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 
ABSTRACT 
 
In the era of digitalization, every task is performed with the 
help of software-dependent applications. Therefore, the 
developed software is required to be robust, reliable, and fault 
free. Testing is performed to check the functioning of the 
developed software to evaluate whether the software product 
is error-free or not. Test cases play a vital role in the testing 
process. However, with the advancement of time, a particular 
test suite becomes so lengthy that the execution of all the test 
cases is not possible due to limited time and resources. 
Researchers have proposed diverse techniques to make the 
testing process an effective one. This study has worked 
towards finding the usage of bio-inspired computing 
algorithms used for optimization. The reason behind this is 
because these algorithms have performed exceptionally well 
in addressing complex problems to provide workable 
solutions in a reasonable time. It is observed that only a 
handful of these algorithms were applied in testing, such as 
ant colony optimization, bee colony optimization, neural 
networks, and genetic algorithms. Even progress is made in 
the limited area of these algorithms. This study was 
conducted with a motive to sort out the most popular 
bio-inspired algorithms and to explore their working 
principles, developments made till now, along with the scope 
of their application. This paper has discussed how the 
development of these algorithms has progressed from already 
explored algorithms to the development of many new ones 
such as cuckoo search, artificial bee colony, bat algorithm, 
firefly algorithm, flower pollination algorithm, and many 
more. This study will help the researchers to gain insight into 
choosing the algorithm and explore them in developing new 
techniques for optimization.   
 
Key words: Bio-inspired computing algorithms, Exploratory 
review, Software testing, Test optimization.  
 
1. INTRODUCTION 
 

Globalization has integrated the economies and has led to 
interaction among companies, peoples, and governments 

 
 

worldwide. There is an exchange of information, technology, 
and exchange of goods and services. The advancements in 
digital technology boost this. Now we can get anything at our 
doorstep just by making a few clicks. The researchers have 
developed various software-based applications. With so much 
dependence on software applications, there comes a great 
responsibility also to develop fault-free software [1]. Testing 
of software is performed to find potential faults in the software 
so that those can be removed, and the delivery of reliable 
software be ensured [2-3]. Of many testing techniques 
available, exhaustive testing intends to test the software for all 
possible combinations of test cases to make sure that the 
developed software is completely bug-free. Although its 
limitation is that its usage is only limited to its applicability to 
small programs, performing exhaustive testing of large 
applications is not a feasible idea considering the limited 
resources, time, and cost [4-5]. Regression testing plays a 
significant role as its techniques intent to rationalize the test 
suite size. Regression testing is performed to check whether 
no new faults have crept in after the modifications were made 
to the software [6-8]. Finding the optimum solution to a 
problem is an uphill task as applications have to deal with 
NP-hard problems. For the solution of these problems, 
various optimization tools were used. Still, there is no surety 
that the optimum solution will be obtained. With so much of 
complexities involved in this process, there is a requirement 
to develop intelligent approaches so that workable and 
suitable solutions to the problems can be discovered. Based on 
these contexts, intelligent metaheuristics algorithms can 
fulfill the need to find answers to complex issues. Within the 
domain of metaheuristics, bio-inspired computing algorithms 
are gradually gaining popularity as they can learn and adapt 
like biological organisms, and they have supremacy in 
addressing complex problems to provide workable solutions 
in a reasonable time.  It is also getting difficult to track the 
developments in this domain because many algorithms are 
getting introduced at a fast pace. Still, this study was 
conducted to find the most popular bio-inspired algorithms 
and to explore their working principles, developments made 
till now, along with the scope of their application. Earlier 
attempts have also been made by researchers to address this 
issue [9-10].  Due to limited awareness amongst the new 
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researchers, they are just fitting the algorithms in their study 
instead of exploring them according to the problem statement. 
This study has worked towards addressing this issue. We have 
reviewed the most popular as well as newly discovered 
bio-inspired algorithms that hold great potential for the 
developed applications. In this study, we have tried to explore 
the applications and scope of these algorithms in a specific 
context. It will help researchers to gain insight into choosing 
the algorithm and explore them in developing new techniques 
for test optimization. We are not able to provide the in-depth 
detail of an algorithm to show how it will be implemented and 
how potential enhancement can be made in them to make 
them more efficient as this is beyond the scope of this study. 
We can provide a generalized overview based on the other 
reviews performed by numerous researchers [11-34].  Fig. 1 
shows the generalized taxonomy of bio-inspired computing 
algorithms.  

 
 
 

Figure 1:   Generalized classification of bio-inspired 
computing algorithms 

 
     In the following sections, this research work discussed 
how the development of these algorithms has progressed from 
already explored algorithms to the development of many new 
ones such as cuckoo search, artificial bee colony, bat 

algorithm, firefly algorithm, flower pollination algorithm and 
many more. This study will help the researchers to gain 
insight into choosing the algorithm and explore them in 
developing new and effective techniques for test optimization 
as well as in solving complex real-life problems. 
2. RESEARCH METHODOLOGY 
 
This study was conducted in three different phases. In the first 
phase, we searched articles on google scholar and Scopus 
database by the combination of various search words and 
techniques of software testing such as “bio-inspired 
computing algorithms, metaheuristic algorithms, heuristics, 
nature-inspired algorithms, application of nature-inspired 
algorithms and software testing.” The searched results were 
refined, utilizing various parameters, inclusion, and 
exclusion criteria.  First, here is title-based exclusion, then 
abstract based and then conclusion based. If a study has 
passed through these filters, then it is studied in detail to find 
whether it is relevant to the importance and usage of 
bio-inspired computing algorithms for optimization and its 
usage in software testing. To explore the usage of 
Bio-inspired algorithms in solving the software testing 
problems, again searching of studies was performed using 
keywords like, “Ant colony optimization <and> Software 
testing,” “Genetic algorithm <and> Software testing,” 
“Artificial bee colony <and> Software testing,” “Particle 
swarm optimization <and> Software testing,” “Neural 
networks <and> Software testing,” “Bat algorithm <and> 
Software testing,” Cuckoo search <and> Software testing,” 
“Firefly algorithm <and> Software testing,” Flower 
pollination algorithm <and> Software testing.” In the second 
phase, the objective was to arrange the selected studies 
according to the different algorithms. After arranging the 
studies according to the algorithms implemented, there comes 
the third stage, which is to identify different domains and 
problems for which they were used to solve them. This was 
done by studying the literature regarding that particular 
algorithm so that its applicability can be studied in detail. We 
have worked towards ensuring that most of the useful studies 
were included in this study. For it, references from selected 
studies were also used to find other relevant studies. After 
these phases, we have presented an overall conclusion of this 
study, followed by the references. Now various algorithms are 
presented in detail along with their contributors who have 
either worked towards proposing that particular technique or 
have presented/applied them for test optimization. 
 
2.1 Ant Colony Optimization 
 

The basic concept behind the ant colony approach is to 
resolve optimization problems by taking actions similar to 
real ants. This approach was proposed by Dorigo [35]. Ants 
have an excellent capability to search for the nearest source of 
food and then reaching to a destination using their chemical 
called pheromone. More and more ants traverse the same path 
for reaching the food source, and the intensity of pheromone 
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dropped at that path increases, which attracts other ants to 
traverse that path. Numerous researchers have exploited the 
potential benefits of solving complex problems using the ant 
colony system. Table 1 below enlists the prominent 
researchers who have proposed different testing techniques 
using this approach and have used to solve various problems 
as well.  

 
Table 1: Contributors in Ant Colony Optimization 

Approach 
 

Sr. 
No. 

Authors Name Publication 
Year 

Reference 
No. 

1. Dorigo 1995 [35] 
2. Srivastava et al. 2008 [36] 
3. Donghua and Wenjie 2011 [37] 

4. Singh et al. 2010 [38] 
5. Srivastava 2010 [39] 
6. Suri and Singhal 2011 [40] 
7. Li et al. 2009 [41] 
8. Noguchi et al. 2015 [42] 
9. Srivastava and Baby 2010 [43] 

10. Chengying et al. 2015 [44] 
11. Suri and Singhal  2011 [45] 
12. Suri and Singhal 2012 [46] 
13. Gao et al. 2015 [47] 
14. Zhou et al. 2017 [48] 
15. Singh et al. 2010 [49] 
16. Gao et al. 2015 [50] 
17. Dorigo and Birattari 2010 [51] 
18. Dorigo et al. 2006 [52] 
19. Bououden et al. 2015 [53] 
20. Ghasab et al. 2015 [54] 
21. Hong et al. 2012 [55] 
22. Liao et al. 2014 [56] 
23. Liao et al. 2014 [57] 
24. Mandloi and Bhatia 2014 [58] 
25. Romdhane et al. 2013 [59] 
26. Ramli et al. 2016 [60] 
27. Popentiu-Vladicescua

nd Alabeanu 
2016 [61] 

28. Panthi and 
Mohapatra 

2016 [62] 

29. Ansari et al. 2016 [63] 
30. Guo 2017 [64] 
31. Rauf 2017 [65] 
32. Zhang et al. 2017 [66] 
33. Khanna 2017 [67] 
34. Ahmad et al. 2018 [68] 
35. Zhang et al. 2019 [69] 
36. Zheng 2019 [70] 

The above table presents the details of studies that have 
worked towards using an ant colony algorithm for solving 
combinatorial optimization problems. This provides complete 
detail of the articles and will help the newcomers in providing 
them an in-depth analysis of the algorithm. In the present 
scenario trend of ant colony optimization algorithm is going 
on with authors proposing its modified versions, as well as 
their usage in the collaboration of other factors.  

 
2.2 Genetic Algorithm 
 
    A genetic algorithm was designed by getting inspiration 

from the biological concept of evolution and is based on the 
“survival of the fittest” theory [71-73]. The algorithm works 
by selecting a set of solutions that are depicted by 
chromosomes and are called population. This is used to form 
a new population by applying basic operators such as 
“selection,” “crossover,” “mutation,” and this process goes on 
until an optimal solution is attained. The underlying idea is 
that the new population will be efficient than the previous 
one.  This algorithm has been widely used to solve a variety of 
optimization problems. The algorithm has shown its 
supremacy in solving complex and real-life problems. Due to 
this, many researchers have worked towards using a genetic 
algorithm for solving problems and proposing different 
techniques. Table 2 below enlists the prominent researchers 
who have proposed different testing techniques using this 
approach and as well as to solve various optimization 
problems. 

 
Table 2: Contributors in Genetic Algorithm 

  
Sr. 
No. 

Authors Name Publication 
Year 

Reference  
No. 

1. Varshney and Mehrotra 2013 [74] 
2. Khor and Grogono 2004 [75] 
3. Gulia and Chillar 2012 [76] 
4. Bhasin 2014 [77] 
5. Srivastava et al. 2009 [78] 
6. Rathore et al. 2011 [79] 
7. Prakash et al. 2015 [80] 
8. Rao et al. 2013 [81] 
9. Mahajan et al. 2012 [82] 
10. Lodha et al. 2014 [83] 
11. Srivastava and Kim  2004 [84] 
12. Froser and Arcuri  2013 [85] 
13. Ghiduk 2014 [86] 
14. Umbarkar and Sheth 2015 [87] 
15. Boopathi et al. 2014 [88] 
16. Mishra et al. 2017 [89] 
17. Ahmed et al. 2012 [90] 
18. Aytug et al. 2003 [91] 
19. Colin and Jonathan  2002 [92] 
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20. Grefenstette 2013 [93] 
21. Mitchell et al. 1992 [94] 
22. Srinivas and Patnaik 1994 [95] 
23. Siarry et al. 2002 [96] 
24. Yao et al. 2005 [97] 
25. Zhou et al. 2014 [98] 
26. Sharma et al. 2016 [99] 
27. Khan et al. 2016 [100] 
28. Qi et al. 2016 [101] 
29. Khanna 2016 [102] 
30. Soltani 2017 [103] 
31. Kudjo 2017 [104] 
32. Bahaweres 2017 [105] 
33. Yadav and Dutta 2017 [106] 
34. Goyal et al. 2018 [107] 
35. Mansour et al. 2018 [108] 
36. Bala and Chillar 2018 [109] 
37. Boopathi et al. 2019 [110] 
38. Mishra et al. 2019 [111] 
39. Bhattacharjee and Saluja 2019 [112] 
40. Dubey 2019 [113] 
41. Habtemariam and 

Mohapatra 
2019 [114] 

42. Bhatia 2020 [115] 
43. Fan et al. 2020 [116] 

 
 
The above table presents a detail of the articles with the 

authors who have worked towards using a genetic algorithm 
to solve various problems like job scheduling, traveling 
salesman problem, and constrained optimization problems. 
This will enable the coming fellows who want to propose 
different techniques for solving complex problems of 
computer science as well as real-life problems using a genetic 
algorithm. After analysis of the studies, they may deduce how 
the algorithm can be used and what are its application areas. 
 

2.3 Artificial Bee Colony 
 

    The artificial Bee colony algorithm was introduced by 
Karaboga [117]. The basic idea behind this technique is 
deduced from the intelligent behavior of honey bees. In this 
bee colony, there are three types of bees (a) “Employed bees” 
(b) “Onlooker bees” (c) Scouts bees. The number of 
“employed bees” corresponds to the number of food sources 
near a beehive. They search for a potential food source with a 
random stimulus, and then the fitness of the food source is 
assessed.  This information is communicated amongst them. 
Various activities done by them shows their behavior, such as 
how the task is allocated, how they interact, their navigational 
behavior, and many more. Many studies were conducted to 
explain the functioning of the queen, their communication 
and dance strategy, how they mate and reproduce, and their 

navigational behavior. Researchers have used this technique 
to solve various optimization problems amongst different 
domains of engineering and sciences. Table 3 enlists 
prominent contributors in the field of artificial bee colony 
optimization. 
 

Table 3: Contributors in Artificial Bee Colony Algorithm 
 

Sr. 
No. 

Authors Name Publication 
Year 

Reference 
No. 

1. Drias et al. 2005 [118] 
2. Karaboga and Basturk 2007 [119] 
3. Lucic and Teodorovic 2001 [120] 
4. Teodorovic and 

Dell’Orco 
2005 [121] 

5. Jia et al. 2016 [122] 
6. Yu 2016 [123] 
7. Nseef et al. 2016 [124] 
8. Biswas et al. 2014 [125] 
9. Li et al. 2015 [126] 
10. Karaboga and Basturk 2008 [127] 
11. Karaboga et al. 2014 [128] 
12. Karaboga and Ozturk 2011 [129] 
13. Gao and Liu 2012 [130] 
14. Karaboga and Akay 2009 [131] 
15. Bansal et al. 2016 [132] 
16. Liu et al. 2016 [133] 
17. Ma et al. 2016 [134] 
18. Aghdam and Arasteh 2017 [135] 
19. Alazzawi et al. 2017 [136] 
20. Roeva 2018 [137] 
21. Chhabra 2018 [138] 
22. Yilmaz and Bascifti 2018 [139] 
23. Sheoran et al. 2019 [140] 
24. Peng et al. 2019 [141] 
25. Luo 2019 [142] 
26. Sidek 2019 [143] 
27. Akay and Akay 2020 [144] 
28. Mishra et al.  2020 [145] 
29. Alazzawi et al. 2020 [146] 
 
The above table presents a detail of the articles with the 
authors who have worked towards using an artificial bee 
colony algorithm to solve various maximization or 
minimization problems, routing problems, searching 
problem, task allocation problem. This provides full detail of 
the articles and will help the newcomers in providing them an 
in-depth analysis of the algorithm.  
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2.4 Particle Swarm Optimization 
 
    In particle swarm optimization, Swarm refers to a large 
number of homogeneous agents who interact amongst 
themselves in their environment. This algorithm is based on 
the behavior of organisms in a group, such as depicted by bird 
flock, fish, or insects to achieve an optimal solution 
[147-148]. In this, members of the group try to make a shared 
objective according to feedback from the other group 
members. Each member of the group tries to find a possible 
solution at any instant of time. After that suitability of that 
candidate solution is communicated to other members of the 
swarm via signals. Other members, therefore, senses the 
strength of the transmitted signal, and according to the fitness 
function, the suitability of the candidate solution is assessed. 
This algorithm has helped the researchers in solving complex 
problems by reaching an optimal solution based on varying 
criteria.  Table 4 enlists prominent contributors who have 
explored the domains where particle swarm optimization 
approaches have been used to solve various multi 
population-based optimization problems. 
 

Table 4: Contributors in Particle Swarm Optimization 
Algorithm 

 
Sr. 
No. 

Authors Name Publication 
Year 

Reference 
No. 

1.  Kennedy 1997 [149] 
2. Jiang et al. 2015 [150] 
3. De Souza et al. 2011 [151] 
4. Zhan et al. 2011 [152] 
5. Couceiro and Ghamisi 2016 [153] 
6. Gandomi et al. 2013 [154] 
7. Hong 2009 [155] 
8. Kennedy 2011 [156] 
9. Liu et al. 2005 [157] 
10. Shi and Eberhart 1998 [158] 
11. Niu et al. 2005 [159] 
12. Liang and Suganthan 2005 [160] 
13. Zhao et al. 2010 [161] 
14. Liang and Suganthan 2005 [162] 
15. Yang and Li 2010 [163] 
16. Xu et al. 2015 [164] 
17. Chen et al. 2010 [165] 
18. Zheng and Liu 2009 [166] 
19. Bolufe and Chen 2011 [167] 
20. El Dor et al. 2012 [168] 
21. Zhang and Ding 2011 [169] 
22. Zhang et al. 2011 [170] 
23. Wang et al. 2012 [171] 
24. Fan and chang 2010 [172] 
25.  Marinakis 2014 [173] 
26. Liang and Suganthan 2006 [174] 

27. Wang and Lai 2009 [175] 
28. Xiao and Cheng 2013 [176] 
29. Niu et al. 2006 [177] 
30. Jatana et al. 2016 [178] 
31. Sheng et al. 2017 [179] 
32. Hajihassani et al. 2018 [180] 
33. Sun et al. 2018 [181] 
34. Wang and Liu 2018 [182] 
35. Jianqi et al. 2018 [183] 
36. Khatibsyarbini et al. 2018 [184] 
37. Allawi et al. 2018 [185] 
38. Nayak and Ray 2019 [186] 
39. Malhotra and Khanna 2019 [187] 
40. Islam et al. 2019 [188] 
    The above table presents a detail of the articles with the 
authors who have worked towards the particle swarm 
optimization algorithm for solving various scheduling 
problems, multi-criteria-based decision problems, and 
constraint-based optimization problems. This will enable the 
coming fellows who want to propose different techniques for 
solving complex problems of computer science as well as 
real-life problems using this optimization algorithm.  

 
2.5 Neural Networks 

 
    Neural Networks work as a human neuron system, and data 
is processed, which mimics in the same way a human brain 
operates. It is a non-linear data processing algorithm; 
numerous processing unit is combined in a different layered 
network [189]. These networks are adaptive, organizing in 
nature, and possess the ability to learn based on feedback and 
input from their operating environment.  Depending on the 
accuracy of results, feedback could either be negative or 
positive. The whole network is just like a black box where the 
provided input and the output is visible to the user. If the 
output is not as expected, then the feedback of the result is 
fetched back so that the processing model could be improved. 
The most straightforward implementation of the neural 
networks is that of a perceptron network. In it, there is a single 
layer for internal functioning, and feedback is provided to 
improve output. Neural networks have been implemented on 
various domains ranging from different types of systems to 
different kinds of interfaces according to the requirement. 
Numerous studies have been conducted to examine different 
criteria on how the network can be trained. According to the 
necessity of the problem, neural networks have also been used 
in conjunction with other algorithms so that the prediction 
capability of a system could be improved further. Table 5 
enlists prominent contributors in the field of neural network 
implementation to solve various optimization problems.  
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Table 5: Contributors in Neural Networks 
 
Sr. 
No. 

Authors Name Publication 
Year 

Reference 
No. 

1. Kar 2013 [190] 
2. Sadegh 1993 [191] 
3. Kar 2015 [192] 
4. Hornik 1991 [193] 
5. Specht 1990 [194] 
6. Schmidhuber 2015 [195] 
7. Oja 1992 [196] 
8. Chen et al. 2008 [197] 
9. Fausett 1994 [198] 
10. Craven and Shavlik 1997 [199] 
11. Lampinen and Vehtari 2001 [200] 
12. Mensah et al. 2016 [201] 
13. Makondo et al. 2016 [202] 
14. Pang et al. 2017 [203] 
15. Sathyavathy 2017 [204] 
16. Sun et al. 2018 [205] 
17. Ma et al. 2018 [206] 
18. Byun et al. 2019 [207] 
19. Karpov et al. 2018 [208] 
20. Joffe and Clark 2019 [209] 
21. Mannarswamy et al. 2020 [210] 
22. Ghosh and Singh 2020 [211] 
 
     The above table presents a detail of the articles with the 
authors who have worked towards using neural 
network-based approaches to solve various problems such as 
classification problems, pattern recognition, association 
rules, missing data prediction, data normalization, and 
various optimization problems. This will enable the coming 
fellows who want to propose different techniques for solving 
complex problems of computer science as well as real-life 
problems. After analysis of the studies, they may deduce how 
the algorithm can be used and what are its application areas.  

 
2.6 Bat Algorithm 

 
     Bat algorithm was developed based on the behavior of 
bats, which uses echo-based parameters for locating their 
prey. It is one of the recently developed bio-inspired 
computing algorithms. In this, bats navigate in the 
surroundings to identify and catch their prey even in the dark, 
by using the echoes of sound emitted by them [212-213]. This 
process is known as echolocation. Using this approach, bats 
can find their food source by identifying the distance. While 
searching for their prey, bats can easily adjust their flight 
velocity, frequency, and loudness of their cry. The loudness 
and frequency are updated in such a fashion that when the 
prey is identified, the frequency increases, and loudness 
decreases. This algorithm is used to solve various 

multi-objective optimization problems. Various researchers 
have used this in combination with nature-inspired 
algorithms as well.  Table 6 enlists prominent contributors 
who have worked for the approaches of the Bat algorithm. 
 

Table 6: Contributors in Bat Algorithm 
 
Sr. 
No. 

Authors Name Publication 
Year 

Reference 
No. 

1. Wang et al. 2015 [214] 
2. Heraguemi et al. 2015 [215] 
3. Mirjalili et al. 2014 [216] 
4. Jaddi et al. 2015 [217] 
5. Gandomi et al. 2013 [218] 
6. Heraguemi et al. 2016 [219] 
7. Gandomi and Yang 2014 [220] 
8. Meng et al. 2015 [221] 
9. Rodrigues et al. 2014 [222] 
10. Yang and He 2013 [223] 
11. Yang and Gandomi 2012 [224] 
12. Alsariera and Zamli 2017 [225] 
13. Ashish et al. 2018 [226] 
14. Sharma and Sehgal 2018 [227] 
15. Ozturk 2018 [228] 
16. Alsariera et al. 2018 [229] 
17. Huang et al. 2019 [230] 
 
   The above table presents a detail of the articles with the 
authors who have worked towards using bat algorithm to 
solve various classification problems, multi-objective 
optimization problems, clustering, and combinatorial 
optimization problems. Many studies have reported its 
supremacy over other nature-inspired approaches. This table 
provides complete detail of the articles and will help the 
newcomers in providing them an in-depth analysis of the 
algorithm.  
 
2.7 Cuckoo Search 
 
The cuckoo search algorithm is developed by replicating the 
breeding behavior of cuckoos [231]. Other birds' nests were 
often used by cuckoos to lay their eggs, and they remove the 
eggs of those birds to ensure that the hatching probability of 
their eggs is ensured. This algorithm imitates three types of 
brood parasitism, namely a). "co-operative breeding" b). 
"intra-specific brood parasitism” and c). “Nest takeover.” 
One or more eggs were laid by the cuckoo bird, and for doing 
that, "levy flight" is done for the identification of nests. Then 
eggs were put in the randomly chosen nest. The best nests 
which have eggs of high quality will be carried over to the 
next generations. The probability of host parents identifying 
the eggs laid by the cuckoo is also high because a limited 
number of host nests are available. If that happens, the host 
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parent either abandons the nests or eggs were thrown away, 
and a new nest is built. A “levy flight” is performed whenever 
a new set of a candidate solution is generated. To identify 
globally optimal solution utilizing a diversity of eggs in the 
nest, mixing and redistribution of eggs of two or more nests is 
done. This algorithm is proposed to address single and 
multi-objective problems under complex non-linear 
constraints where achieving global optimization is not an 
easy task. It provides an efficient, workable solution for 
challenging problems. Table 7 enlists prominent contributors 
in the field of the cuckoo search algorithm to solve various 
optimization problems. 
 

Table 7: Contributors in Cuckoo Search Algorithm 
 
Sr. 
No. 

Authors Name Publication 
Year 

Reference 
No. 

1. Walia and Kapoor 2014 [232] 
2. Yang and Deb 2013 [233] 
3. Yang and Deb 2014 [234] 
4. Araghi et al. 2015 [235] 
5. Yang and Deb 2014 [236] 
6. Bhandari et al. 2014 [237] 
7. Gandomi et al. 2013 [238] 
8. Gotmare et al. 2015 [239] 
9. Kumar and Rawat 2015 [240] 
10. Yang and Deb 2014 [241] 
11. Srivastava 2012 [242] 
12. Khari and Kumar 2016 [243] 
13. Dhabal et al. 2016 [244] 
14. Khari and Kumar 2017 [245] 
15. Haixian and Jing 2018 [246] 
16. Shehab et al. 2018 [247] 
17. Sharma et al. 2019 [248] 
18. Dhareula and Ganpati 2019 [249] 
19. Benkhaira and Layeb 2020 [250] 
 
    The above table presents a detail of the articles with the 
authors who have worked towards using a cuckoo search 
algorithm to solve various single or multi-objective problems, 
scheduling problems, knapsack problems, and many more. 
This will provide an insight into the coming fellows who want 
to propose different techniques for solving complex problems 
of computer science as well as real-life problems. After 
analysis of the studies, they may deduce how the algorithm 
can be used and what are its application areas.  

 
2.8 Firefly Algorithm 
 

    The inspiration for the firefly algorithm is achieved from 
the flashing behavior of the fireflies. The fireflies produce a 
flashlight through a process known as bioluminescence [251]. 
The fireflies use this flashlight for food foraging and to attract 

potential mating partners as well as to remind them about 
predators. They exhibit characteristics of swarm intelligence 
through decentralized decision making and self-organization. 
The brightness in their flash indicates the fitness of male 
fireflies. There are certain assumptions for the standard firefly 
algorithm to operate, such as A). “A firefly will be attracted to 
each other regardless of their sex because they are unisexual.” 
B). “Attractiveness is proportional to their brightness, 
whereas the less bright firefly will be attracted to the brighter 
firefly. However, the attractiveness decreased when the 
distance of the two fireflies increased.” C). “If the brightness 
of both fireflies is the same, the fireflies will move randomly.” 
In this, the initial population of fireflies was created, which 
was followed by modifying a fitness parameter. Then the 
evaluation of fitness for each firefly in the population was 
performed. Based on this, ranking to the fireflies is provided. 
For the next round of evaluation, only the best solutions are 
taken forward. Many computations are planned to control the 
iteration. The firefly algorithm was also used in conjunction 
with other algorithms as well to obtain the enhanced results. 
This algorithm can more efficiently use Multimodal functions 
as compared to different swarm-based algorithms. The 
algorithm has found its applicability in dealing with 
multi-objective search problems, combinatorial optimizations 
problems, and many more. Table 8 enlists prominent 
contributors in the field of the firefly algorithm. 
 

Table 8: Contributors in Firefly Algorithm 
 

Sr. 
No. 

Authors Name Publication 
Year 

Reference 
No. 

1. Yang 2010 [252] 
2. Srivastava et al. 2013 [253] 
3. Yang and Deb 2010 [254] 
4. Xu and Liu 2013 [255] 
5. Gandomi et al. 2013 [256] 
6. Ozsoydan and 

Baykasoglu 
2015 [257] 

7. KavousiFard et al. 2014 [258] 
8. Gandomi et al. 2011 [259] 
9. Long et al. 2015 [260] 
10. Lukasik and Zak 2009 [261] 
11. Rahmani and 

MirHassani 
2014 [262] 

12. Yang and He 2013 [263] 
13. Mishra et al. 2014 [264] 
14. Verma et al. 2016 [265] 
15. Yang et al. 2012 [266] 
16. Khatibsyarbini et al. 2019 [267] 
17. Arora and Saha 2018 [268] 
18. Hashim and Dawood 2018 [269] 
19. Rathee et al. 2019 [270] 
20. Pandey and Banerjee 2019 [271] 
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   The above table presents a detail of the articles with the 
authors who have worked towards the firefly algorithm for 
solving various classification problems, discrete search-based 
problems, and NP-hard problems. This will enable the 
coming fellows who want to propose different techniques for 
solving complex problems of computer science as well as 
real-life problems using this optimization algorithm.  

 
2.9 Flower Pollination Algorithm 
 

     Flower pollination algorithm was developed based on the 
pollination mechanism of the flowers [272]. Pollination is a 
process of spreading the pollen of a flower, also known as the 
reproduction unit of a flower, to another flower of a plant for 
germination/reproduction. This process is achieved through 
agents known as pollinators. Usually, biotic pollination is 
done by most of the flowers by agents such as birds or insects. 
In this pollination, flowers of the different plants are 
involved. It is known as cross-pollination and is considered a 
global/optimization pollination process.  Some plants also 
perform abiotic pollination through agents like water or wind. 
Here flowers of the same plant are involved. It is known as 
self-pollination, and it is considered as a local/optimization 
pollination process.  The process of pollination would try to 
enhance the reproduction of the fittest. Table 9 enlists 
prominent contributors to the flower pollination algorithm.  
 

Table 9: Contributors in Flower Pollination Algorithm 
Sr. 
No. 

Authors Name Publication 
Year 

Reference 
No. 

1. Yang et al. 2013 [273] 
2. Bekdas et al. 2015 [274] 
3. Yang et al. 2014 [275] 
4. Nigdeli et al. 2016 [276] 
5. Kabir et al. 2017 [277] 
6. Naseer et al. 2019 [278] 
7. Naseer et al. 2018 [279] 
8. Abdel-Basset and Shawky 2019 [280] 
9. Naseer and Zamli 2018 [281] 
10. Dhareula and Ganpati 2019 [282] 
11. Dhareula and Ganpati 2019 [283] 

 
   The above table presents a detail of the articles with the 
authors who have worked towards using the flower 
pollination algorithm for solving complex problems.  This 
algorithm has found its applicability for global optimization 
problems with multiple objectives and various criteria. It is 
also used to solve significant integer programming problems, 
global and local search problems. It has been used in 
numerous disciplines of engineering and sciences. This will 
enable the coming fellows who want to propose different 
techniques for solving complex problems of computer science 
as well as real-life problems. After analysis of the studies, they 

may deduce how the algorithm can be used and what are its 
application areas. 

 
2.10 Other Nature-Inspired Algorithms 
 

   This study has tried to cover most of the famous and 
upcoming bio-inspired computing algorithms for test 
optimization. Though there were few algorithms as well, 
which have been developed by the researchers but have not 
become so popular either due to limited area of application or 
other researchers could not explore their usability in their 
particular domain. Considering the aim of this study, we have 
still documented those algorithms in the form of a table. This 
will aid the upcoming researchers in exploring them further 
for their scope of application across domains.  Researchers 
may explore the quality of outcome by using trying and 
mixing these algorithms with other existing theories. Table 
10 enlists such algorithms along with the details of their 
references. 
 
Table  10: Contributors in other Nature-Inspired Algorithms 
Sr. 
No. 

Algorithm 
Details 

Authors 
Name 

Publication 
Year 

Reference 
No. 

1. Monkey 
Search  

Mucherin
o and 
Seref 

2007 [284] 

2. Fruit Fly 
Algorithm 

Pan 2012 [285] 

3. Virus 
Colony 
Search 

Li et al. 2016 [286] 

4. Dolphin 
Swarm 
Algorithm 

Yong et 
al. 

2016 [287] 

5. Squirrel 
Search 

Jain et al. 2019 [288] 

6. Butterfly 
Algorithm 

Qi et al. 2017 [289] 

7. Krill Herd Gandomi 
and Alavi 

2012 [290] 

8. Bacterial 
Foraging 

Passino 2002 [291] 

9. Wolf Search Tang et al. 2012 [292] 
10. Bean 

Algorithm 
Zhang et 
al. 

2010 [293] 

11. Amoeba 
Algorithm 

Zhang et 
al. 

2013 [294] 

12. Shark 
Algorithm 

Hersovici 1998 [295] 

13. Lion 
Algorithm 

Yazdani 
and Jolai 

2015 [296] 

14. Dove 
Algorithm 

Su et al. 2009 [297] 
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3. RESULT AND DISCUSSION 
 

    This study has worked towards presenting a 
comprehensive source of information so that further research 
can be conducted where this research will serve as a base or 
starting point. We have worked towards documenting the 
work of numerous researchers on different bio-inspired 
algorithms to solve large-scale real-world problems for 
finding optimal solution and their usage in software testing as 
well. As testing overall improves the quality of software 
[298]. Researchers were inspired in diverse ways to develop 
such diverse algorithms getting inspired from nature. We 
observed that some algorithms were more popular than 
others, as they were developed a long time back. People were 
using these algorithms for an extended period; that is why the 
number of studies published for them has been increased. 
However, with time, researchers have also proposed new 
algorithms, and they are in trend. Figure 1 shows the 
publication statistics for the studies that were selected for this 
article. A constant increase in published studies is observed 
starting from 1990 to 2020. A period from 2010 onwards 
shows a much more trend for the relevant studies. So, it can be 
said that the coming years will experience a much more 

emphasis on the usage of Bio-inspired algorithms for solving 
optimization problems. To further categorize the selected 
studies based on the algorithms used, we have prepared a pie 
chart distribution. In this, it can be observed that out of 251 
studies selected for different algorithms, 36 were based on ant 
colony optimization algorithm which is about 14%, 43 were 
based on genetic algorithm which is about 17%, 29 were 
based on artificial bee colony which is about 11%, 40 were 
based on particle swarm optimization which is about 16%, 22 
were based on neural networks which are about 9%, 17 were 
based on bat algorithm which is about 7%, 19 were based on 
cuckoo search which is about 8%, 20 were based on firefly 
algorithm which is about 8%, 11 were based on flower 
pollination algorithm which is about 4% and 14 were based 
on other remaining nature-inspired algorithms which is about 
6%. From the analysis of Figures 1 and 2, this study believes 
that much work has been done on ant colony optimization 
algorithms, neural networks, particle swarm optimization, 
genetic algorithms, and artificial bee colony. Now the current 
era is experiencing the development and usage of algorithms 
like bat algorithm, cuckoo search, firefly algorithm, and 
flower pollination algorithm.  

 

 
Figure 1: Trend in publication for studies based on the usage of Bio-inspired computing algorithms for optimization 
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Figure 2: Percentage usage of different Bio-inspired computing algorithms in the selected studies 

 

4. CONCLUSION 
Optimization is a process of finding the best possible 

solutions. There is no certainty whether the optimal solution 
will be achieved or not. This study has grouped the various 
bio-inspired algorithms after reviewing the existing literature 
available for them. We have then presented the details of 
numerous researchers who have worked in that particular 
approach. The area of the applicability and scope of the 
algorithms is also documented. We have shown how, with the 
advent of time, different algorithms were proposed and what 
is current trends in terms of the development of those 
algorithms. The aim of this study is not to highlight how 
real-life problems can be solved using them, but to provide 
and act as a base to understand the underlying objective and 
scope of these algorithms. This paper will help the readers to 
find review papers of the documented algorithms so that 
further understanding could be developed for the 
development of theories and in the scope of their application. 
After understanding these algorithms, practitioners may use 
this study to explore more such bio-inspired algorithms for 
their application across different domains. Future work lies in 
exploring these algorithms further to improve their 
performance by introducing different dimensions and new 
improvements.   
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