approach, we have
programmed proposed algorithm using C++ programming
language that generates the Fibonacci numbers and their
count between zero and given input value. During the
execution of the program, errors are introduced randomly into
any one or more than one number that appear in the Fibonacci
sequence by modifying values of one or more bits. As a result
of the modification, the count of Fibonacci numbers will
either increase or decrease depending on whether the error
has resulted in reduced or increased value.

i. For example, for input value 16, the program
executes with transformed first input data set (2, 4)
producing the count of Fibonacci numbers. At the
end of first execution the count of Fibonacci numbers
is passed to the acceptance test. The acceptance test
compares the program output with the actual count
that supposed to be. In case of a successful match, the
program does not go to retry otherwise it will retry
with the second data set (4, 2).

ii. Again during the execution of the program for the
second time, errors are randomly introduced into
either the base value two or power value four or both.
Then the output of second iteration passed to
acceptance test. Depending on the decision result,
the acceptance test program either stops execution or
continue with the next data set (16, 1). This process
continues for three different data sets.

iii. After the third attempt program return exception
failure.

We have used specification acceptance test to test the retry
block approach. The acceptance test determines whether the
program has produced exactly equal number of Fibonacci
numbers as that of expected or not. If the output matches
expected value, then the acceptance test is considered as
passed otherwise failed.

4.2 N-Copy Programming

In this approach, three copies of a C++ program to generate
and count Fibonacci numbers between zero and given input
were used. Input for each copy is selected from the
transformed input data sets. For example, data sets (16, 1), (2,
4), (4, 2) are the input for the first, second and third copies
respectively. The outputs of each copy, that is the count of
Fibonacci numbers, are passed to voting mechanism. The
voting mechanism is a straight forward approach that selects
identical output.

As the number of retries increases time taken by each
subsequent retry attempt also increase. There are four levels
of faults that are dealt with in our experimental programs.
Minor level failures are basically introduced into the second
least significant byte of an input number. Minor level failures
do not introduce a much difference in value compare to higher
level failures. These failures are recovered by reiterating
through a maximum of two immediate previous iterations.
Reason for two previous iterations is that the count of
Fibonacci numbers for a smaller range will be less. Next level
failures are medium level failures which are introduced in to
the third byte from least significant position. Since medium
level failures cause reasonably higher difference in value, it
requires little more computing power to recover from failures.
To annihilate the effect of such errors reiterate through five
immediate previous iterations. For higher level failures entire
process of counting Fibonacci numbers is repeated from the
beginning of a program.
Figures 3, 4 and 5 showcases the number of failures tolerated
for minor, medium and high level failures respectively using
retry block approach. A higher number of minor failures can
be recovered using few retries. The same is not true with
higher level failures. However, a large number of failures can
be tolerated with increased number of retries. Results show
that with two or three retries it is possible to tolerate all minor
failures and most of higher level failures.
Outputs of three copies are submitted to the voter that selects
the correct output using a specification test. The voter selects
an output that is identical for two of the three copies. For each
given input all the three copies are executed for all possible
failures. Since all the copies are executed in parallel, time
taken by this approach is the sum of the time taken by each
copy. Time taken for each input and for each failure level
varies depending on the count of Fibonacci numbers in a
given range. The larger input range will have more number of
Fibonacci numbers. As a result of it the time taken also
increases.

Figures 3: Number of minor level failures recovered during
1, 2, and 3 retries

Mylara Reddy C et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5143 – 5148

5147

Figures 4: Number of medium level failures recovered during
1, 2, and 3 retries

Figures 5: Number of high level failures recovered during 1,
2, and 3 retries

Time taken by the NCP is almost thrice the original program.
However, it varies depending on the computing platform on
which copies are executed. Figures 6, 7 and 8 represent the
number of minor, medium and high level failures tolerated by
the system using NCP approach. As we increase the number
of copies, the number of failures tolerated by the system also
increases particularly minor and medium failures. Results
show that by increasing the number of copies it is possible to
tolerate most of the failures.

Figure 6: Number of minor level failures recovered for 1, 2,
and 3 copies

Figure 7: Number of medium level failures recovered for 1, 2,
and 3 copies

Figure 8: Number of high level failures recovered for 1, 2,

and 3 copies

5. CONCLUSION

In this research article we presented performance comparison
of retry block and N-copy techniques. Experimental results
show that the N-copy is more efficient than the retry block
approach in terms of the number of failures tolerated.
However, in terms of time taken to complete a task retry block
approach is efficient when the size of the retry blocks is
smaller. Efficiency of N-copy programming depends on N.
Higher the value of N then the larger the amount of resources
required.

REFERENCES

1. Ofer Gadish Top 9 Reasons for Cloud Application

Failure, (2014),
https://www.cloudendure.com/blog/top-9-reasons-clo
ud-application-failure/

2. Ganesh, A., Sandhya, M., Shankar, S. A study on
fault tolerance methods in cloud computing, IEEE
International Advance Computing Conference
(IACC). pp. 844–849 (Feb 2014)

3. Egwutuoha, I.P., Levy, D., Selic, B., Chen, S. A

Mylara Reddy C et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5143 – 5148

5148

survey of fault tolerance mechanisms and
checkpoint/restart implementations for high
performance computing systems, Journal of Super
computing, 65(3), 1302–1326,
http://dx.doi.org/10.1007/s11227-013-0884-0

4. Elnozahy, E.N.M., Alvisi, L. Wang, Y.M., Johnson,
D.B. A survey of rollback recovery protocols in
message passing systems, ACM Computing. Survey,
34(3), 375-12 408 (Sep 2002),
http://doi.acm.org/10.1145/568522.568525

5. Fagg, G.E., Dongarra, J. Ft-mpi: Fault tolerant mpi,
supporting dynamic applications in a dynamic
world, Proceedings of the 7th European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel
Virtual Machine and Message Passing Interface. pp.
346–353, Springer-Verlag, London, UK (2000),
http://dl.acm.org/citation.cfm?id=648137.746632

6. Sharma, P., Phanden, R. K., & Singhal, S. A
Comparative Analysis of Facility Layout Design and
Optimization Techniques.

7. J. F. Ruscio, M.A.H., Varadarajan, S. Dejavu:
Transparent user-level checkpointing, migration,
and recovery for distributed systems, IEEE
International Parallel and Distributed Processing
Symposium, pp. 1–10 (March 2007)

8. Limam, S., Belalem, G. A migration approach for
fault tolerance in cloud computing, International
journal of. Grid High Perform. Computing, 6(2), pp.
24–37 (Apr 2014),
http://dx.doi.org/10.4018/ijghpc.2014040102

9. Maloney, A., Goscinski, A. A survey and review of
the current state of rollback-recovery for cluster
systems, Concurrency and Computation Practice and
Experience 21(12), pp.1632–1666,
http://onlinelibrary.wiley.com/doi/10.1002/cpe.1413/

pdf
10. S., K., V, R. A survey of checkpointing algorithms

for parallel and distributed computers, Sadhana
25(5), 489–510 (Oct 2000),
https://doi.org/10.1007/BF02703630

11. Ammann, P.E., Knight, J. C. Data diversity: an
approach to software fault tolerance, IEEE
Transactions on Computers 37(4), 418–425 (Apr
1988)

12. JKR Sastry, Bhupathi, Enhancing Fault Tolerance
of IoT Networks within Device Layer,
International Journal of Emerging Trends in
Engineering Research, 8(2), February 2020,
491-509

13. Bhukya Ramesh Naik, Vamsidhar Yendapalli, Naga
Raju M., Performance Improvement in CBIR
using Region Weight Learning Approach,
International Journal of Emerging Trends in
Engineering Research, 8(7), July 2020, 3864-3868

