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ABSTRACT 
 
Purpose: This paper aims to provide an integrated overview 
of the current state for the characterization of fracture Mode I 
(opening), Mode II (in-plane shear), Mode III (out-of-plane 
shear), as well as Mixed-Mode based on the essential work of 
fracture (EWF) concept on neat thermoplastics as well as 
composite matrices. Methodology: This review paper 
synthesizes and expands a collection of literature using the 
same basic methods. Each document that has a same fracture 
mode is grouped, reviewed, and synthesized.The review 
generally covers important aspects of testing and related data 
reduction methods, and the results of EWF research in various 
different mode-type loading.Results: The character of fracture 
toughness in ductile material has been widely evaluated using 
the EWF approach. The use of this method has evolved not 
only for mode I fractures but also for mode II and mode III 
fractures. Applications: This can create an understanding of 
the topic of fracture characterization in various fracture modes 
based on the EWF concept for ductile material so that the 
readers can discuss the various findings presented in recent 
research papers. 
 
Key words: Composite matrices, Essential work of fracture, 
Fracture characterization, Fracture mode 
 
1. INTRODUCTION 
 
Elastic fracture modeling cannot be used as a basis for 
analyzing fracture behavior in resilient materials especially 
polymeric materials. Various responses were carried out by 
researchers by conducting numerical simulations and 
experimental studies in investigating the behavior of elastic 
fractures by focusing on mixed-mode fractures.  
 
In ductile material, the mode of loading experienced 
determines the mechanism of the fracture that occurs at the 
crack tip, whether the fracture is initiated due to tensile load or 
shear load. Furthermore, the fracture propagates with the 
dominant propagation mode, whether the tensile mode or the 
shear mode. In ductile steel, decreased shear mode fracture 

results in increased fracture toughness [1,2]. This 
phenomenon then realizes that to assess the toughness of 
mixed mode cracks in ductile crack material, it is also 
necessary to consider which model cracks dominate. This 
consideration must be made at the earliest. Therefore, 
determining the critical load is very necessary. 
 
In order to determine the critical load, several criteria have 
been used including tensile strength transition criteria to 
determine the type of fracture, the critical loading criteria, and 
the bifurcation angle criteria [3,4]. Determination of the type 
of fracture is closely related to the type of loading, namely the 
imposition of tensile type or shear type. The second criterion, 
the critical loading criteria, is needed to analyze the 
occurrence of mixed-mode crack propagation. Bifurcation 
angle criteria are used to forecast the angle of cracks growth. 
This type of complex mode imposition is the dominant cause 
of fracture which is a sensitive problem in various structures. 
Based on the type of loading, there are three fracture modes 
namely I-mode, II-mode, and III-mode, shown in Figure 1 [5]. 
 
Other loading types are mixed mode which is a combination 
of fracture mode (modes I, II, and mixed-mode). Fracture 
mode I, also known as opening mode, is associated with 
normal tensile loads to the plane. The fracture mode II, which 
is often also called the shear mode, is related to the shear 
stress which is parallel to the fracture plane and at 90 degrees 
to the front fracture. The fracture mode III is also called the 
out-of-plane or tearing mode related to the shear stress which 
is parallel to the fracture plane also parallel to the front 
fracture. The direction of crack propagation is 90 degrees to 
the applied force field. 
 
The character of the fracture becomes the main consideration 
in evaluating the fracture related to the selection of suitable 
material. Various testing techniques have been used by many 
researchers in relation to determining fracture toughness. 
Several types of loading modes, namely the loading mode I 
mode, mode II, mode III and mixed mode have been used. 
Mode I and mode II are evaluated using double cantilever 
beams and curved tip specimens, respectively. 
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Figure 1: Schematic of Fracture Mechanics Modes 

 
A popular approach to characterizing ductile material 
fractures is the EWF technique [6]-[7]. The basic concept of 
EWF is to divide the fracture energy of the test specimen into 
parts that are not related to geometry (essential work of 
fracture) and work related to geometry as a non-essential 
work [6]-[8]. This EWF approach is very popular with regard 
to the fracture characterization of thin polymers, especially in 
mode I fracture propagation in the plane stress state. 
Nevertheless, it is found that fracture propagation occurs in 
mode III and even mixed mode. The mixed modes that often 
occur are mode I-II and mode I-III.  
 
The aim of this review is to provide a summary of fracture 
investigations in various loading modes evaluated by the 
EWF approach. Types of loading modes include loading 
mode I, mode II, mode III, and mixed-mode. 
 
2. FRACTURE UNDER MODE I-TYPE LOADING 
 
2.1 Quasi-Static Loading Mode 
 
It has been widely reported that EWF is suitable for testing of 
polymeric material [9,10]. Specimens shape for quasi-static 
loading modes are single-edge notch tensile (DENT), shown 
in Figure 2, which are usually formed by one of several 
methods including injection molding[11-13], extrusion 
[9,14], and hotpress[15,16]. In a quasi-static state, the test is 
carried out at a very slow speed so as to give the material a 
chance to deform totally[13,17]. Test data are grouped in 
EWF test data, namely essential work of fracture and 
non-essential work of fracture, as represented in Eq. 1. 
 

 
 

Figure2:Schematic of DENT specimen with FPZ (fracture process 
zone) and PDZ (plastic deformation zone) (a), and the data reduction 

(b). 
 

.. + pe www f  (1) 
 
whereݓ௘  is specific essential work of fracture, which is the 
energy used to create new fracture surfaces, and βwp is 
specific non-essential work of fracture, which is the energy 
needed for plastic deformation work. The we parameter is the 
intercept values at ℓ = 0 and ݓߚ௣ is the slope of the line wf 
versus ℓ. 
 
The Annealing treatment can improve the essential fracture 
work (we) but reduce the plastic work of the material [13]. 
Some Research [18-20] has reported that fillers in the polymer 
matrix reduce the energy of materials fracture. In the EWF 
testing, many researchers varied the temperature [9,17] and 
cross-head speed[21,22]. Based on their works, it can be 
concluded [6] that:  

i) Work to create a new crack surface (we) decreases with 
increasing temperature and increases by increasing cross-head 
speed or deformation rate. This tendency is not aligned for 
βwp whose tendency is the opposite. 

ii) The ductility increases with increasing testing 
temperature around glass temperature. 

 
Their conclusions are confirmed by recent research[23,24]. 
The EWF testing on natural fiber reinforced polymer 
composites showed that we increased significantly with the 
amount of bamboo pulp fiber used in bamboo plastic 
composites but decreased with the increase of white mud in 
the bamboo plastic composites[25-27]. 
 

2.2 Dynamic Loading Mode 
 
The EWF testing in dynamic loading (impact) mode using a 
single-edge notch bend (SENB) specimen proposed by Wu et 
al. [28] which is then followed by researchers up to now 
[7]-[29-31]. The EWF testing on natural fiber reinforced 
polymer composites showed that the impact fracture 
toughness (we) was increased by increasing fiber content. 
Many researchers [18]-[25]-[32] concluded that the presence 
of fiber can increase the energy that is anticipated during the 
fracture process. 
 
In terms of applying the EWF to impact loads, around the 
1990s, there was a debate about the suitability of this method 
for application. This is due to the fact that the test shows a 
negative slope of the df versus ligament length curve[33,34]. 
There are two common problems [6], namely (i) the fracture 
behavior shifts to brittle to increase crack growth, and (ii) the 
effect of plastic hinges so that the ligaments are not fully 
fractured.  
 
To response to this debate, many researchers[35-37] 
introduced a new approach and a formula as shown in Eq. (2). 
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where U/A, uo, and ud are specific fracture energy, limiting 
specific fracture, and the dissipative energy density, 
respectively. The formula as in Eq. (2) confirms the analogy 
that uo is equal to we and ud is equal to wp. Until now, no 
published reports have been found regarding the 
determination of validity criteria and test conditions such as 
deformation rates and test temperatures. However, the 
phenomenon of oscillation at high deformation rates must be 
avoided [6]. 
 
3.  FRACTURE UNDER MODE II-TYPE LOADING 
 
In contrast to the EWF application in loading mode I, little 
research data can be found that examines the toughness of 
fracture mode II. This fracture test generally uses V notched 
and Iosipescu[38-40]. In mode II fracture (shear loading 
mode), determination of ligament length differs from fracture 
mode I. In the Iosipescu test, the maximum ligament length 
limit is not stated but the smallest ligament length is equal to 
the thickness of the specimen (ℓ = t) [41]. 
 
The EWF method has been widely developed to determine the 
toughness of mode II fractures. Kwon and Jar [42] were the 
pioneers in this case by testing Iosipescu on the V notch 
specimen. In their observations made at the same rate of 
deformation, they found that we depend on the thickness of 
the groove and its value is twice that of mode I fracture. The 
use of finite element analysis in high-density polyethylene 
shows that EWF mode II corresponds to the ligament length 
of 2t < ℓo < W/2 [43]. This condition is also suitable for 
fractures from mode II which shift to mixed mode I-II. In 
layered material, Tan and Falzon[44] have tested the strength 
of mode II fractures on AS4 / PEKK composites. They 
reported that during the fracture process, the fiber experienced 
a malfunction to increase ݓ௘  if subjected to normal stress and 
bending. 

4. FRACTURE UNDER MODE III-TYPE LOADING 
The EWF concept has been widely used to analyze the 
behavior of tearing fractures (mode III) especially fractures on 
ductile thin material. In this situation, a specific EWF is 
required for the occurrence of a mode III fracture in the form 
of a shear fracture. Meanwhile, non-EWF energy is used to 
carry out plastic deformation at the edge of the fractured part. 
Therefore, the specific work potential of fracture mode III can 
be mathematically written as in Eq. (3) [45] : 
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where 0 is the maximum shear strain. The ratio of the shear 

deformation work and shear fracture work is given by the ratio 

of the first term to the second term in Eq. (3), i.e. 4 /(n+1)(s/t). 
The lip width is probably proportional to the sheet thickness 
but is better measured experimentally from the fractured 
samples. In thin filmed polyester, a shift in loading mode 
behavior occurs, i.e. from loading type III mode to mode 
I[10,46-47]. 

 
Deformation and fracture mode III behavior can be analyzed 
using two approach models, the first is the two-zone model 
[48] and the second is the three-zone model [49]. The 
two-zone model approach was applied through testing trouser 
specimens. In this model, the tear fracture process is separated 
in two zones, namely the initial zone (Zone A) where the 
crack is initiated at height h which then propagates to reach 
the end of zone A which is also Zone B. The cracks propagate 
constantly in zone B (Figure 3). Based on Figure 1, the 
situation in zone A is elucidated by Bárány and 
co-workers[6,46] as follows: 

1. The crack tip shape shift constantly as a result of stable 
loading. 

2. There is a shift in the fracture mode to a fracture mode I 
that becomes dominant rather than a mode III fracture. 

3. Cracks propagate accompanied by rising height of the 
plastic zone. 

 

 
Figure 3:(a) Schematic diagram of trouser specimens, and (b) 

analysis of out-of-plane essential fracture work on polyethylene 
terephthalate [46]. 

 
In zone A, the total fracture energy is expressed by 
mathematics formula as follow [46]: 
 

aTPTETF www " (4) 
 

whereℓa , ℓA , and α” is the torn ligament length, the ligament 
length at the end of zone, and a shape factor of the plastic 
zone, respectively.  
In accordance with the EWF concept, the specific fracture 

work for tearing ( B
TFw ) in zone B at ligament length ℓB can be 

expressed mathematically as presented in Eq. (5)[48] : 
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The 
B
TFw   parameter is the intercept of B

B
TF hw   at the 

plastic zone height hB = 0. 
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In the three-zone model, zoning is composed of the initial, 
evolutionary, and established plastic zones that represent tear 
resistance (Figure 4). The outer plastic zone can be considered 
to consist of three different zones, namely zone I, V, and S. 
Zone I is also often referred to as the initial zone, which is 
created by increasing the initial load experienced before crack 
propagation occurs. The second zone is called zone V because 
it is shaped like the letter V. Zone S is an area that has 
experienced plastic deformation that has been stable (h = 
constant). 
 

 
 

Figure 4:Three-Zone Model For Mode III Tearing Test [50] 
 

Initial Zone (Zone I) is in the range 0 < li < Li. In this zone 
with ligament length li, the specific total work of fracture 
(wif) is presented in Eq. 6. 

tAwtlww iipiieif     (6) 

where the parameters wiand wipare specific essential and 
specific non-essential work of fracture, respectively. Subcripti 
means zone I while t is the thickness of the specimen. The Ai 
is the outer plastic deformation zone area (Figure 5) which is 
formulated: 

 2

2
1

iii lhlA      (7) 

Therefore, wifcan be written in another form as follows: 
 

iipieif lwww       (8) 

 

 
Figure 5:Plastic zones in three-zone models [50] 

In zone V which is in the range 0 < lv <Lv, the total fracture 
work can be written as follows: 
 

vpvevf WWW  tAwtlLw vvpvive  )(   (9) 

 
The area of Avcan be written in mathematical form as follows: 

22 2 vviiv llLLA     (10) 
 

The α is the taper angle of zone V and is expressed as follows: 

v
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L
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The Lv parameter is determined by plotting specific total 
fracture work against ligament length. While Li andhs are 
determined directly from the specimens tested. Therefore, the 
specific total work of fracture can be written as in Eq. 12 as 
follows: 

vi
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5. FRACTURE UNDER MIXED-MODE LOADING 
The problem of fracture mechanics is very complex. 
Therefore, this problem cannot be solved through one mode 
approach but with a mixed mode approach. The fracture 
phenomenon in this mixed mode state can occur by the 
presence of initial defects and the nature of the load 
concerning the structure. The simplest mixed mode fracture is 
the combination of mode I and mode II which occurs at the 
crack tip. Several standards have been introduced to analyze 
the behavior of mixed-mode I-II fractures which include 
maximum tangential strain[51,52], maximum tangential stress 
[53], minimum strain energy density [54], and maximum 
energy release rate [55]. In addition, experimental analysis 
has also been introduced by many researchers [56-58]. New 
formulas involving KI and KII have also been proposed by 
several researchers [59-61]. 
 
Essential mixed-mode fracture work of PC/ABS evaluated 
experimentally has been carried out by Li et al. [62]. They 
used DENT specimens with dimensions of 60mm × 30mm × 
1.5mm which ligament edges were given artificial cracks 
using a fresh razor blade (Figure 6). The loading angle φ was 
varied from 90O, 75O, 45O, and 30O. They reported that the 
deviation in the direction of fracture propagation from the 
initial plane increased with a reduced load angle φ. This 
phenomenon is consistent despite the increased shear loading. 
It was also reported that reducing the load angle can increase 
the fracture energy. Fracture can be initiated from excessive 
loading oaf materials [63-65]. 
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Figure 6: Schematic illustration of DENT for (a) mixed-mode test, 
(b) initial stage, (c) initial propagation, (d) developing propagation, 
and (e) breaking phase. The parameters P and l are load and ligament 

length, respectively [62]. 

6. CONCLUSION 
Many works have been done to investigate mechanical 
fractures using the EWF approach. This method has been 
widely developed to evaluate mechanical fractures in various 
modes including mixed modes. Tests in each fracture mode 
using specimens with different shapes. In fact, many 
researchers have reported that the common mix mode consists 
of mixed modes I-II and I-III. Two approach models namely 
the three-zone model and the two-zone model are very 
suitable for investigating tearing fractures (mode III). 
However, the three-zone model has higher accuracy than the 
two-zone model. So that the results of the analysis of fracture 
toughness in each mode fracture are valid, the prediction of 
fracture toughness based on the mode type-loading should be 
compared with the results of experimental tests. The EWF 
method is well established so that in the use of testing 
methodologies and specimen selection it should be 
standardized. 
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