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 
ABSTRACT 
Modeling the propagation rate of diseases in a society via 
social interaction has continued to pose its many challenges. 
The recent spread of the covid-19 epidemic cannot be left out. 
Thus, social interactions heralds its many benefits and has 
becomes a vehicle for epidemic outbreaks – which has 
continually left the world puzzled as the disease itself has 
come to stay. The nature of its rapid propagation on exposure 
alongside its migration spread pattern of this contagion (with 
retrospect of other epidemics) on daily basis, has also left 
experts rethinking the set protocols. Our study models the 
spread propagation of the corona-virus contagion using the 
movement-interaction-return on a social graph. Thus, we 
seek to measure if the corona-virus (covid-19) spread 
propagation can be minimized alongside its death rate using 
movement pattern as a threshold feature and set of protocols. 
We design a Markovian block model to help minimize 
targeted propagation with the advent of seed-node(s) using 
the susceptible-infect structure on a time-varying graph. 
Study results showed that movement pattern must be 
employed as an imperative factors when modeling the 
propagation of contagion(s). 
 
Key words: contagions, movement-interaction-return MIR, 
propagation, agent-based model, decision support, migration.  
 
1. INTRODUCTION 
 

Overtime, mathematical models have been translated using 
computers as veritable tools to simulate and predict future 
states in complex, stochastic and dynamic phenomenon. 
These tools have thus, become useful, critical and imperative 
in controlling existing states of known events as well as 
helpful in prediction (as insight) to unknown events so long 
the proper and effective parameters are employed and 
adequately represented within the mathematical model [1, 2]. 
These have been used to control/manage existing contagions 
epidemics as well as for analyzing cum forecasting the 
outcome therein of such epidemics [3, 4, 5]. 

 
 

Diseases are disorders that occurs within the structure and 
function of any human, plant or animal – producing a specific 
(set of) symptoms. At its primitive stage, diseases exists in 
four dimensions namely thus: infectious, deficiency, 
hereditary, and non-hereditary. Diseases can also be viewed 
as harmful deviation(s) from the normal functioning of a 
system as it exhibit symptoms indicative of an anomaly, or its 
abnormal state [6, 7]. Diseases are propagated from a system 
to another via a medium [8] as contagion to result in regular 
spread and epidemic – as it impacts on the society [9, 10, 11]. 
Many such tasks are modeled via a set of interconnected 
nodes on a social graph with their corresponding relations, as 
edges that connects the various nodes [7]. 

With mobility pattern of these nodes (also referred to as 
actors or agents), traces of the contagion can begin to emerge 
as a pattern as these actors migrate, interact and return to the 
point of their origin. These in turn, continues to impact on the 
changes and transformation process that often escalates 
minute and local disease outbreaks – morphing unto 
epidemics on a global scale [12, 13] and in turn – continued to 
necessitate the modeling of mobility pattern of actors 
alongside their varied interactions as integral facet of 
epidemic models – as these will help to effectively design and 
simulate such outbreak episodes as well as to help implement 
efficiently, a worthy as well as an efficient immunization cum 
preventive policies [14, 15, 16]. 
 
2. LITERATURE REVIEW 

Migration and interaction processes from persons living in 
a society – have continued to advance globalization. Its 
demerit also – has been in its acceleration of epidemic 
processes and its geographic expansion that multiplies and 
escalates local outbreaks into global epidemics. These factors 
have also been driven by frontier features namely: (a) 
migration activities from one place to another, and (b) effects 
of climate change [5, 13]. As a direct consequence of these 
two factors above, we have assisted in the spread of the Ebola 
outbreak as well as the current corona virus (covid-19) [3, 10]. 
Thus, it has become imperative that the inclusion of actor 
migration and interaction activities in the well-formulation of 
an epidemic propagation model has become mandatory as 
well as critical to achieving accurate description of any 
epidemic scenario [17]. Many algorithms and models have 
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been posited leveraging on graph theories as their backdrop – 
as means to address these growing and ever-increasing 
concerns [8]. 
 
2.1. The Dynamic Susceptible-Infect (SI) Model 
As diffusion process continues at t  0, actors are first exposed 
(as seed-set nodes) to allow them form their perception and 
behaviour about the innovation. In time, as more of the actors 
are exposed to innovation, they make preferences – and based 
on their threshold (behaviour), adopt the innovation and form 
clusters and cliques via learning outcome. These strengthen 
their ties as well as improves the actor’s personal network and 
consequently, helps them better retain information within 
their memory in time as the system continues in its search for 
optimality [17, 18, 19, 20, 21]. The random exchange in an 
actor’s personal network allows knowledge swap – so as to 
yield in time agents with a new set of disposition (consider 
adoption and behaviour change cum evolution). As more 
adoption is encountered, more agents continue to learn/retain 
contents within their memories that better their personal 
network via community-influences. The listing in Algorithm 
2 shows the SI (susceptible-infect) model [22, 23, 24, 25]: 
 

Listing of the SI Algorithm 
Algorithm 1: Spread Propagation Algorithm in SI-Graph 
Input: Dataset, clusters k, parameter s and number of iterations iter 
Output: the set of k clusters 
1. Initialize number of nodes n; number of Ties m 
2. Set Initial Tie Strength = 10+, Cluster Structure = 25+; 
3. Set Network Structure as function of clusters 

4. Initialize Graph via PD of  

5. Set Agent position with Max/Min bounds of expected number 
of final adopters as a function of Motion or Movement M. 

6. Randomly select nodes for seedset choice 
7.     While Node are yet to be Exposed 
8. Choose agents position in seedset as best position in graph 
9. Initialize current Agent position = {Mmin + rand(Pmax – Pmin)} 
10. Compute Threshold cum Path dependence for all nodes in 

Graph 
11. Set Pairwise Variables Interactions (+Di) 
12. Set Predictive Variables for task (+Ri) 
13. Compute Agent’s Tie Strength as function {+Ri, +Di, +NiG, +Eli) 
14.      For Each Agent, Node or Actor i 
15.      Do { 
16. If seedset is member of an agent’s personal network 
17.    Then node.list.append(seedset node) 
18. End If   } 
19.      End For Each 
20. Compute movement pattern in network as thus: 

 

21. Compute actors change in behaviour from exposure at t  0 as: 
Mnew = w * Mold + c1 * rand() * [(Pi)/T] + c2 * rand() * [(Pn)/T)] 

22. Updating agents’ positions as Pnew = (Pold – Mnew) 
23. // continue till all nodes are exposed, implies stop criterion reached 

 

Each exposure yields an updated number of final adopters as 
its optimal solution in time via recomputed threshold value 
for exposed actors. We note that: (a) the agent position range 
is normalized between [0-1] dividing it by maximum range of 
agents, (b) each position randomly determines swap type 
needed for adoption rate, and (c) positions are reset and these 
recomputed new values will eventually reflect system 
threshold. With each solution found, model restarts with 
another randomly selected point for the planted seed-set 
choice in the graph space [26, 27]. 

Agents with threshold value above 0.5 are chosen. Process 
continues till all agents are exposed time  t – 1 at which all 
agents will have a threshold of 1 for the diffusion process or 
the nodes are continuously re-evaluated till an agent is found 
of threshold lesser than or equal to start-off threshold value 
(these form the stopping criterion for the model). At which 
point the solution is reached [28]. 
 
2.2. Traditional Markovian Model 

The Markov Model is a double embedded chain that seeks 
to model complex chaotic processes as a chain of state 
sequences with probabilities associated to transition between 
states. For an n-order Markov, its transition probabilities 
depend on current and n-1 previous states, and used to 
determine states generated for each state observation in a 
series. A variant of the Markov model is the Hidden Markov 
and Profile Hidden Markov – both of which seeks to address 
the fundamental issues of Markov by: (a) makes explicit use 
of positional (alignment) data contained in sequences, and (b) 
it allows null transitions, where necessary so that the model 
can match sequences that includes insertion and deletions 
[29]. 

With state transition and probability distribution on nodal 
state observations, the Markovian Equation can be expressed 
as λ = (A,B,π) depending on task [30]. Markovian models are 
best suited for tasks [31-32] for which (not limited to) these 
following conditions hold(s): 
a. Problem 1: Given observations and parameters N and M, 

determine model λ = (A,B,π) that best fits sequence. We 
train model to fit data. HMM training requires no aprior 
assumptions about the model other than outline 
parameter N and M, which specifies the size of the 
model. 

b. Problem 2: Compute probability that the given model 
produces an observation sequence if given the model λ – 
(A,B,π) and an observation sequence O, compute P(O/ λ). 

c. Problem 3: Uncover HMM λ = (A,B,π) and observation 
sequence O to determine most likely sequence of states X 
= (x1, x2, …, xT) that could have produced the sequence. 

 
2.3. Markovian Movement-Interaction-Return Ensemble  

Soriano-Panos et al [31] proposed an extended Markovian 
movement-interaction-return model as seen with the figure 1. 
It first, notes that every time-step consists of three (3) stages 
namely: 
a. Stage 1: Movement: Here, actors move across social graph 

with a probability p – and each subgraph can be populated 
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with actors from different geographical regions – so that 
the graph is etched with behavioral feats accompanying 
visitors and residents in a small-world graph as they 
possess very different migration pattern. Thus graph, 
introduces an object or parameter to govern migration 
flow – more complex than Origin-Destination matrices 
termed  – a 3-D tensor that describes the probability 

with which an actor i moves from subgraph j to subgraph k 
as in Eq, 1. 
 

 
 

This parameter imposes and ensures only actors located at 
their residence are allowed to move to other neighborhood 
areas. Thus, visitors staying out of their residence are 
forced to stay at their temporal node until coming back 
home. Once these movements takes place – actors initiate 
interaction and then learning can occur. 

b. Stage 2: Interaction: With the SI-Susceptible model for 
disease propagation, social graph assumes that all actors 
are well-mixed as actors interact with those in their 
immediate neighborhood. Thus, an actor/node x has 
several chances of exposing itself to another node y and 
has exactly one chance of infecting the node y. Thus, the 
probability that an infected actor x transmits the 
innovation (in this case, the disease pathogen) to a 
susceptible node actor y is given by λ; while, the 
probability that an infected actor overcomes the disease 
(that is, the disease dies out and the node is unable to 
propagate and not become susceptible again) is μ. 

c. Stage 3: Return: Here, visitors may decide to stay off their 
residence or to come back home with a probability of . 
This feature and parameter accounts for permanence time 
in destination node. Note, that  recovers 
the solution to the original MIR model. Consequently, the 
propagation  allows the actor to lose data 
about their residence and thus, are steadily redistributed 
across the neighboring areas. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Movement-Interaction-Return Schematic diagram 
 

The experiment seeks to explore the propagation death rate of 
the covid-19 epidemic as it ripple effects across a social graph 
using mobility as a predictor and threshold parameter for 
nodal adoption or rejection of the covid-19, as an innovation 
for diffusion or propagation. Thus, we seek to find the 
expected number of final adopters via network parameters 
with the actors’ position in a social graph as they locally 
interact over-time. The study is more interested in the local 
emergent feats emanating from large-scale effects of such 
interacting actors of the entire supply network. 
 
3. FINDINGS / DISCUSSION 
 
3.1. Data Gathering 

There are over eight isolation centers per senatorial district 
as created by the Delta State Government in response to curb 
the spread of the covid-19 pandemic. Figure 2 shows the 
epidemic curve for February 27, 2020 to April 23, 2021 of the 
NCDC daily epidemic curve in Nigeria with known reported 
cases of the pandemic in Delta State as given by table 1 [34].  
 

Table 1. Nigeria Covid-19 Fact-sheet for April 23 2021 
No Description of Cases Population 

 
1 

Total Samples Tested 
Previously Confirmed Cases 
Newly Confirmed Case(s) 

1868 
569 
37 
 

 

2 Previously Discharged Cases 
Newly Discharged Cases 

136 
6 
 

3 Total Deaths 20 
4 Total Active Cases 413 
5 Total Number of Patients Abscond 0 
6 Days since last reported case 0 

 
With the consequent spread of the Corona-virus (covid-19) 

in Nigeria alongside the migration of patients and individuals 
within and outside of the various states within the nation and 
abroad, it called on the urgency by the Federal Government of 
Nigeria to declare travel cum migration bans both 
intra-states, inter-states and outside of the Nigeria state. 
 

 
Figure 2. Confirmed cases (Feb 27 – April 23, 2021) 
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3.2. Data Pre-Processing and Verification 
Machine learning algorithm often requires gathering of the 

necessary dataset as cases, examples, and instances of all 
possible object classes. This is because in order to effectively 
train the adopted and adapted model, instances of the dataset 
must be appropriately labeled in order to minimize the error 
rate in the classification. These errors discern cum determine 
how effective and efficient the model progressed and is able to 
mine the data features of interest. Also, these errors can be 
resultant of the fact that in grouping cum labeling the data, 
some data points – even when not in the same class or group, 
can have lots of similarities under the unsupervised learning, 
or as they are used to predict new objects in a class under 
supervised learning. Also, the dataset must also be formatted 
appropriately to be used by the model; Else, it will result in 
data-type mismatch as the users tries to encode the data (via 
pre-processing stages) so that model is adequately trained to 
classify the data points into their  corresponding classes [35]. 

For this study, we retrieved the data from Federal Medical 
Centre Epidemiology laboratory (Epi-lab) in Asaba, Delta 
State in Nigeria. The dataset contains about 54 attributes and 
4,687 instances, including personal data of the patient, 
symptoms the patient suffers from, HIV and other tests, 
history of the disease, diagnostic tools used, treatment that 
includes regimens for the type of the disease and doses given, 
with its drug reaction, the follow-up results for the whole 
treatment period, also costs and hospitalization paid. 
However, the attributes that are likely to affect the patient 
behavior towards the treatment (treatment outcome is one of 
the following: cured, treatment completed, treatment failed, 
treatment discontinued, death, and transferred out). The 
dataset was further categorized into: (a) Attributes related to 
particular patient (age, sex, etc), (b) Attributes that are related 
to regimen, (c) Attributes that are related to proximity to 
health center, (d) Attribute related to treatment’s side effect 
(social or clinical) and (e) attributes related to duration of 
treatment. 
 
4. FINDINGS / DISCUSSION 
 
4.1. Findings and Discussion 

The application of MIR model with 5-fold training and test 
in evaluating the prediction model based on the correctly 
classified instances, the model has produced 93.7563 percent 
accuracy rate (see Table 2) showing confusion matrix with the 
five classes (a,b,c,d,e) representing the various treatment 
outcome groups. A confusion matrix represents per true and 
false classes correct classification. Table 2 shows confirmed 
class of 568-cases. The discharged class of 134 cases correctly 
classified as true as in class (a); while, 2 others (from b-to-e) 
classified as false. Classes (a) and (b) respectively shows no 
significant difference between them. Thus, the error in the 
classification do not have significant effect. But, the general 
percentage obtained from software (correctly classified 
instances) for proposed Bayesian model is 93.7563 percent. 

The study further shows that model adopts a graph-based 
approach where with the root represents the treatment 

outcome attributes; while the independent leaves represents 
other feats and attributes. Some of the assumption(s) made 
here includes that: (a) the variables are statistically 
independent, and (b) all variables are completely independent 
in accordance with [36] – though, it is observed that the 
independent assumption can barely arise [37, 38]. 
 

Table 2. Confusion Matrix and Percentage Achieved by Model 
Class a b c d e 

a=Confirmed 568 1 0 0 0 
b=Discharge
d  

134 0 1 0 1 

c=Death 20 0 3 5 0 
d=Active 409 0 2 1 2 
e=Absconded 2 0 0 1 0 

 
Table 3 shows there is a relation between variables and its 

corresponding probabilities. The discharge class is dependent 
upon the variable (piw) by 0.962 probabilities. Thus, we can 
violate the independent assumption that: “no more than one 
parent”. This is expressed by the set (maxNrOfParents=1) 
with which this process leads to achieve 94-percent accuracy. 
We notice the relations between attributes and their affection 
to the prediction result in accordance with [28, 29]. 
 

Table 3. Probability Distribution of (piw) Variable 
Class Yes No 

a=Confirmed 0.999 0.001 
b=Discharge
d  

0.962 0.038 

c=Death  0.107 0.893 
d=Active 0.01 0.99 
e=Absconded 0.136 0.864 

 
4.2. Result Trade-offs 
Several trade-off were noticed during result compilation and 
they fall under these [39, 40, 41, 42, 43, 44]:  
a. Result Presentation – researchers often display flawed 

results, modify and/or build new models rather than 
re-test limitations, biasness and inabilities of existing 
ones. Also, some researchers fail to report negative 
results thinking they are less valuable. We employ such 
data driven model to curb the non-linearity and 
dynamism in observed datasets used to train and test 
model, unlike knowledge models. 

b. Efficiency – modelers use figure to show how well their 
simulations are, in agreement with observations (even 
with their limited data that is squeezed) with lines for 
observed and simulated results that are not easily 
distinguishable. Some researchers do not even provide 
numerical dataset used for their study; but their model is 
in ‘good agreement’ with observations. Some measure of 
goodness does not provide the relevant information and 
knowledge for the task at hand.  

c. Insufficient Testing – Validation is a comparison of 
computed versus observed values, and many studies 
suffer from inadequate data. If a model/algorithm seeks 
to simulate results of a task, such capability cannot be 
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demonstrated with unfounded/misleading result from 
limited data and misleading conclusions. 

d. Model validation is a scientific dialogue – impeded by 
improper applications and ambiguous results. 

 
5. CONCLUSION 

In the study, we employed an MIR framework as predictive 
techniques to construct a target model for predicting potential 
spread and classification of the covid-19 contagion. 
Moreover, this study used medical dataset gathered from 
Federal Medical Center Epidemiology laboratory in Delta 
State. Model yields an acceptable accuracy with improved 
performance via the violation of the independent 
assumptions. This violation was based on the probability 
distribution of attributes. The model will serve as useful and 
cost-effective tool in a health care system wherein there exist 
limited resources. Furthermore, the model can be used for 
modeling predictive frameworks with migration cum mobility 
pattern therein to solve problems in other sphere. Finally, the 
authors of this study believed that the machine learning 
techniques used in this paper warrant further investigation, 
particularly to explore conditions and attributes under which 
this study was carried out as well as seek other conditions, in 
this underlined problem where they are most likely to be 
effective. 
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