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 
ABSTRACT 
 
This paper presents the reliability study of an aircraft wing in 
the presence of random uncertainties due to manufacturing 
tolerances or material inhomogeneity. This effect generally 
leads to an increase in vibration amplitudes, resulting in 
dynamic deformations much larger than those estimated at 
the design stage. A study of the dynamic behaviour was 
carried out using ANSYS. This model was coupled to the 
MCS procedure. In order to reduce the computational effort 
required for the reliability analysis by the finite element 
model, a reduced order model formulation based on modal 
analysis is proposed to examine the response of the system 
under study. The proposed methodology allows the efficient 
capture of statistical properties. Thus, it allows a good 
compromise between the proposed robustness criteria, the 
resolution and precision sought and a considerable time 
saving. 
 
Key words : Reliability analysis; Reduced-order model; 
FORM and SORM; Monte Carlo; cyclic symmetry ; FEM ; 
modal analysis.  
 
1. INTRODUCTION 
 

Reliability analysis in mechanics has been developed for 
the study of mechanical structures in an uncertain context. 
Uncertainties can be directly related to manufacturing 
tolerances, unpredictable environment and other factors 
largely involved in engineering [1], [2], [3]. Although, 
conventional design rarely relies on absolute risk-based 
decision making, so the uncertainties are assessed in a 
bounded manner using a so-called safety factor. However, it is 
preferable to conduct structural analysis in a more judicious 
and realistic framework called probabilistic (also called 
Mechanical Reliability) to assess the reliability of structures 
[4]. 

Reliability assessment methods aim at evaluating the 
probability of a limit state violation by comparing 
probabilistic models of active loads and structural strength 
[4]. A limit state is a condition beyond which a structure 

 
 

exceeds a specified design requirement expressed in 
mathematical form by a limit state function G (X) = 0. The 
probability of failure (Pf) is then defined as the probability of 
occurrence of the failure event G (X) ≤ 0, where X is a vector 
of random variables representing the uncertainties in the 
loads, as well as in the material and geometric properties of 
the structure. The objective of these methods is to assess the 
probability that a system may be in a configuration considered 
to be faulty by taking into account the uncertain behaviour of 
the various variables acting on the system. 

However, reliability formulation requires a mechanical 
reliability coupling, involving the coupling between 
reliability analysis algorithms and the mechanical model to 
estimate the probability of failure [5]. Among the reliability 
analysis methods is the Monte-carlo method, which is 
represented as the reference method [6]. Also, first and 
second order methods (FORM and SORM). Both of these 
methods are based on Taylor’s development around the most 
likely point. Although these methods are accurate and simple 
to implement, they can become very expensive as the number 
of random parameters increases. Still, the complexity of the 
mechanical reliability coupling depends on the 
approximation mean of the performance function.  
 
Reliability is defined as the probability that the performance 
function G is greater than zero [8],[9]. Negative values of the 
limit state function indicate the failure area. This allows the 
probability of failure to be estimated by [Pf = {G(E, ρ) < 0]. 
Typically, the complexity of the performance functions and 
the large number of variables in the model make it impossible 
or impractical to calculate the probability of failure directly. 
However, several techniques have been developed for 
reliability analysis. Among these methods is Monte Carlo 
simulation which can be used for problems related to explicit 
or implicit limit state functions [7]. Monte Carlo consists of 
generating a large set of random values according to known 
statistical laws, and the statistics of favorable cases are 
counted. The probability of default is calculated as the number 
of favorable cases divided by the total number of cases.  
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Despite its simplicity, an inherent disadvantage of the 
method is the enormous computational effort required for the 
analysis. As a result, calculation costs increased considerably 
with each sampling cycle, sometimes reaching unachievable 
levels. 

This study presents a mechanical reliability analysis of an 
aircraft wing. The model studied taking into account the 
uncertainties in the properties of the materials. The 
implemented technique combines modal finite element 
analysis with probabilistic methods MCS to analyze the 
system performance function. Implicitly, the ANSYS 
software is used to evaluate the limit state function. The 
calculation time depends on the number of calls to the 
calculation code. However, the study describes that the direct 
coupling between a finite element code and a reliability 
assessment technique remains too weak for real problems 
with a large number of degrees of freedom. To deal with this, 
an efficient method has been proposed that requires a single 
call to the finite element code. Simulations are presented to 
demonstrate the validity of the reduced model. The results of 
the proposed method represent a precision comparable to that 
of the numerical model, thus allowing a good compromise 
between precision and calculation time. 

 
2. RELIABILITY ANALYSIS 
 

The study presents an aircraft wing reliability analysis. 
Figure 2 shows the finite element model built using ANSYS 
software. It consists of a total number of nodes of 3990 and 
3192 elements. The profile surface of the wing is meshed by 
the PLANE182 elements, which use quadratic elements. The 
mesh of the solid consists of SOLID185 elements. The wing is 
modeled from a material, considered isotropic and 
homogeneous (Young’s modulus of 7.3E+10 GPa, density of 
2698 kg / m3 and Poisson’s ratio of 0.33). The wing has a 
constant transverse aerofoil profile (Figure 1). The model is 
embedded in the cross section relative to the origin of the 
geometry by resetting all degrees of freedom to zero. The 
dynamic response of the system under study can be evaluated 
by [4]: 
 

 ( ) 0i iK M     (2) 

With M and K are the mass and stiffness matrices, while 
the roots of (λ=ω2) in the problem represent the eigenvalues, 
and Φi the corresponding eigenvector. The vibration modes 
are revealed after solving the problem of the eigenvalue 
equation (2). The finite element analysis was performed using 
the Lanczos Block Method [10], using a computer equipped 
with an Intel (R) Core (TM) i5-4310U processor with 
2.00GHZ 2.60 GHZ and 8 GB RAM. Table 1 and Figure (2) 
show the modes and Eigen frequencies respectively. 

 

Table 1: Natural frequencies 

 

 
Figure 1: Wing Model. 

 
In reality, any form of analysis model has to cope with a large 
dispersion [11]. However, a probabilistic study is used to 
determine the effect of dispersion on the results of the 
analysis. For the sake of simplicity, only sources of 
uncertainty related to material properties are discussed in this 
paper. Just as the variables follow mutually independent 
normal distributions, their statistics are presented in Table 2. 
 

Table 2: Statistical of Parameters 
 

Parameters Distribution Means SD 
Youg’s Modulus 

(GPa) Normal 7.3E+10 2.433E+10 

Density (kg / m3) Normal 2698 674 
 

Reliability analysis focused on the probability of structural 
failure, not on the phenomena that cause failure, but on how 
often it occurs. It is therefore not a physical theory, but a 
theory of probability and statistics [12]. Structural Reliability 
provides methods to quantify the probability of structural 
failure, by setting a performance or limit state function G(E, 
ρ)=0;(a condition outside of a specified design requirement 
expressed in mathematical form by a limit state function ; 
equation (3) [13], [14],  which depends on the first natural 
frequency of the wing fc, and limited by the frequency (fv=2.5 
Hz). 

( , ) c vG E f f     (3) 

Mode Shapes Natural Frequencies (Hz) 
1 1.1687 
2 5.7145 
3 7.2963 
4 15.0182 
5 20.3657 
6 33.2535 
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With (E, ρ) are called basic variables that represent 
uncertainties about the physical properties of the wing 
(Young's modulus, density) [13]. 

Figure (3) shows the reliability algorithm used in this work, 
which link the MONTE-CARLO reliability analysis (MCS), 
developed under MATLAB with the finite element code 
(ANSYS). The algorithm represents a procedure that draws 
samples directly from the probability distributions of the 
random variables. This procedure is very robust and relatively 
easy to apply. However, it requires a large number of 
evaluations of the performance of the random variables in 
order to estimate reliable results, as shown in Table 3. 

 
Figure 2: The firsts mode Shape of the Wing. 

 
Table 3 shows the disadvantages inherent in probability 

calculus - the enormous computational effort for problems 
involving a low probability of failure or problems that require 
a considerable amount of computation in each sampling 
cycle. 
In order to solve this disadvantage, we propose an efficient 
method, if we keep in mind that the measure of efficiency of 
the method is quantified by the number of calls to the finite 
element calculation code [15]. 
 
3. PROPOSED METHOD 
 

In order to overcome the above-mentioned disadvantage 
and to reduce to an acceptable level the computational effort 
required for reliability analysis in dynamic structures, several 
techniques can be used in conjunction with reliability 

methods. This paper presents a procedure based on 
generalized matrices applied to establish a relationship 
between input variables and output parameters so that the 
performance function can be evaluated. To achieve this, a 
condensation method has been developed that reduces the 
number of calls to the FEM code in a single call. 

As a result, the wing model is determined using ANSYS. 
The elementary mass and stiffness matrices that characterize 
the model are extracted from the FEM code (see Figure 4). 
The second part allows the calculation of generalized 
matrices. Based on the orthogonality properties of modal 
analysis.  

These properties allow the decoupling of equilibrium 
equations, and are used in analytical resolutions, but 
especially today in finite element calculation codes. Equation 
(4) is written using the associated eigenmodes (

iY )  
 

2
i i iK Y M Y    (4) 

The physical meaning of the orthogonality relations is that 
the virtual work of the inertial forces of mode i during a 
displacement according to mode j is zero, as well as the virtual 
work of the elastic forces of mode i during a displacement 
according to mode j is zero. It is possible to define the 
generalized mass of the mode under consideration and the 
corresponding generalized stiffness which are related by [16]. 

2k m    (5) 

 
Figure 3: The mechano-reliability coupling algorithm. 

 
Note that these two quantities are set to a pre constant. The 

amplitude can be raised by choosing a standard. We set the 
generalized mass m to unity. The relations between mass and 
stiffness become: 

2 2/
t

t

t
Y K Y k m Y K Y
Y M Y

        (6) 
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Table 3: Wing's Reliability Study Results 
 

Parameters EFM coupled model 
MCS MCS MCS MCS 

Reliability 
index β 

3.7190 3.2905 3.0902 3,0029 

Reliability % 99.99 99.95 99.90 99,866 
Failure 

Probability 
0.0001 0.0005 0.001 0,0013 

Call to FEM 10E+2 10E+3 10E+4 10E+5 
Computing 

time (s) 
2782.7 27836.1 269370 276894 

 

 
 

Figure 4: The mechano-reliability coupling algorithm. 
 
ω2 is multiple roots; there will be as many linearly 

independent eigenvectors as the degree of a multiplicity of 
that root. Therefore, the orthogonality relations remain valid. 
Finally, it should be noted that only the relationship between 
stiffness and generalized mass is important since both 
quantities are defined with a constant pre. 

2t

i ijY K Y      (7) 
t

ijY M Y     (8) 

δij is the symbol for Kronecker [16]. Probabilistic 
modelling consists in modelling the mass and stiffness matrix 
by random variable matrices, by modifying the mechanical 
properties of the material (Young's modulus and density). The 
reduced model allows the calculation of the first natural 
frequency fc defined in the equation (1). Admitting that it is a 
solution that allows reducing the dynamic amplification 
levels of the wings, by modifying the properties of materials 
[1], [14], [16],[17]. 

We define the generalized mass of the considered mode and 
the corresponding generalized stiffness which are connected 
by: 

1
1

1

2 c
k f
m

     (9) 

It has defined the limit state function (19), where E, ρ, are 
the input variables that depend on Young's modulus and 
density respectively.  

1( , )
2 vG E f

  


 (10) 

The mass random variable and the stiffness random 
variable defined by: 

1 2. ;k . Xm X E    (11) 
Knowing that X1 and X2 are two constants, It is assumed 

that these two variables are normally distributed with a mean 
μi and a standard deviation σi or (i = (E, ρ)). We can show 
directly that the variables m, k follow a normal distribution 
with a mean (mv, kv) and a standard deviation (σm, σk) defined 
by : 
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  (12) 

When calculating the random variables. The reduced 
model is linked to Monte Carlo simulation to predict the 
probability of failure (see Figure 5).  

Figure 5: Proposed Algorithm. 

Table 4: The wing Natural frequencies. 

Mode 
Shapes 

Natural Frequencies 
(Hz) 

FEM 
model 

Reduced 
model 

Relative 
error 

1 1.1687 1.1629 0.0049 
2 5.7145 5.7692 0.0095 
3 7.2963 7.9734 0.0928 
4 15.0182 14.9694 0.0032 
5 20.3657 20.2869 0.0038 
6 33.2535 33.2523 0.00003 
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The proposed method has a high quality in terms of 
accuracy and a considerable time saving compared to FEM 
methods. Table (4) shows the first six Eigen frequencies of the 
aircraft's wing, calculated by the FEM model and the scale 
model respectively. The results show a strong agreement 
between the two methods. Such that the modal frequency of 
the scale model represents an error of 0.0058 with respect to 
the FEM code based model.  

 
After reliability study is carried out by coupling the MCS 

method with the two deterministic models (FEM model and 
reduced). The number of iterations of the MCS method is 
fixed at 105. Figure 6, shows the density distribution of the 
first frequency calculated using the MCS coupled to the FEM 
code method (MCS FEM) and the corresponding MCS coupled 
to the proposed model (MCS MG). The standard distribution is 
used to generate stiffness and mass disturbances, using 
Young's modulus and density statistics. As shown in the 
figure, the vibration frequency increases around the midpoint 
equal to 1.1641 Hz, with a maximum limit of 2.5 Hz. Both 
distributions represent a very good agreement with a relative 
error around 0.0058 on average.  

Figure 6: The first frequency density distribution. 

 
Figure 7: Reliability distribution 

Table 4. The results of reliability analyze. 

Parameters EFM coupled 
model 

Reduced coupled 
model 

Reliability index β 3,0029 3,0124 
Reliability 99,866 99,871 

Failure Probability 0,0013 0,0013 
Nombre 

d’exécution FEM 1E+6 1 

Computing time (s) 276894 15,767 
 

Figure 7 illustrates the assignment of reliability frequency 
responses using the empirical cumulative distribution 
function CDF. Reliability is assessed from the first frequency 
distribution, using MCS generation data coupled to the two 
methods. Taking this into account, the failure range gradually 
increases with decreasing reliability. The proposed method 
regularly converges towards an accurate result. The variation 
in reliability is qualitatively similar to that reported by the 
MCSFEM, confirming the applicability of the reduced model 
to structural reliability studies. 

Table (4) presents a comparison of the results obtained by 
the two methods. We note small differences between the 
probabilistic reliability approximations for the reliability 
index estimation β and the probability of failure the reference 
[18], reports that the number of calls to the FEM code can 
measure the effectiveness of a probabilistic method. The 
proposed method has reasonable effectiveness compared to 
the EFM-based method. 

Figure 8 shows that the reduced model represents a gain in 
computing time compared to the FEM model. The 
Monte-Carlo simulation acquired a little 3 days of calculation 
with the FEM method knowing that the reduced model took 
only 15 seconds of calculation. The reduced model allows a 
good compromise between the criteria of robustness offered, 
efficiency and desired precision and a considerable time 
saving. 

 

Figure 8: Calculation time comparison 
 
 
4. CONCLUSION 
 
In this study, a probabilistic analysis was conducted for an 
aircraft wing. Two reliability approaches were developed to 
assess the reliability index. The first is based on the direct 
coupling of the probabilistic MCS method with the 
deterministic model based on the finite element method. The 
second is based on an efficient condensation method that 
requires only one call to the finite element code. The 
developed method is then linked to MCS to predict the 
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probability of failure. A quantitative reliability study was 
conducted to evaluate the efficiency and accuracy of the 
proposed models. With regard to the results of the analysis, it 
can be concluded that the proposed scaled-down model can 
effectively capture statistical properties in less time. The 
proposed method is of high quality in terms of accuracy and 
considerable time savings. 
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