
Omdev Dahiya et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 414 - 434

414


ABSTRACT

In the era of digitalization, every task is performed with the
help of software-dependent applications. Therefore, the
developed software is required to be robust, reliable, and fault
free. Testing is performed to check the functioning of the
developed software to evaluate whether the software product
is error-free or not. Test cases play a vital role in the testing
process. However, with the advancement of time, a particular
test suite becomes so lengthy that the execution of all the test
cases is not possible due to limited time and resources.
Researchers have proposed diverse techniques to make the
testing process an effective one. This study has worked
towards finding the usage of bio-inspired computing
algorithms used for optimization. The reason behind this is
because these algorithms have performed exceptionally well
in addressing complex problems to provide workable
solutions in a reasonable time. It is observed that only a
handful of these algorithms were applied in testing, such as
ant colony optimization, bee colony optimization, neural
networks, and genetic algorithms. Even progress is made in
the limited area of these algorithms. This study was
conducted with a motive to sort out the most popular
bio-inspired algorithms and to explore their working
principles, developments made till now, along with the scope
of their application. This paper has discussed how the
development of these algorithms has progressed from already
explored algorithms to the development of many new ones
such as cuckoo search, artificial bee colony, bat algorithm,
firefly algorithm, flower pollination algorithm, and many
more. This study will help the researchers to gain insight into
choosing the algorithm and explore them in developing new
techniques for optimization.

Key words: Bio-inspired computing algorithms, Exploratory
review, Software testing, Test optimization.

1. INTRODUCTION

Globalization has integrated the economies and has led to
interaction among companies, peoples, and governments

worldwide. There is an exchange of information, technology,
and exchange of goods and services. The advancements in
digital technology boost this. Now we can get anything at our
doorstep just by making a few clicks. The researchers have
developed various software-based applications. With so much
dependence on software applications, there comes a great
responsibility also to develop fault-free software [1]. Testing
of software is performed to find potential faults in the software
so that those can be removed, and the delivery of reliable
software be ensured [2-3]. Of many testing techniques
available, exhaustive testing intends to test the software for all
possible combinations of test cases to make sure that the
developed software is completely bug-free. Although its
limitation is that its usage is only limited to its applicability to
small programs, performing exhaustive testing of large
applications is not a feasible idea considering the limited
resources, time, and cost [4-5]. Regression testing plays a
significant role as its techniques intent to rationalize the test
suite size. Regression testing is performed to check whether
no new faults have crept in after the modifications were made
to the software [6-8]. Finding the optimum solution to a
problem is an uphill task as applications have to deal with
NP-hard problems. For the solution of these problems,
various optimization tools were used. Still, there is no surety
that the optimum solution will be obtained. With so much of
complexities involved in this process, there is a requirement
to develop intelligent approaches so that workable and
suitable solutions to the problems can be discovered. Based on
these contexts, intelligent metaheuristics algorithms can
fulfill the need to find answers to complex issues. Within the
domain of metaheuristics, bio-inspired computing algorithms
are gradually gaining popularity as they can learn and adapt
like biological organisms, and they have supremacy in
addressing complex problems to provide workable solutions
in a reasonable time. It is also getting difficult to track the
developments in this domain because many algorithms are
getting introduced at a fast pace. Still, this study was
conducted to find the most popular bio-inspired algorithms
and to explore their working principles, developments made
till now, along with the scope of their application. Earlier
attempts have also been made by researchers to address this
issue [9-10]. Due to limited awareness amongst the new

An Exploratory Retrospective Assessment on the Usage of Bio-Inspired

Computing Algorithms for Optimization

Omdev Dahiya1, Kamna Solanki2, Sandeep Dalal3, Amita Dhankhar4
1,2,4University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak-124001, India

3Department of computer science and applications, Maharshi Dayanand University, Rohtak-124001, India
1Omdahiya21792@gmail.com, 2Kamna.mdurohtak@gmail.com

3Sandeepdalal.80@gmail.com, 4Amita.infotech@gmail.com

 ISSN 2347 - 3983

Volume 8. No. 2, February 2020
International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter29822020.pdf

https://doi.org/10.30534/ijeter/2020/29822020

Omdev Dahiya et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 414 - 434

415

researchers, they are just fitting the algorithms in their study
instead of exploring them according to the problem statement.
This study has worked towards addressing this issue. We have
reviewed the most popular as well as newly discovered
bio-inspired algorithms that hold great potential for the
developed applications. In this study, we have tried to explore
the applications and scope of these algorithms in a specific
context. It will help researchers to gain insight into choosing
the algorithm and explore them in developing new techniques
for test optimization. We are not able to provide the in-depth
detail of an algorithm to show how it will be implemented and
how potential enhancement can be made in them to make
them more efficient as this is beyond the scope of this study.
We can provide a generalized overview based on the other
reviews performed by numerous researchers [11-34]. Fig. 1
shows the generalized taxonomy of bio-inspired computing
algorithms.

Figure 1: Generalized classification of bio-inspired
computing algorithms

 In the following sections, this research work discussed
how the development of these algorithms has progressed from
already explored algorithms to the development of many new
ones such as cuckoo search, artificial bee colony, bat

algorithm, firefly algorithm, flower pollination algorithm and
many more. This study will help the researchers to gain
insight into choosing the algorithm and explore them in
developing new and effective techniques for test optimization
as well as in solving complex real-life problems.
2. RESEARCH METHODOLOGY

This study was conducted in three different phases. In the first
phase, we searched articles on google scholar and Scopus
database by the combination of various search words and
techniques of software testing such as “bio-inspired
computing algorithms, metaheuristic algorithms, heuristics,
nature-inspired algorithms, application of nature-inspired
algorithms and software testing.” The searched results were
refined, utilizing various parameters, inclusion, and
exclusion criteria. First, here is title-based exclusion, then
abstract based and then conclusion based. If a study has
passed through these filters, then it is studied in detail to find
whether it is relevant to the importance and usage of
bio-inspired computing algorithms for optimization and its
usage in software testing. To explore the usage of
Bio-inspired algorithms in solving the software testing
problems, again searching of studies was performed using
keywords like, “Ant colony optimization <and> Software
testing,” “Genetic algorithm <and> Software testing,”
“Artificial bee colony <and> Software testing,” “Particle
swarm optimization <and> Software testing,” “Neural
networks <and> Software testing,” “Bat algorithm <and>
Software testing,” Cuckoo search <and> Software testing,”
“Firefly algorithm <and> Software testing,” Flower
pollination algorithm <and> Software testing.” In the second
phase, the objective was to arrange the selected studies
according to the different algorithms. After arranging the
studies according to the algorithms implemented, there comes
the third stage, which is to identify different domains and
problems for which they were used to solve them. This was
done by studying the literature regarding that particular
algorithm so that its applicability can be studied in detail. We
have worked towards ensuring that most of the useful studies
were included in this study. For it, references from selected
studies were also used to find other relevant studies. After
these phases, we have presented an overall conclusion of this
study, followed by the references. Now various algorithms are
presented in detail along with their contributors who have
either worked towards proposing that particular technique or
have presented/applied them for test optimization.

2.1 Ant Colony Optimization

The basic concept behind the ant colony approach is to
resolve optimization problems by taking actions similar to
real ants. This approach was proposed by Dorigo [35]. Ants
have an excellent capability to search for the nearest source of
food and then reaching to a destination using their chemical
called pheromone. More and more ants traverse the same path
for reaching the food source, and the intensity of pheromone

Omdev Dahiya et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 414 - 434

416

dropped at that path increases, which attracts other ants to
traverse that path. Numerous researchers have exploited the
potential benefits of solving complex problems using the ant
colony system. Table 1 below enlists the prominent
researchers who have proposed different testing techniques
using this approach and have used to solve various problems
as well.

Table 1: Contributors in Ant Colony Optimization

Approach

Sr.
No.

Authors Name Publication
Year

Reference
No.

1. Dorigo 1995 [35]
2. Srivastava et al. 2008 [36]
3. Donghua and Wenjie 2011 [37]

4. Singh et al. 2010 [38]
5. Srivastava 2010 [39]
6. Suri and Singhal 2011 [40]
7. Li et al. 2009 [41]
8. Noguchi et al. 2015 [42]
9. Srivastava and Baby 2010 [43]

10. Chengying et al. 2015 [44]
11. Suri and Singhal 2011 [45]
12. Suri and Singhal 2012 [46]
13. Gao et al. 2015 [47]
14. Zhou et al. 2017 [48]
15. Singh et al. 2010 [49]
16. Gao et al. 2015 [50]
17. Dorigo and Birattari 2010 [51]
18. Dorigo et al. 2006 [52]
19. Bououden et al. 2015 [53]
20. Ghasab et al. 2015 [54]
21. Hong et al. 2012 [55]
22. Liao et al. 2014 [56]
23. Liao et al. 2014 [57]
24. Mandloi and Bhatia 2014 [58]
25. Romdhane et al. 2013 [59]
26. Ramli et al. 2016 [60]
27. Popentiu-Vladicescua

nd Alabeanu
2016 [61]

28. Panthi and
Mohapatra

2016 [62]

29. Ansari et al. 2016 [63]
30. Guo 2017 [64]
31. Rauf 2017 [65]
32. Zhang et al. 2017 [66]
33. Khanna 2017 [67]
34. Ahmad et al. 2018 [68]
35. Zhang et al. 2019 [69]
36. Zheng 2019 [70]

The above table presents the details of studies that have
worked towards using an ant colony algorithm for solving
combinatorial optimization problems. This provides complete
detail of the articles and will help the newcomers in providing
them an in-depth analysis of the algorithm. In the present
scenario trend of ant colony optimization algorithm is going
on with authors proposing its modified versions, as well as
their usage in the collaboration of other factors.

2.2 Genetic Algorithm

 A genetic algorithm was designed by getting inspiration

from the biological concept of evolution and is based on the
“survival of the fittest” theory [71-73]. The algorithm works
by selecting a set of solutions that are depicted by
chromosomes and are called population. This is used to form
a new population by applying basic operators such as
“selection,” “crossover,” “mutation,” and this process goes on
until an optimal solution is attained. The underlying idea is
that the new population will be efficient than the previous
one. This algorithm has been widely used to solve a variety of
optimization problems. The algorithm has shown its
supremacy in solving complex and real-life problems. Due to
this, many researchers have worked towards using a genetic
algorithm for solving problems and proposing different
techniques. Table 2 below enlists the prominent researchers
who have proposed different testing techniques using this
approach and as well as to solve various optimization
problems.

Table 2: Contributors in Genetic Algorithm

Sr.
No.

Authors Name Publication
Year

Reference
No.

1. Varshney and Mehrotra 2013 [74]
2. Khor and Grogono 2004 [75]
3. Gulia and Chillar 2012 [76]
4. Bhasin 2014 [77]
5. Srivastava et al. 2009 [78]
6. Rathore et al. 2011 [79]
7. Prakash et al. 2015 [80]
8. Rao et al. 2013 [81]
9. Mahajan et al. 2012 [82]
10. Lodha et al. 2014 [83]
11. Srivastava and Kim 2004 [84]
12. Froser and Arcuri 2013 [85]
13. Ghiduk 2014 [86]
14. Umbarkar and Sheth 2015 [87]
15. Boopathi et al. 2014 [88]
16. Mishra et al. 2017 [89]
17. Ahmed et al. 2012 [90]
18. Aytug et al. 2003 [91]
19. Colin and Jonathan 2002 [92]

Omdev Dahiya et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 414 - 434

417

20. Grefenstette 2013 [93]
21. Mitchell et al. 1992 [94]
22. Srinivas and Patnaik 1994 [95]
23. Siarry et al. 2002 [96]
24. Yao et al. 2005 [97]
25. Zhou et al. 2014 [98]
26. Sharma et al. 2016 [99]
27. Khan et al. 2016 [100]
28. Qi et al. 2016 [101]
29. Khanna 2016 [102]
30. Soltani 2017 [103]
31. Kudjo 2017 [104]
32. Bahaweres 2017 [105]
33. Yadav and Dutta 2017 [106]
34. Goyal et al. 2018 [107]
35. Mansour et al. 2018 [108]
36. Bala and Chillar 2018 [109]
37. Boopathi et al. 2019 [110]
38. Mishra et al. 2019 [111]
39. Bhattacharjee and Saluja 2019 [112]
40. Dubey 2019 [113]
41. Habtemariam and

Mohapatra
2019 [114]

42. Bhatia 2020 [115]
43. Fan et al. 2020 [116]

The above table presents a detail of the articles with the

authors who have worked towards using a genetic algorithm
to solve various problems like job scheduling, traveling
salesman problem, and constrained optimization problems.
This will enable the coming fellows who want to propose
different techniques for solving complex problems of
computer science as well as real-life problems using a genetic
algorithm. After analysis of the studies, they may deduce how
the algorithm can be used and what are its application areas.

2.3 Artificial Bee Colony

 The artificial Bee colony algorithm was introduced by
Karaboga [117]. The basic idea behind this technique is
deduced from the intelligent behavior of honey bees. In this
bee colony, there are three types of bees (a) “Employed bees”
(b) “Onlooker bees” (c) Scouts bees. The number of
“employed bees” corresponds to the number of food sources
near a beehive. They search for a potential food source with a
random stimulus, and then the fitness of the food source is
assessed. This information is communicated amongst them.
Various activities done by them shows their behavior, such as
how the task is allocated, how they interact, their navigational
behavior, and many more. Many studies were conducted to
explain the functioning of the queen, their communication
and dance strategy, how they mate and reproduce, and their

navigational behavior. Researchers have used this technique
to solve various optimization problems amongst different
domains of engineering and sciences. Table 3 enlists
prominent contributors in the field of artificial bee colony
optimization.

Table 3: Contributors in Artificial Bee Colony Algorithm

Sr.
No.

Authors Name Publication
Year

Reference
No.

1. Drias et al. 2005 [118]
2. Karaboga and Basturk 2007 [119]
3. Lucic and Teodorovic 2001 [120]
4. Teodorovic and

Dell’Orco
2005 [121]

5. Jia et al. 2016 [122]
6. Yu 2016 [123]
7. Nseef et al. 2016 [124]
8. Biswas et al. 2014 [125]
9. Li et al. 2015 [126]
10. Karaboga and Basturk 2008 [127]
11. Karaboga et al. 2014 [128]
12. Karaboga and Ozturk 2011 [129]
13. Gao and Liu 2012 [130]
14. Karaboga and Akay 2009 [131]
15. Bansal et al. 2016 [132]
16. Liu et al. 2016 [133]
17. Ma et al. 2016 [134]
18. Aghdam and Arasteh 2017 [135]
19. Alazzawi et al. 2017 [136]
20. Roeva 2018 [137]
21. Chhabra 2018 [138]
22. Yilmaz and Bascifti 2018 [139]
23. Sheoran et al. 2019 [140]
24. Peng et al. 2019 [141]
25. Luo 2019 [142]
26. Sidek 2019 [143]
27. Akay and Akay 2020 [144]
28. Mishra et al. 2020 [145]
29. Alazzawi et al. 2020 [146]

The above table presents a detail of the articles with the
authors who have worked towards using an artificial bee
colony algorithm to solve various maximization or
minimization problems, routing problems, searching
problem, task allocation problem. This provides full detail of
the articles and will help the newcomers in providing them an
in-depth analysis of the algorithm.

Omdev Dahiya et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 414 - 434

418

2.4 Particle Swarm Optimization

 In particle swarm optimization, Swarm refers to a large
number of homogeneous agents who interact amongst
themselves in their environment. This algorithm is based on
the behavior of organisms in a group, such as depicted by bird
flock, fish, or insects to achieve an optimal solution
[147-148]. In this, members of the group try to make a shared
objective according to feedback from the other group
members. Each member of the group tries to find a possible
solution at any instant of time. After that suitability of that
candidate solution is communicated to other members of the
swarm via signals. Other members, therefore, senses the
strength of the transmitted signal, and according to the fitness
function, the suitability of the candidate solution is assessed.
This algorithm has helped the researchers in solving complex
problems by reaching an optimal solution based on varying
criteria. Table 4 enlists prominent contributors who have
explored the domains where particle swarm optimization
approaches have been used to solve various multi
population-based optimization problems.

Table 4: Contributors in Particle Swarm Optimization
Algorithm

Sr.
No.

Authors Name Publication
Year

Reference
No.

1. Kennedy 1997 [149]
2. Jiang et al. 2015 [150]
3. De Souza et al. 2011 [151]
4. Zhan et al. 2011 [152]
5. Couceiro and Ghamisi 2016 [153]
6. Gandomi et al. 2013 [154]
7. Hong 2009 [155]
8. Kennedy 2011 [156]
9. Liu et al. 2005 [157]
10. Shi and Eberhart 1998 [158]
11. Niu et al. 2005 [159]
12. Liang and Suganthan 2005 [160]
13. Zhao et al. 2010 [161]
14. Liang and Suganthan 2005 [162]
15. Yang and Li 2010 [163]
16. Xu et al. 2015 [164]
17. Chen et al. 2010 [165]
18. Zheng and Liu 2009 [166]
19. Bolufe and Chen 2011 [167]
20. El Dor et al. 2012 [168]
21. Zhang and Ding 2011 [169]
22. Zhang et al. 2011 [170]
23. Wang et al. 2012 [171]
24. Fan and chang 2010 [172]
25. Marinakis 2014 [173]
26. Liang and Suganthan 2006 [174]

27. Wang and Lai 2009 [175]
28. Xiao and Cheng 2013 [176]
29. Niu et al. 2006 [177]
30. Jatana et al. 2016 [178]
31. Sheng et al. 2017 [179]
32. Hajihassani et al. 2018 [180]
33. Sun et al. 2018 [181]
34. Wang and Liu 2018 [182]
35. Jianqi et al. 2018 [183]
36. Khatibsyarbini et al. 2018 [184]
37. Allawi et al. 2018 [185]
38. Nayak and Ray 2019 [186]
39. Malhotra and Khanna 2019 [187]
40. Islam et al. 2019 [188]
 The above table presents a detail of the articles with the
authors who have worked towards the particle swarm
optimization algorithm for solving various scheduling
problems, multi-criteria-based decision problems, and
constraint-based optimization problems. This will enable the
coming fellows who want to propose different techniques for
solving complex problems of computer science as well as
real-life problems using this optimization algorithm.

2.5 Neural Networks

 Neural Networks work as a human neuron system, and data
is processed, which mimics in the same way a human brain
operates. It is a non-linear data processing algorithm;
numerous processing unit is combined in a different layered
network [189]. These networks are adaptive, organizing in
nature, and possess the ability to learn based on feedback and
input from their operating environment. Depending on the
accuracy of results, feedback could either be negative or
positive. The whole network is just like a black box where the
provided input and the output is visible to the user. If the
output is not as expected, then the feedback of the result is
fetched back so that the processing model could be improved.
The most straightforward implementation of the neural
networks is that of a perceptron network. In it, there is a single
layer for internal functioning, and feedback is provided to
improve output. Neural networks have been implemented on
various domains ranging from different types of systems to
different kinds of interfaces according to the requirement.
Numerous studies have been conducted to examine different
criteria on how the network can be trained. According to the
necessity of the problem, neural networks have also been used
in conjunction with other algorithms so that the prediction
capability of a system could be improved further. Table 5
enlists prominent contributors in the field of neural network
implementation to solve various optimization problems.

Omdev Dahiya et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 414 - 434

419

Table 5: Contributors in Neural Networks

Sr.
No.

Authors Name Publication
Year

Reference
No.

1. Kar 2013 [190]
2. Sadegh 1993 [191]
3. Kar 2015 [192]
4. Hornik 1991 [193]
5. Specht 1990 [194]
6. Schmidhuber 2015 [195]
7. Oja 1992 [196]
8. Chen et al. 2008 [197]
9. Fausett 1994 [198]
10. Craven and Shavlik 1997 [199]
11. Lampinen and Vehtari 2001 [200]
12. Mensah et al. 2016 [201]
13. Makondo et al. 2016 [202]
14. Pang et al. 2017 [203]
15. Sathyavathy 2017 [204]
16. Sun et al. 2018 [205]
17. Ma et al. 2018 [206]
18. Byun et al. 2019 [207]
19. Karpov et al. 2018 [208]
20. Joffe and Clark 2019 [209]
21. Mannarswamy et al. 2020 [210]
22. Ghosh and Singh 2020 [211]

 The above table presents a detail of the articles with the
authors who have worked towards using neural
network-based approaches to solve various problems such as
classification problems, pattern recognition, association
rules, missing data prediction, data normalization, and
various optimization problems. This will enable the coming
fellows who want to propose different techniques for solving
complex problems of computer science as well as real-life
problems. After analysis of the studies, they may deduce how
the algorithm can be used and what are its application areas.

2.6 Bat Algorithm

 Bat algorithm was developed based on the behavior of
bats, which uses echo-based parameters for locating their
prey. It is one of the recently developed bio-inspired
computing algorithms. In this, bats navigate in the
surroundings to identify and catch their prey even in the dark,
by using the echoes of sound emitted by them [212-213]. This
process is known as echolocation. Using this approach, bats
can find their food source by identifying the distance. While
searching for their prey, bats can easily adjust their flight
velocity, frequency, and loudness of their cry. The loudness
and frequency are updated in such a fashion that when the
prey is identified, the frequency increases, and loudness
decreases. This algorithm is used to solve various

multi-objective optimization problems. Various researchers
have used this in combination with nature-inspired
algorithms as well. Table 6 enlists prominent contributors
who have worked for the approaches of the Bat algorithm.

Table 6: Contributors in Bat Algorithm

Sr.
No.

Authors Name Publication
Year

Reference
No.

1. Wang et al. 2015 [214]
2. Heraguemi et al. 2015 [215]
3. Mirjalili et al. 2014 [216]
4. Jaddi et al. 2015 [217]
5. Gandomi et al. 2013 [218]
6. Heraguemi et al. 2016 [219]
7. Gandomi and Yang 2014 [220]
8. Meng et al. 2015 [221]
9. Rodrigues et al. 2014 [222]
10. Yang and He 2013 [223]
11. Yang and Gandomi 2012 [224]
12. Alsariera and Zamli 2017 [225]
13. Ashish et al. 2018 [226]
14. Sharma and Sehgal 2018 [227]
15. Ozturk 2018 [228]
16. Alsariera et al. 2018 [229]
17. Huang et al. 2019 [230]

 The above table presents a detail of the articles with the
authors who have worked towards using bat algorithm to
solve various classification problems, multi-objective
optimization problems, clustering, and combinatorial
optimization problems. Many studies have reported its
supremacy over other nature-inspired approaches. This table
provides complete detail of the articles and will help the
newcomers in providing them an in-depth analysis of the
algorithm.

2.7 Cuckoo Search

The cuckoo search algorithm is developed by replicating the
breeding behavior of cuckoos [231]. Other birds' nests were
often used by cuckoos to lay their eggs, and they remove the
eggs of those birds to ensure that the hatching probability of
their eggs is ensured. This algorithm imitates three types of
brood parasitism, namely a). "co-operative breeding" b).
"intra-specific brood parasitism” and c). “Nest takeover.”
One or more eggs were laid by the cuckoo bird, and for doing
that, "levy flight" is done for the identification of nests. Then
eggs were put in the randomly chosen nest. The best nests
which have eggs of high quality will be carried over to the
next generations. The probability of host parents identifying
the eggs laid by the cuckoo is also high because a limited
number of host nests are available. If that happens, the host

Omdev Dahiya et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 414 - 434

420

parent either abandons the nests or eggs were thrown away,
and a new nest is built. A “levy flight” is performed whenever
a new set of a candidate solution is generated. To identify
globally optimal solution utilizing a diversity of eggs in the
nest, mixing and redistribution of eggs of two or more nests is
done. This algorithm is proposed to address single and
multi-objective problems under complex non-linear
constraints where achieving global optimization is not an
easy task. It provides an efficient, workable solution for
challenging problems. Table 7 enlists prominent contributors
in the field of the cuckoo search algorithm to solve various
optimization problems.

Table 7: Contributors in Cuckoo Search Algorithm

Sr.
No.

Authors Name Publication
Year

Reference
No.

1. Walia and Kapoor 2014 [232]
2. Yang and Deb 2013 [233]
3. Yang and Deb 2014 [234]
4. Araghi et al. 2015 [235]
5. Yang and Deb 2014 [236]
6. Bhandari et al. 2014 [237]
7. Gandomi et al. 2013 [238]
8. Gotmare et al. 2015 [239]
9. Kumar and Rawat 2015 [240]
10. Yang and Deb 2014 [241]
11. Srivastava 2012 [242]
12. Khari and Kumar 2016 [243]
13. Dhabal et al. 2016 [244]
14. Khari and Kumar 2017 [245]
15. Haixian and Jing 2018 [246]
16. Shehab et al. 2018 [247]
17. Sharma et al. 2019 [248]
18. Dhareula and Ganpati 2019 [249]
19. Benkhaira and Layeb 2020 [250]

 The above table presents a detail of the articles with the
authors who have worked towards using a cuckoo search
algorithm to solve various single or multi-objective problems,
scheduling problems, knapsack problems, and many more.
This will provide an insight into the coming fellows who want
to propose different techniques for solving complex problems
of computer science as well as real-life problems. After
analysis of the studies, they may deduce how the algorithm
can be used and what are its application areas.

2.8 Firefly Algorithm

 The inspiration for the firefly algorithm is achieved from
the flashing behavior of the fireflies. The fireflies produce a
flashlight through a process known as bioluminescence [251].
The fireflies use this flashlight for food foraging and to attract

potential mating partners as well as to remind them about
predators. They exhibit characteristics of swarm intelligence
through decentralized decision making and self-organization.
The brightness in their flash indicates the fitness of male
fireflies. There are certain assumptions for the standard firefly
algorithm to operate, such as A). “A firefly will be attracted to
each other regardless of their sex because they are unisexual.”
B). “Attractiveness is proportional to their brightness,
whereas the less bright firefly will be attracted to the brighter
firefly. However, the attractiveness decreased when the
distance of the two fireflies increased.” C). “If the brightness
of both fireflies is the same, the fireflies will move randomly.”
In this, the initial population of fireflies was created, which
was followed by modifying a fitness parameter. Then the
evaluation of fitness for each firefly in the population was
performed. Based on this, ranking to the fireflies is provided.
For the next round of evaluation, only the best solutions are
taken forward. Many computations are planned to control the
iteration. The firefly algorithm was also used in conjunction
with other algorithms as well to obtain the enhanced results.
This algorithm can more efficiently use Multimodal functions
as compared to different swarm-based algorithms. The
algorithm has found its applicability in dealing with
multi-objective search problems, combinatorial optimizations
problems, and many more. Table 8 enlists prominent
contributors in the field of the firefly algorithm.

Table 8: Contributors in Firefly Algorithm

Sr.
No.

Authors Name Publication
Year

Reference
No.

1. Yang 2010 [252]
2. Srivastava et al. 2013 [253]
3. Yang and Deb 2010 [254]
4. Xu and Liu 2013 [255]
5. Gandomi et al. 2013 [256]
6. Ozsoydan and

Baykasoglu
2015 [257]

7. KavousiFard et al. 2014 [258]
8. Gandomi et al. 2011 [259]
9. Long et al. 2015 [260]
10. Lukasik and Zak 2009 [261]
11. Rahmani and

MirHassani
2014 [262]

12. Yang and He 2013 [263]
13. Mishra et al. 2014 [264]
14. Verma et al. 2016 [265]
15. Yang et al. 2012 [266]
16. Khatibsyarbini et al. 2019 [267]
17. Arora and Saha 2018 [268]
18. Hashim and Dawood 2018 [269]
19. Rathee et al. 2019 [270]
20. Pandey and Banerjee 2019 [271]

Omdev Dahiya et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 414 - 434

421

 The above table presents a detail of the articles with the
authors who have worked towards the firefly algorithm for
solving various classification problems, discrete search-based
problems, and NP-hard problems. This will enable the
coming fellows who want to propose different techniques for
solving complex problems of computer science as well as
real-life problems using this optimization algorithm.

2.9 Flower Pollination Algorithm

 Flower pollination algorithm was developed based on the
pollination mechanism of the flowers [272]. Pollination is a
process of spreading the pollen of a flower, also known as the
reproduction unit of a flower, to another flower of a plant for
germination/reproduction. This process is achieved through
agents known as pollinators. Usually, biotic pollination is
done by most of the flowers by agents such as birds or insects.
In this pollination, flowers of the different plants are
involved. It is known as cross-pollination and is considered a
global/optimization pollination process. Some plants also
perform abiotic pollination through agents like water or wind.
Here flowers of the same plant are involved. It is known as
self-pollination, and it is considered as a local/optimization
pollination process. The process of pollination would try to
enhance the reproduction of the fittest. Table 9 enlists
prominent contributors to the flower pollination algorithm.

Table 9: Contributors in Flower Pollination Algorithm
Sr.
No.

Authors Name Publication
Year

Reference
No.

1. Yang et al. 2013 [273]
2. Bekdas et al. 2015 [274]
3. Yang et al. 2014 [275]
4. Nigdeli et al. 2016 [276]
5. Kabir et al. 2017 [277]
6. Naseer et al. 2019 [278]
7. Naseer et al. 2018 [279]
8. Abdel-Basset and Shawky 2019 [280]
9. Naseer and Zamli 2018 [281]
10. Dhareula and Ganpati 2019 [282]
11. Dhareula and Ganpati 2019 [283]

 The above table presents a detail of the articles with the
authors who have worked towards using the flower
pollination algorithm for solving complex problems. This
algorithm has found its applicability for global optimization
problems with multiple objectives and various criteria. It is
also used to solve significant integer programming problems,
global and local search problems. It has been used in
numerous disciplines of engineering and sciences. This will
enable the coming fellows who want to propose different
techniques for solving complex problems of computer science
as well as real-life problems. After analysis of the studies, they

may deduce how the algorithm can be used and what are its
application areas.

2.10 Other Nature-Inspired Algorithms

 This study has tried to cover most of the famous and
upcoming bio-inspired computing algorithms for test
optimization. Though there were few algorithms as well,
which have been developed by the researchers but have not
become so popular either due to limited area of application or
other researchers could not explore their usability in their
particular domain. Considering the aim of this study, we have
still documented those algorithms in the form of a table. This
will aid the upcoming researchers in exploring them further
for their scope of application across domains. Researchers
may explore the quality of outcome by using trying and
mixing these algorithms with other existing theories. Table
10 enlists such algorithms along with the details of their
references.

Table 10: Contributors in other Nature-Inspired Algorithms
Sr.
No.

Algorithm
Details

Authors
Name

Publication
Year

Reference
No.

1. Monkey
Search

Mucherin
o and
Seref

2007 [284]

2. Fruit Fly
Algorithm

Pan 2012 [285]

3. Virus
Colony
Search

Li et al. 2016 [286]

4. Dolphin
Swarm
Algorithm

Yong et
al.

2016 [287]

5. Squirrel
Search

Jain et al. 2019 [288]

6. Butterfly
Algorithm

Qi et al. 2017 [289]

7. Krill Herd Gandomi
and Alavi

2012 [290]

8. Bacterial
Foraging

Passino 2002 [291]

9. Wolf Search Tang et al. 2012 [292]
10. Bean

Algorithm
Zhang et
al.

2010 [293]

11. Amoeba
Algorithm

Zhang et
al.

2013 [294]

12. Shark
Algorithm

Hersovici 1998 [295]

13. Lion
Algorithm

Yazdani
and Jolai

2015 [296]

14. Dove
Algorithm

Su et al. 2009 [297]

Omdev Dahiya et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 414 - 434

422

3. RESULT AND DISCUSSION

 This study has worked towards presenting a
comprehensive source of information so that further research
can be conducted where this research will serve as a base or
starting point. We have worked towards documenting the
work of numerous researchers on different bio-inspired
algorithms to solve large-scale real-world problems for
finding optimal solution and their usage in software testing as
well. As testing overall improves the quality of software
[298]. Researchers were inspired in diverse ways to develop
such diverse algorithms getting inspired from nature. We
observed that some algorithms were more popular than
others, as they were developed a long time back. People were
using these algorithms for an extended period; that is why the
number of studies published for them has been increased.
However, with time, researchers have also proposed new
algorithms, and they are in trend. Figure 1 shows the
publication statistics for the studies that were selected for this
article. A constant increase in published studies is observed
starting from 1990 to 2020. A period from 2010 onwards
shows a much more trend for the relevant studies. So, it can be
said that the coming years will experience a much more

emphasis on the usage of Bio-inspired algorithms for solving
optimization problems. To further categorize the selected
studies based on the algorithms used, we have prepared a pie
chart distribution. In this, it can be observed that out of 251
studies selected for different algorithms, 36 were based on ant
colony optimization algorithm which is about 14%, 43 were
based on genetic algorithm which is about 17%, 29 were
based on artificial bee colony which is about 11%, 40 were
based on particle swarm optimization which is about 16%, 22
were based on neural networks which are about 9%, 17 were
based on bat algorithm which is about 7%, 19 were based on
cuckoo search which is about 8%, 20 were based on firefly
algorithm which is about 8%, 11 were based on flower
pollination algorithm which is about 4% and 14 were based
on other remaining nature-inspired algorithms which is about
6%. From the analysis of Figures 1 and 2, this study believes
that much work has been done on ant colony optimization
algorithms, neural networks, particle swarm optimization,
genetic algorithms, and artificial bee colony. Now the current
era is experiencing the development and usage of algorithms
like bat algorithm, cuckoo search, firefly algorithm, and
flower pollination algorithm.

Figure 1: Trend in publication for studies based on the usage of Bio-inspired computing algorithms for optimization

1 1 2 1 2 1 2 2 2 3
1 2

7
3 2 3

8
12 12

14
18

23 24 25

19

26 27

8

0

5

10

15

20

25

30

Publication Statistics of Selected Articles for this
Study

Omdev Dahiya et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 414 - 434

423

Figure 2: Percentage usage of different Bio-inspired computing algorithms in the selected studies

4. CONCLUSION
Optimization is a process of finding the best possible

solutions. There is no certainty whether the optimal solution
will be achieved or not. This study has grouped the various
bio-inspired algorithms after reviewing the existing literature
available for them. We have then presented the details of
numerous researchers who have worked in that particular
approach. The area of the applicability and scope of the
algorithms is also documented. We have shown how, with the
advent of time, different algorithms were proposed and what
is current trends in terms of the development of those
algorithms. The aim of this study is not to highlight how
real-life problems can be solved using them, but to provide
and act as a base to understand the underlying objective and
scope of these algorithms. This paper will help the readers to
find review papers of the documented algorithms so that
further understanding could be developed for the
development of theories and in the scope of their application.
After understanding these algorithms, practitioners may use
this study to explore more such bio-inspired algorithms for
their application across different domains. Future work lies in
exploring these algorithms further to improve their
performance by introducing different dimensions and new
improvements.

REFERENCES
1. Sommerville, Ian “What is software engineering?”.

Software Engineering (8th ed.). Harlow, England:
Pearson Education p.p. 7, 2007.

2. R. Mukherjee and K. S. Patnaik, “A survey on
different approaches for software test case
prioritization,” Journal of King Saud
University-Computer and Information Sciences, 2018.

3. M. Khatibsyarbini, M. A. Isa, D. N. Jawawi, and R.
Tumeng, “Test case prioritization approaches in
regression testing: A systematic literature review.”
Information and Software Technology, 93, pp.74-93,
2018.

4. O. Dahiya, K. Solanki and S. dalal, “Comparative
Analysis of Regression Test Case Prioritization
Techniques,” International Journal of advanced trends
in computer science and engineering, Vol. 8 No. 4, pp.
1521-1531, 2019.
https://doi.org/10.30534/ijatcse/2019/74842019

5. K. Solanki, and Y. Singh, “Importance of Selecting
Test Cases for Regression Testing,” IOSR Journal of
Computer Engineering (IOSRJCE) e-ISSN, pp.
2278-0661, 2014.

6. O. Dahiya and K. Solanki, “Comprehensive
cognizance of Regression Test Case Prioritization
Techniques,” International journal of emerging trends
in engineering research, Vol. 7 No. 11, pp. 638-646,
2019.
https://doi.org/10.30534/ijeter/2019/377112019

7. K. Solanki, and Y. Singh, “Novel Classification of Test
Case Prioritization Techniques,” International Journal
of Computer Applications, Vol. 975, pp. 8887, 2014.

8. O. Dahiya and K. Solanki, “A systematic literature
study of regression test case prioritization
approaches,” International Journal of Engineering &
Technology, Vol. 7, No. 4, pp.2184-2191, 2018.

Ant Colony
Optimization

14%

Genetic Algorithm
17%

Bee Colony
11%

Particle Swarm
Optimization

16%

Neural Networks
9%

Bat Algorithm
7%

Cuckoo Search
8%

Firefly Algorithm
8%

Flower Pollination
Algorithm

4%

Other Nature-
inspired Algorithm

6%

PERCENTAGE DISTRIBUTION

Omdev Dahiya et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 414 - 434

424

9. Jr. I. Fister, X.S. Yang, I. Fister, J. Brest, and D. Fister,
“A brief review of nature-inspired algorithms for
optimization.” arXiv preprint arXiv:1307.4186.

10. A. K. Kar, “Bio inspired computing–a review of
algorithms and scope of applications,” Expert Systems
with Applications, 59, pp.20-32, 2016.

11. H. Ma, S. Shen, M. Yu, Z. Yang, M. Fei, and H. Zhou,
H., “Multi-population techniques in nature inspired
optimization algorithms: a comprehensive survey.”
Swarm and evolutionary computation, 44, pp.365-387,
2019.

12. A. Gogna and A. Tayal, “Metaheuristics: review and
application.” Journal of Experimental & Theoretical
Artificial Intelligence, 25(4), pp.503-526, 2013.

13. S. X. Yang, “Review of meta-heuristics and
generalised evolutionary walk algorithm,”
International Journal of Bio-Inspired Computation, 3
(2), pp. 77–84, 2013.

14. G. Theraulaz, “Task differentiation in Polistes wasp
colonies: a model for self-organizing groups of
robots,” In Proceedings of the First International
Conference on Simulation of Adaptive Behavior: From
Animals to Animates, 1991 (pp. 346-355). The MIT
Press, 1991.

15. M. Hersovici, M. Jacovi, Y.S. Maarek, D. Pelleg, M.
Shtalhaim, and S. Ur, “The shark-search algorithm.
An application: tailored Web site mapping”.
Computer Networks and ISDN Systems, 30(1-7),
pp.317-326, 1998.

16. C. Reeves and J. Rowe, “Genetic Algorithms:
Principles and Perspectives,” Kluwer, 2006.

17. H.G. Beyer, “Toward a theory of evolution strategies:
the (μ, λ)-theory,” Evol. Comput. 2 (4) pp. 381–407,
1994.

18. X. Yao, Y. Liu and G. Lin, “Evolutionary
programming made faster,” IEEE Trans. Evol.
Comput. 3 (2), 82–102, 1999.

19. M. Clerc, “Particle Swarm Optimization,” ISTE
Publishing, 2006.

20. G. Zhu, and S. Kwong, “Gbest-guided artificial bee
colony algorithm for numerical function
optimization,” Applied mathematics and
computation, 217(7), pp.3166-3173, 2010.
https://doi.org/10.1016/j.amc.2010.08.049

21. I. Fister, I. Fister Jr., X.S. Yang, and J. Brest, “A
comprehensive review of firefly algorithms,” Swarm
Evolutionary Comput. 13, pp.34–46, 2013.

22. A. Bolaji, M. Al-Betar, M. Awadallah, A. Khader, and
L. Abualigah, “A comprehensive review: krill herd
algorithm (KH) and its applications,” Appl. Soft
Comput. 49, pp. 437–446, 2016.

23. S. Mirjalili, S.M. Mirjalili, and A. Lewis, “Grey wolf
optimizer,” Adv. Eng. Software 69, pp. 46–61, 2014.

24. M. Baghmisheh, K. Madani and A. Navarbaf, “A
discrete shuffled frog optimization algorithm,” Artif.
Intell. Rev. 36 (4), pp. 267–284, 2011.

25. J. Bansal, H. Sharma, S. Jadon, and M. Clerc, “Spider
monkey optimization algorithm for numerical
optimization,” Memet. Comput. 6 (1), pp. 31–47, 2014.

26. S. Mirjalili and A. Lewis, “The whale optimization
algorithm,” Adv. Eng. Softw. 95, pp. 51–67, 2016.

27. W.B. Langdon and S.M. Gustafson, “Genetic
programming and evolvable machines: ten years of
reviews,” Genet. Program. Evolvable Mach. 11 (3/4) pp.
321–338, 2010.

28. M. Hauschild and M. Pelikan, “An introduction and
survey of estimation of distribution algorithms,”
Swarm Evolutionary Comput. 1 (3), pp. 111–128, 2011.

29. S. Das and P.N. Suganthan, “Differential evolution – a
survey of the state-of-the-art,” IEEE Trans. Evol.
Comput. 15 (1), pp. 4–31, 2011.

30. S. Das, S. Mullick, and P.N. Suganthan, “Recent
advances in differential evolution – an updated
survey,” Swarm Evolutionary Comput. 27, pp. 1–30,
2016.

31. D. Simon, “Biogeography-based optimization,” IEEE
Trans. Evol. Comput. 12 (6), pp. 702–713, 2009.

32. H. Ma and D. Simon, “Evolutionary Computation with
Biogeography-based Optimization,” Wiley-ISTE,
2016.

33. S. Ye, H. Ma, S. Xu, and M. Fei, “An effective
fireworks algorithm for warehouse scheduling
problem,” Trans. Inst. Meas. Contr. 39 (1), pp. 75–85,
2017.

34. M. Dorigo and L. Gambardella, “Ant colony system: a
cooperative learning approach to the traveling
salesman problem,” IEEE Trans. Evol. Comput. 1 (3),
pp. 53–66, 1997.
https://doi.org/10.1109/4235.585892

35. M. Dorigo. “Optimization, learning, and natural
algorithms.” Ph. D. Thesis, Politecnico di Milano, Italy,
1992.

36. P. R. Srivastava, V. Ramachandran, M. Kumar, G.
Talukder, V. Tiwari, P. Sharma, “Generation of test
data using meta-heuristic approach.” In: TENCON
2008 IEEE Region 10 Conference. Hyderabad, 2008.

37. C. Donghua, and Y. Wenjie, “The research of
test-suite reduction technique.” In: Consumer
Electronics, Communications, and Networks (CECNet).
XianNing, 2011.

38. Y. Singh, A. Kaur, and B. Suri: “Test case
prioritization using ant colony optimization.” ACM
SIGSOFT Softw. Eng. Notes 35, 2010.

39. P. R. Srivastava: “Structured testing using Ant colony
optimization.” In: First International Conference on
Intelligent Interactive Technologies and Multimedia,
2010.

40. B. Suri and S. Singhal: “Analyzing test case selection
& prioritization using ACO.” ACM SIGSOFT Softw.
Eng. Notes 36, 2011.

Omdev Dahiya et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 414 - 434

425

41. K. Li, Z. Zhang, and W. Liu: “Automatic test data
generation based on ant colony optimization,” vol. 6.
Tianjin, 2009.

42. T. Noguchi, H. Washizaki, Y. Fukazawa, A. Sato, and K.
Ota: “History-based test case prioritization for black
box testing using ant colony optimization.”
Graz,2015.

43. P. R. Srivastava and K. Baby: “Automated software
testing using meta-heuristic technique based on an
Ant colony optimization.” In: Electronic System
Design (ISED). Bhubaneswar, 2010.
https://doi.org/10.1109/ISED.2010.52

44. M. Chengying X. Lichuan and C. Jinfu, “Adapting Ant
Colony Optimization to generate test data for
software structural testing,” Swarm and Evolutionary
Computation, Elsevier, 2015.

45. B. Suri, & S. Singhal, “Implementing ant colony
optimization for test case selection and
prioritization.” International journal on computer
science and engineering, 3(5), 1924-1932, 2011.

46. B. Suri, & S. Singhal, “Literature survey of ant colony
optimization in software testing.” In Software
Engineering (CONSEG), 2012 CSI Sixth International
Conference on (pp. 1-7). IEEE, 2012.

47. D. Gao, X. Guo, and L. Zhao, “Test case prioritization
for regression testing based on ant colony
optimization.” In Software Engineering and Service
Science (ICSESS), 6th IEEE International Conference
on (pp. 275-279). IEEE, 2015.

48. J. Zhou, C. Wang, and Y. Li, “A multi-objective
multi-population ant colony optimization for
economic emission dispatch considering power
system,” Appl. Math. Model. 45, pp. 684–704, 2017.

49. Y. Singh, A. Kaur, and B. Suri, “Test case
prioritization using ant colony optimization,” ACM
SIGSOFT Softw. Eng. Notes, vol. 35, no. 4, pp. 1-7,
2010

50. D. Gao, X. Guo, and L. Zhao, “Test case prioritization
for regression testing based on ant colony
optimization,” In 2015 6th IEEE International
Conference on Software Engineering and Service
Science (ICSESS), IEEE, pp. 275-279. 2015.

51. M. Dorigo & M. Birattari, “Ant colony optimization.”
In Encyclopaedia of machine learning (pp. 36–39).
Springer US, 2010.

52. M. Dorigo, M. Birattari, & T. Stützle, “Ant colony
optimization”. IEEE Computational Intelligence
Magazine, 1 (4), pp. 28–39, 2006.

53. S. Bououden, M. Chadli, & H. R. Karimi, “An ant
colony optimization-based fuzzy predictive control
approach for nonlinear processes.” Information
Sciences, 299, pp. 143–158, 2015.

54. M. A., J. Ghasab, S. Khamis, F. Mohammad, & H. J.
Fariman, “Feature decision-making ant colony
optimization system for an automated recognition of
plant species.” Expert Systems with Applications, 42
(5), 2361–2370, 2015.

55. T. P. Hong, Y. F. Tung, S. L. Wang, Y. L. Wu, & M. T.
Wu, “A multi-level ant–colony mining algorithm for
membership functions.” Information Sciences, 182 (1),
pp. 3–14, 2012.
https://doi.org/10.1016/j.ins.2010.12.019

56. T. Liao, K. Socha, M. Montes de Oca, T. Stutzle, & M.
Dorigo, “Ant colony optimization for mixed-variable
optimization problems.” IEEE Transactions on
Evolutionary Computation, 18 (4), pp. 503–518, 2014.

57. T. Liao, T. Stützle, M. A. M. deOca, & M. Dorigo, “A
unified ant colony optimization algorithm for
continuous optimization.” European Journal of
Operational Research, 234 (3), pp. 597–609, 2014.

58. M. Mandloi & V. Bhatia, “Congestion control-based
ant colony optimization algorithm for large MIMO
detection.” Expert Systems with Applications, 42 (7),
pp. 3662–3669, 2014.

59. L. B. Romdhane, Y. Chaabani, & H. Zardi, “A robust
ant colony optimization-based algorithm for
community mining in large scale oriented social
graphs.” Expert Systems with Applications, 40 (14), pp.
5709–5718, 2013.

60. N. Ramli, R. R. Othman, and M.S.A.R. Ali,
“Optimizing combinatorial input-output based
relations testing using Ant Colony algorithm.” In
2016 3rd International Conference on Electronic
Design (ICED) (pp. 586-590). IEEE, 2016.

61. F. Popentiu-Vladicescu, and G. Albeanu,
“Nature-inspired approaches in software faults
identification and debugging.” Procedia Computer
Science, 92, pp.6-12, 2016.

62. V. Panthi, and D.P. Mohapatra, “A.C.O. based
embedded system testing using UML Activity
Diagram”. In 2016 IEEE Region 10 Conference
(T.E.N.C.O.N.) (pp. 237-242). IEEE, 2016.

63. A. Ansari, A. Khan, A. Khan, and K. Mukadam,
“Optimized regression test using test case
prioritization.” Procedia Computer Science, 79,
pp.152-160, 2016.

64. Q. Guo, “Task scheduling based on ant colony
optimization in cloud environment.” In A.I.P.
Conference Proceedings (Vol. 1834, No. 1, p. 040039).
A.I.P. Publishing L.L.C, 2017.

65. A. Rauf, “Data flow testing of UML state machine
using ant colony algorithm (A.C.O.).” International
Journal of Computer Science and Network Security,
17(10), pp.40-44, 2017.

66. Y.N. Zhang, H. Yang, Z.K. Lin, Q. Dai, and Y.F. Li, “A
test suite reduction method based on novel quantum
ant colony algorithm.” In 2017 4th International
Conference on Information Science and Control
Engineering (I.C.I.S.C.E.) (pp. 825-829). IEEE, 2017.

67. M. Khanna, “Application of Ant Colony Algorithm in
Regression Testing of Web Applications–A novel
approach.”, 2017.

68. S.F. Ahmad, D.K. Singh, and P. Suman, “Prioritization
for regression testing using ant colony optimization

Omdev Dahiya et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 414 - 434

426

based on test factors.” In Intelligent Communication,
Control, and Devices (pp. 1353-1360). Springer,
Singapore, 2018.

69. W. Zhang, Y. Qi, X. Zhang, B. Wei, M. Zhang, and Z.
Dou, “On Test Case Prioritization Using Ant Colony
Optimization Algorithm,” In 2019 IEEE 21st
International Conference on High Performance
Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th
International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pp. 2767-2773, IEEE, 2019.

70. T. Zheng, “Automatic test case generation method of
parallel multi-population self-adaptive ant colony
algorithm.” In Recent Developments in Intelligent
Computing, Communication, and Devices (pp.
469-476). Springer, Singapore, 2019.

71. C. Darwin, “On the origins of species by means of
natural selection.” London: Murray, 1859.

72. J. H. Holland, “Adaptation in natural and artificial
systems”: An introductory analysis with applications to
biology, control, and artificial intelligence University of
Michigan Press, 1975.

73. D. E. Goldberg, “Genetic Algorithms: In Search,
Optimization and Machine Learning.” Addison
Wesley, MA,1989.

74. S. Varshney and M. Mehrotra, “Search based software
test data generation for structural testing: a
perspective.” ACM SIGSOFT Softw. Eng. Notes 38,
2013.
https://doi.org/10.1145/2492248.2492277

75. S. Khor and P. Grogono, “Using a genetic algorithm
and formal concept analysis to generate branch
coverage test data automatically.” In: 19th IEEE
International Conference on Automated Software
Engineering, 2004.

76. P. Gulia and R. S. Chillar, “A new approach to
generate and optimize test cases for UML state
diagram using genetic algorithm.” ACM SIGSOFT
Softw. Eng. Notes 37, 2012.

77. H. Bhasin, “Artificial life and cellular automata based
automated test case generator.” ACM SIGSOFT
Softw. Eng. Notes 39, 2014.

78. P. R. Srivastava, P. Gupta, Y. Arrawatia and S. Yadav,
“Use of genetic algorithm in generation of feasible
test data.” ACM SIGSOFT Softw. Eng. Notes 34, 2009.

79. A. Rathore, A. Bohara, P. R. Gupta, P. T. S. Lakshmi, P.
R. Srivastava, “Application of genetic algorithm and
tabu search in software testing.” In: Fourth Annual
ACM Bangalore Conference, 2011.

80. S. S. K. Prakash, S. U. M. Dhanyamraju Prasad, D. Gopi
Krishna, “Recommendation and regression test suite
optimization using heuristic algorithms.” In: 8th India
Software Engineering Conference, 2015.

81. K. K. Rao, G. S. V. P. Raju, and S. Nagaraj,
“Optimizing the software testing efficiency by using
a genetic algorithm—a design methodology.” ACM
SIGSOFT Softw. Eng. Notes 38, 10, 2013.

82. M. Mahajan, S. Kumar, R. Porwal, “Applying genetic
algorithm to increase the efficiency of a data
flow-based test data generation approach.” ACM
SIGSOFT Softw. Eng. Notes, 2012.
https://doi.org/10.1145/2347696.2347707

83. G. M. Lodha, R. S. Gaikward, “Search Based Software
Testing with Genetic using fitness function,” IEEE
Conference on Computational Intelligence on Power,
Energy, and Controls with their impact on Humanity
CIPECH) 2014.

84. P. R. Srivastava and T. H. Kim, “Application of
Genetic Algorithm in Software Testing,” International
Journal of Software Engineering and its application 3,
4,2009.

85. G. Fraser and A. Arcuri, “Whole Test Suite
Generation,” IEEE Transaction On Software
Engineering, 39, 2,2013.

86. A. S. Ghiduk, “Automatic Generation of basis test
paths using variable length genetic algorithm,”
Information Processing Letters 114, 304, 2014.

87. A. J. Umbarkar and P. D. Sheth, “Crossover operators
in genetic algorithms: a review.” ICTACT J. Soft
Comput. 6(1), 2015.

88. M. Boopathi, R. Sujatha, C. S. Kumar, S. Narasimman,
“The mathematics of software testing using genetic
algorithm.” In: 2014 3rd International Conference on
Reliability, Infocom Technologies, and Optimization
(ICRITO) (Trends and Future Directions), pp. 1–6.
IEEE, 2014.

89. D. B. Mishra, R. Mishra, K. N. Das, and A. A. Acharya,
“A systematic review of software testing using
evolutionary techniques.” In: Proceedings of Sixth
International Conference on Soft Computing for
Problem Solving, pp. 174–184. Springer, Singapore
(2017)

90. A. A. Ahmed, M. Shaheen, and E. Kosba, “Software
testing suite prioritization using multi-criteria fitness
function.” In: 2012 22nd International Conference on
Computer Theory andApplications (ICCTA), pp.
160–166. IEEE,2012.

91. H. Aytug, M. Khouja, & F. E. Vergara, “Use of genetic
algorithms to solve production and operations
management problems: A review.” International
Journal of Production Research, 41 (17), pp. 3955–4009,
2003.

92. R. R. Colin and E. R. Jonathan, “Genetic
Algorithms-Principles and perspectives, A guide to
GA Theory.” Kluwer Academic Publishers, Springer,
2002.

93. J. J. Grefenstette, “Genetic algorithms and their
applications”: Proceedings of the second international
conference on genetic algorithms. Hillsdale, New
Jersey: Psychology Press, 2013.

94. M. Mitchell, S. Forrest, and J. H. Holland, “The royal
road for genetic algorithms: Fitness landscapes and
GA performance.” In Proceedings of the first

Omdev Dahiya et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 414 - 434

427

European conference on artificial life (pp. 245–254).
Cambridge: The MIT Press, 1992.

95. M. Srinivas and L. M. Patnaik, “Adaptive probabilities
of crossover and mutation in genetic algorithms,”
IEEE Transactions on Systems, Man and Cybernetics,
24 (4), 656–667, 1994.
https://doi.org/10.1109/21.286385

96. P. Siarry, A. Petrowski, and M. Bessaou, “A
multipopulation genetic algorithm aimed at
multimodal optimization,” Adv. Eng. Soft. 33 (4), pp.
207–213, 2002.

97. J. Yao, N. Kharma, and P. Grogono, “BMPGA: a
bi-objective multi-population genetic algorithm for
multi-modal function optimization,” in Proceeding of
IEEE Congress on Evolutionary Computation,
Edinburgh, UK, Sep. 2005, pp. 816–823.

98. X. Zhou, R. Zhao, and F. You, “EFSM-based test data
generation with multi-population genetic algorithm,”
in Proceeding of the 5th IEEE International Conference
on Software Engineering and Service Science (ICSESS),
Beijing, China, Jun. 2014, pp. 925–928.

99. A. Sharma, P. Rishon, and A. Aggarwal, “Software
testing using genetic algorithms.” Int. J. Comput. Sci.
Eng. Surv.(IJCSES), 7(2), pp.21-33, 2016.

100. R. Khan, M. Amjad, and A.K. Srivastava,
“Optimization of automatic generated test cases for
path testing using genetic algorithm.” In 2016 Second
International Conference on Computational
Intelligence & Communication Technology (CICT) (pp.
32-36). IEEE, 2016.

101. R.Z. Qi, Z.J. Wang, and S.Y. Li, “A parallel genetic
algorithm based on spark for pairwise test suite
generation.” Journal of Computer Science and
Technology, 31(2), pp.417-427, 2016.

102. E. Khanna, “Regression testing based on genetic
algorithms.” International Journal of Computer
Applications, 154(8), 2016.

103. M. Soltani, A. Panichella, and A. Van Deursen, “A
guided genetic algorithm for automated crash
reproduction.” In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE) (pp.
209-220). IEEE, 2017.

104. P.K. Kudjo, E. Ocquaye, and W. Ametepe, “Review of
genetic algorithm and application in software
testing.” International Journal of Computer
Applications, 160(2), pp.1-6, 2017.

105. R.B. Bahaweres, K. Zawawi, D. Khairani, and N.
Hakiem, “Analysis of statement branch and loop
coverage in software testing with genetic algorithm.”
In 2017 4th International Conference on Electrical
Engineering, Computer Science and Informatics
(EECSI) (pp. 1-6). IEEE, 2017.

106. D.K. Yadav, and S. Dutta, “Regression test case
prioritization technique using genetic algorithm.” In
Advances in computational intelligence (pp. 133-140).
Springer, Singapore, 2017.

107. S. Goyal, P. Mishra, A. Lamichhane, and P. Gandhi,
“Software test case optimization using genetic
algorithm.” Int. J. Sci. Eng. Sci, 1(12), pp.69-73, 2018.

108. N. Mansour, R. Haraty, and H. Zeitunlian, “Genetic
Algorithm for Testing Web Applications,” 2018.

109. A. Bala, and R.S. Chillar, “A NOVEL TEST CASE
PRIORITIZATION USING MENDEL OPERATOR
BASED GENETIC ALGORITHM,” Journal of
Theoretical & Applied Information Technology, 96(9),
2018.

110. M. Boopathi, R. Sujatha, C. S. Kumar, S. Narasimman,
and A. Rajan, “Markov approach for quantifying the
software code coverage using genetic algorithm in
software testing.” International Journal of Bio-Inspired
Computation, 14(1), pp.27-45, 2019.

111. D.B.Mishra, N. Panda, R. Mishra, and A. A. Acharya,
“Total fault exposing potential based test case
prioritization using genetic algorithm.” International
Journal of Information Technology, 11(4), pp.633-637,
2019.

112. G. Bhattacharjee, and A. S. Saluja, “A Path-Oriented
Test Data Generation Approach Hybridizing
Genetic Algorithm and Artificial Immune System.”
In Computational Intelligence in Data Mining (pp.
649-658). Springer, Singapore, 2019.

113. L. Dubey, “Modified Genetic Algorithm for
Performing the Regression Testing.” Journal of
Artificial Intelligence Research & Advances, 6(2),
pp.69-75, 2019.

114. G. M. Habtemariam, and S. K. Mohapatra, “A Genetic
Algorithm-Based Approach for Test Case
Prioritization.” In International Conference on
Information and Communication Technology for
Development for Africa (pp. 24-37). Springer, Cham,
2019.

115. P. K. Bhatia, “Test Case Minimization in COTS
Methodology Using Genetic Algorithm: A Modified
Approach.” In Proceedings of ICETIT 2019 (pp.
219-228). Springer, Cham, 2020.

116. S. Fan, B. Ma, N. Yao, Y. Zhang, C. Xia, and D. Zhang,
“Generating Test Data for Path Coverage Based on
Genetic Algorithm.” In IOP Conference Series:
Materials Science and Engineering (Vol. 719, No. 1, p.
012070). IOP Publishing, 2020.

117. D. Karaboga, “An idea based on honey bee swarm for
numerical optimization” Technical report-tr06, Erciyes
University, Computer Engineering Department, Vol.
200, 2005.

118. H. Drias, S. Sadeg, and S. Yahi. “Cooperative bees
swarm for solving the maximum weighted
satisfiability problem.” In Computational Intelligence
and Bioinspired Systems, pages 318–325. Springer,
2005.
https://doi.org/10.1007/11494669_39

119. D. Karaboga and B. Basturk, “A powerful and efficient
algorithm for numerical function optimization:

Omdev Dahiya et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 414 - 434

428

artificial bee colony (ABC) algorithm,” Journal of
global optimization, 39(3):459–471, 2007.

120. P. Lucic and D. Teodorovic, “Bee system: modeling
combinatorial optimization transportation
engineering problems by swarm intelligence,” in
Preprints of the TRISTAN IV triennial symposium on
transportation analysis, pages 441–445, 2001.

121. D. Teodorovic and M. Dell’Orco. “Bee colony
optimization–a cooperative learning approach to
complex transportation problems,” In Advanced OR
and AI Methods in Transportation: pp. 51–60, 2005.

122. D. Jia, S. Qu, L. Li, “A multiswarm artificial bee
colony algorithm for dynamic optimization
problems,” in Proceeding of International Conference
on Information System and Artificial Intelligence, Hong
Kong, China, pp. 441–445, 2016.

123. G. Yu, “A new multi-population-based artificial bee
colony for numerical optimization,” Int. J. Comput.
Sci. Math. 7 (6), pp. 509–515, 2016.

124. S. Nseef, S. Abdullah, A. Turky, G. Kendall, “An
adaptive multi-population artificial bee colony
algorithm for dynamic optimisation problems,”
Knowl. Base Syst. 104, 14–23, 2016.

125. S. Biswas, S. Das, S. Debchoudhury, S. Kundu,
“Co-evolving bee colonies by forager migration: a
multi-swarm based artificial bee colony algorithm for
global search space,” Appl. Math. Comput. 232 (3),
216–234, 2014.

126. J. Li, Y. Zhao, J. Li, and X. J. Liu, “Artificial bee
colony optimizer with bee-to-bee communication and
multipopulation coevolution for multilevel threshold
image segmentation,” Math. Probl Eng., 272947, 2015.

127. D. Karaboga and B. Basturk, “On the performance of
artificial bee colony (ABC) algorithm,” Applied soft
computing, 8 (1), 687–697, 2008.

128. D. Karaboga, B. Gorkemli, C. Ozturk, & N. Karaboga,
“A comprehensive survey: Artificial bee colony
(ABC) algorithm and applications.” Artificial
Intelligence Review, 42 (1), pp. 21–57, 2014.

129. D. Karaboga, and C. Ozturk, “A novel clustering
approach: Artificial bee colony (ABC) algorithm.
Applied soft computing, 11 (1), pp. 652–657, 2011.

130. W. F. Gao, and S. Y. Liu, “A modified artificial bee
colony algorithm. Computers & Operations
Research”, 39 (3), pp. 687–697, 2012.

131. D. Karaboga and B. Akay, “A survey: Algorithms
simulating bee swarm intelligence,” Artificial
Intelligence Review, 31 (1-4), pp. 61–85, 2009.

132. P. Bansal, S. Sabharwal, N. Mittal, and S. Arora,
“ABC-CAG: covering array generator for pair-wise
testing using artificial bee colony algorithm.”
e-Informatica Software Engineering Journal, 10(1),
2016.

133. B. Liu, W.M. Li, and S. Pan, “A novel adaptive
cooperative artificial bee colony algorithm for solving
numerical function optimization.” In Theory,
Methodology, Tools, and Applications for Modeling and

Simulation of Complex Systems (pp. 25-36). Springer,
Singapore, 2016.

134. W. Ma, Z. Sun, J. Li, M. Song, and X. Lang, “An
improved artificial bee colony algorithm based on the
strategy of global reconnaissance,” Soft Computing,
20(12), pp.4825-4857, 2016.

135. Z.K. Aghdam, and B. Arasteh, “An efficient method to
generate test data for software structural testing
using artificial bee colony optimization algorithm,”
International Journal of Software Engineering and
Knowledge Engineering, 27(06), pp.951-966, 2017.

136. A.K. Alazzawi, A.A.B. Homaid, A.A. Alomoush, and
A.A. Alsewari, “Artificial bee colony algorithm for
pairwise test generation.” Journal of
Telecommunication, Electronic and Computer
Engineering (JTEC), 9(1-2), pp.103-108, 2017.

137. O. Roeva, “Application of artificial bee colony
algorithm for model parameter identification.”
Innovative Computing, Optimization, and Its
Applications (pp. 285-303). Springer, Cham, 2018.

138. J. K. Chhabra, “Many-objective artificial bee colony
algorithm for large-scale software module clustering
problem.” Soft Computing, 22(19), pp.6341-6361,
2018.
https://doi.org/10.1007/s00500-017-2687-3

139. Z. Yilmaz, and F. Basciftci, “Binary Artificial Bee
Colony Algorithm to Solve Single Objective Resource
Allocation Problem.” International Journal of Future
Computer and Communication, 7(1), 2018.

140. S. Sheoran, N. Mittal, and A. Gelbukh, “Artificial bee
colony algorithm in data flow testing for optimal test
suite generation.” International Journal of System
Assurance Engineering and Management, pp.1-10,
2019.

141. H. Peng, C. Deng, and Z. Wu, “Best neighbor-guided
artificial bee colony algorithm for continuous
optimization problems.” Soft Computing, 23(18),
pp.8723-8740, 2019.

142. K. Luo, “A hybrid binary artificial bee colony
algorithm for the satellite photograph scheduling
problem.” Engineering Optimization, pp.1-20, 2019.

143. N. A. Sidek, S. A. Bareduan, and A. Nawawi,
“Performance Investigation of Artificial Bee Colony
(ABC) Algorithm for Permutation Flowshop
Scheduling Problem (PFSP).” In Journal of Physics:
Conference Series (Vol. 1150, No. 1, p. 012060). IOP
Publishing, 2019.

144. R. Akay, and B. Akay, “Artificial Bee Colony
Algorithm and an Application to Software Defect
Prediction.” In Nature-Inspired Methods for
Metaheuristics Optimization (pp. 73-92). Springer,
Cham, 2020.

145. S. Mishra, B. K. Mishra, and H. K. Tripathy,
“Significance of Biologically Inspired Optimization
Techniques in Real-Time Applications.” In Robotic
Systems: Concepts, Methodologies, Tools, and
Applications (pp. 224-248). IGI Global, 2020.

Omdev Dahiya et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 414 - 434

429

146. A. K. Alazzawi, H. M. Rais, S. Basri, and Y. A.
Alsariera, “Pairwise Test Suite Generation Based on
Hybrid Artificial Bee Colony Algorithm.” In
Advances in Electronics Engineering (pp. 137-145).
Springer, Singapore, 2020.

147. Y. Shi and R. C. Eberhart, “Parameter selection in
particle swarm optimization.” In Evolutionary
programming VII (pp. 591–600). Berlin: Springer, 1998.

148. Y. Shi and R. C. Eberhart, “Empirical study of particle
swarm optimization,” in Proceedings of the 1999 IEEE
congress on evolutionary computation (pp. 1945–1950),
1999.

149. J. Kennedy, “The particle swarm: Social adaptation
of knowledge.” In Proceedings of the IEEE
international conference on evolutionary computation,
pp. 303–308, 1997.

150. S. Jiang, J. Shi, Y. Zhang, and H. Han, “Automatic test
data generation based on reduced adaptive particle
swarm optimization
algorithm.” Neurocomputing, 158, pp.109-116, 2015.

151. L. S. de Souza, P. B de Miranda, R. B. Prudencio, and F.
D. A. Barros, “A multi-objective particle swarm
optimization for test case selection based on
functional requirements coverage and execution
effort.” In 2011 IEEE 23rd International Conference on
Tools with Artificial Intelligence (pp. 245-252). IEEE,
2011.

152. Z. H. Zhan, J. Zhang, Y. Li & Y. H. Shi, “Orthogonal
learning particle swarm optimization.” IEEE
Transactions on Evolutionary Computation, 15 (6), pp.
832–847, 2011.

153. M. Couceiro, and P. Ghamisi, “Particle swarm
optimization,” In Fractional Order Darwinian Particle
Swarm Optimization (pp. 1–10). Springer International
Publishing, 2016.

154. A. H. Gandomi, G. J. Yun, X. S. Yang, & S. Talatahari,
“Chaos-enhanced accelerated particle swarm
optimization,” Communications in Nonlinear Science
and Numerical Simulation, 18 (2), 327–340, 2013.

155. W. C. Hong, “Chaotic particle swarm optimization
algorithm in a support vector regression electric load
forecasting model.” Energy Conversion and
Management, 50 (1), pp. 105–117,2009.

156. J. Kennedy, “Particle swarm optimization.” In
Encyclopaedia of machine learning (pp. 760–766). New
York: Springer US, 2011.

157. B. Liu, L. Wang, Y. H. Jin, F. Tang, & D. X. Huang,
“Improved particle swarm optimization combined
with chaos.” Chaos, Solitons & Fractals, 25 (5),
1261–1271, 2005.

158. Y. Shi and R. C. Eberhart, “Parameter selection in
particle swarm optimization.” In International
conference on evolutionary programming (pp. 591-600).
Springer, Berlin, Heidelberg, 1998.

159. B. Niu, Y. Zhu, X. He, “Multi-population cooperative
particle swarm optimization” in Proceeding of

European Conference on Artificial Life, Canterbury,
UK, pp. 874–883, 2005.

160. J. J. Liang and P. N. Suganthan, “Dynamic
multi-swarm particle swarm optimizer with local
search,” in: Proceeding of IEEE Congress on
Evolutionary Computation, Edinburgh, UK, pp.
522–528, 2005.

161. S. Zhao, P. N. Suganthan, and S. Das, “Dynamic
multi-swarm particle swarm optimizer with
sub-regional harmony search,” in Proceeding of 2010
IEEE World Congress on Computational Intelligence,
Barcelona, Spain, pp. 18–23, 2010.

162. J. J. Liang and P. N. Suganthan, “Dynamic
multi-swarm particle swarm optimizer,” in
Proceeding of IEEE Swarm Intelligence Symposium,
Pasadena, CA, pp. 124–129, 2005.

163. S. Yang and C. Li, “A clustering particle swarm
optimizer for locating and tracking multiple optima
in dynamic environments,” IEEE Trans. Evol. Comput.
14 (6), pp. 959–974, 2010.

164. X. Xu, Y. Tang, J. Li, C. Hua and X. Guan, “Dynamic
multi-swarm particle swarm optimizer with
cooperative learning strategy,” Appl. Soft Comput. 29,
pp. 169–183, 2015.

165. H. Chen, Y. Zhu and K. Hu, “Discrete and continuous
optimization based on multiswarm coevolution,” Nat.
Comput. 9 (3), pp. 659–682, 2010.

166. X. Zheng and H. Liu, “A different topology
multi-swarm PSO in dynamic environment,” in
Proceeding of IEEE International Symposium on IT in
Medicine & Education, Jinan, China, pp. 790–795,
2009.

167. R. Bolufe and S. Chen, “An analysis of sub-swarms in
multi-swarm systems,” in Proceeding of the 24th
Australasian Joint Conference on Artificial Intelligence,
Perth, Australia, pp. 271–278, 2011.

168. A. El Dor, M. Clerc, P. Siarry, “A multi-swarm PSO
using charged particles in a partitioned search space
for continuous optimization,” Comput. Optim. Appl.
53 (1), pp. 271–295, 2012.

169. J. Zhang and X. Ding, “A multi-swarm self-adaptive
and cooperative particle swarm optimization,” Eng.
Appl. Artif. Intell. 24 (6), pp. 958–967, 2011.

170. Y. Zhang, D. Gong, and Z. Ding, “Handling
multi-objective optimization problems with a
multi-swarm cooperative particle swarm optimizer,”
Expert Syst. Appl. 38 (11), pp. 13933–13941, 2011.

171. J. J. Liang, B. Qu, P. N. Suganthan, and B. Niu,
“Dynamic multi-swarm particle swarm optimization
for multi-objective optimization problems,” in:
Proceeding of IEEE Congress on Evolutionary
Computation (CEC), Brisbane, Australia, pp. 1–8, 2012.

172. S. Fan and J. Chang, “Dynamic multi-swarm particle
swarm optimizer using parallel PC cluster systems
for global optimization of large-scale multimodal
functions,” Eng. Optim. 42 (5), pp. 431–451, 2010.

Omdev Dahiya et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 414 - 434

430

173. Y. Marinakis, M. Marinaki, and A. Migdalas,
“Adaptive tunning of all parameters in a
multi-swarm particle swarm optimization algorithm:
An application to the probabilistic traveling
Salesman problem,” in Proceeding of Conference on
Optimization Control and Applications in the
Information Age, Macedonia, Greece, pp. 187–207,
2014.

174. J. J. Liang and P. N. Suganthan, “Dynamic
multi-swarm particle swarm optimizer with a novel
constraint-handling mechanism.” In: Proceeding of
IEEE Congress on Evolutionary Computation,
Vancouver, Canada, pp. 9–16, 2006.

175. Y. Wang and Z. Cai, “A hybrid multi-swarm particle
swarm optimization to solve constrained optimization
problems,” Front. Comput. Sci. China 3 (1), pp.38–52,
2009.

176. J. Xiao and Z. Cheng, “A multi-swarm particle swarm
optimization to solve DNA encoding in DNA
computation,” J. Comput. Theor. Nanosci. 210 (5), pp.
1129–1136, 2013.

177. B. Niu, Y. Zhu and X. He, “A multi-population
cooperative particle swarm optimizer for neural
network training,” in Proceeding of International
Symposium on Neural Networks, Chengdu, China, pp.
570–576, 2006.
https://doi.org/10.1007/11759966_85

178. N. Jatana, B. Suri, S. Misra, P. Kumar, and A.R.
Choudhury, “Particle swarm based evolution and
generation of test data using mutation testing.” In
International Conference on Computational Science
and its Applications (pp. 585-594). Springer, Cham,
2016.

179. Y. Sheng, C. Wei, and S. Jiang, “Constraint test cases
generation based on particle swarm optimization,”
International Journal of Reliability, Quality and Safety
Engineering, 24(05), p.1750021, 2017.

180. M. Hajihassani, D.J. Armaghani, and R. Kalatehjari,
“Applications of particle swarm optimization in
geotechnical engineering: a comprehensive review,”
Geotechnical and Geological Engineering, 36(2),
pp.705-722, 2018.

181. J. Sun, J. Chen, and G. Wang, “Multi-Objective Test
Case Prioritization based on Epistatic Particle
Swarm Optimization.” International Journal of
Performability Engineering, 14(10), 2018.

182. Z. Wang, and Q. Liu, “A software test case automatic
generation technology based on the modified particle
swarm optimization algorithm.” In 2018 International
Conference on Virtual Reality and Intelligent Systems
(ICVRIS) (pp. 156-159). IEEE, 2018.

183. S. Jianqi, H. Yanhong, L. Ang, and C. Fangda, “An
optimal solution for software testing case generation
based on particle swarm optimization.” Open Physics,
16(1), pp.355-363, 2018.

184. M. Khatibsyarbini, M. A. Isa, and D.N.A. Jawawi,
“Particle Swarm Optimization for Test Case

Prioritization Using String Distance.” Advanced
Science Letters, 24(10), pp.7221-7226, 2018.

185. H. M. Allawi, W. Al Manaseer, and M. Al Shraideh, “A
greedy particle swarm optimization (GPSO)
algorithm for testing real-world smart card
applications.” International Journal on Software Tools
for Technology Transfer, pp.1-12, 2018.

186. G. Nayak, and M. Ray, “Modified condition decision
coverage criteria for test suite prioritization using
particle swarm optimization.” International Journal of
Intelligent Computing and Cybernetics, 2019.

187. R. Malhotra, and M. Khanna, “Dynamic selection of
fitness function for software change prediction using
particle swarm optimization.” Information and
Software Technology, 112, pp.51-67, 2019.

188. R. Islam, M. N. Akhtar, B. R. Ahmad, U. K. Das, M.
Rahman, and Z.I.A. Khalib, “An approach to building
energy clusters using particle swarm optimization
algorithm for allocating the tasks in computational
grid.” Indonesian Journal of Electrical Engineering and
Computer Science, 14(2), pp.826-833, 2019.

189. S. Grossberg, “Nonlinear neural networks: Principles,
mechanisms, and architectures.” Neural networks, 1
(1), pp. 17–61, 1988.

190. A. K. Kar, “Using artificial neural networks and
analytic hierarchy process for the supplier selection
problem.” In 2013 IEEE international conference on
signal processing, computing, and control (pp. 1–6),
2013.

191. N. Sadegh, “A perceptron network for functional
identification and control of nonlinear systems,”
IEEE Transactions on Neural Networks, 4 (6), pp.
982–988, 1993.

192. A. K. Kar, “A hybrid group decision support system
for supplier selection using analytic hierarchy
process, fuzzy set theory and neural network,”
Journal of Computational Science, 6, pp. 23–33,2015.

193. K. Hornik, “Approximation capabilities of multilayer
feed-forward networks.” Neural networks, 4 (2), pp.
251–257, 1991.

194. D. F. Specht, “Probabilistic neural networks.” Neural
networks, 3 (1), pp. 109–118, 1990.

195. J. Schmidhuber, “Deep learning in neural networks:
An overview”. Neural Net- works, 61, 85–117, 2015.

196. E. Oja, “Principal components, minor components,
and linear neural networks,” Neural Networks, 5 (6),
pp. 927–935,1992.

197. Z. Chen, Y. Zhao, and Y. Zheng, “Neural network
electrical machine faults diagnosis based on
multi-population GA,” in Proceeding of International
Joint Conference on Neural Networks, Hong Kong,
China, Jun. 2008, pp. 3795–3801.

198. L. Fausett, “Fundamentals of neural networks:
Architectures, algorithms, and applications,” Upper
Saddle River, New Jersey: Prentice-Hall, Inc, 1994.

Omdev Dahiya et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 414 - 434

431

199. M.W. Craven, and J.W. Shavlik, “Using neural
networks for data mining.” Future generation
computer systems, 13(2-3), pp.211-229, 1997.

200. J. Lampinen and A. Vehtari, “Bayesian approach for
neural networks—review and case studies,” Neural
networks, 14(3), pp.257-274, 2001.

201. S. Mensah, J. Keung, K.E. Bennin, and M. F. Bosu,
“Multi-objective optimization for software testing
effort estimation.” SEKE, 2016.

202. W. Makondo, R. Nallanthighal, I. Mapanga, and P.
Kadebu, “Exploratory test oracle using multi-layer
perceptron neural network.” In 2016 International
Conference on Advances in Computing,
Communications, and Informatics (ICACCI) (pp.
1166-1171). IEEE, 2016.

203. Y. Pang, X. Xue, and H. Wang, “Predicting vulnerable
software components through deep neural network.”
In Proceedings of the 2017 International Conference on
Deep Learning Technologies (pp. 6-10), 2017.

204. V. Sathyavathy, “Evaluation of software testing
techniques using artificial neural network.” Int. J.
Electr. Comput. Sci, 6(3), pp.20617-20620, 2017.

205. Y. Sun, X. Huang, and D. Kroening, “Testing deep
neural networks,” arXiv preprint arXiv:1803.04792,
2018.

206. L. Ma, F. Zhang, M. Xue, B. Li, Y. Liu, J. Zhao, and Y.
Wang, “Combinatorial testing for deep learning
systems,” arXiv preprint arXiv:1806.07723, 2018.

207. T. Byun, V. Sharma, A. Vijayakumar, S. Rayadurgam,
and D. Cofer, “Input prioritization for testing neural
networks,” In 2019 IEEE International Conference On
Artificial Intelligence Testing (AITest) (pp. 63-70).
IEEE, 2019.
https://doi.org/10.1109/AITest.2019.000-6

208. Y.L. Karpov, L.E. Karpov, and Y.G.Smetanin,
“Adaptation of general concepts of software testing
to neural networks.” Programming and Computer
Software, 44(5), pp.324-334, 2018.

209. L. Joffe, and D. Clark, “Constructing Search Spaces
for Search-Based Software Testing Using Neural
Networks.” In International Symposium on Search
Based Software Engineering (pp. 27-41). Springer,
Cham, 2019.

210. S. Mannarswamy, S. Roy, and S. Chidambaram,
“Tutorial on Software Testing & Quality Assurance
for Machine Learning Applications from research
bench to real world.” In Proceedings of the 7th ACM
IKDD CoDS and 25th COMAD (pp. 373-374), 2020.

211. D. Ghosh, and J. Singh, “A Novel Approach of
Software Fault Prediction Using Deep Learning
Technique.” In Automated Software Engineering: A
Deep Learning-Based Approach (pp. 73-91). Springer,
Cham, 2020.

212. X.S. Yang. “A new metaheuristic bat-inspired
algorithm.” Nature Inspired Cooperative Strategies for
Optimization (NICSO 2010), pp. 65–74, 2010.

213. X. S. Yang, “Bat algorithm for multi-objective
optimization,” International Journal of Bio-Inspired
Computation, 3 (5), pp. 267–274, 2011.

214. G. Wang, B. Chang, and Z. Zhang, “A multi-swarm bat
algorithm for global optimization,” in Proceeding of
IEEE Congress on Evolutionary Computation, Sendai,
Japan, May 2015, pp. 480–485.

215. K. Heraguemi, N. Kamel, H. Drias, “Multi-population
cooperative bat algorithm for association rule
mining,” in Proceeding of Computational Collective
Intelligence, Madrid, Spain, pp. 265–274,2015.

216. S. Mirjalili, S. M, Mirjalili, and X. S. Yang, “Binary
bat algorithm.” Neural Computing and Applications,
25 (3-4), pp. 663–681, 2014.

217. N. S. Jaddi, S. Abdullah, A. R. Hamdan,
“Multi-population cooperative bat algorithm-based
optimization of artificial neural network model.”
Information Sciences, 294, 628–644, 2015.

218. A. H. Gandomi, X. S. Yang, A. H. Alavi, and S.
Talatahari, “Bat algorithm for constrained
optimization tasks.” Neural Computing and
Applications, 22 (6), pp. 1239–1255, 2013.

219. K. Heraguemi, N. Kamel, H. Drias, “Multi-swarm bat
algorithm for association rule mining using multiple
cooperative strategies,” Appl. Intell. 45 (4), pp.1–13,
2016.

220. A. H. Gandomi and X. S. Yang, “Chaotic bat
algorithm.” Journal of Computational Science, 5 (2),
224–232, 2014.

221. X. B. Meng, X. Z. Gao, Y. Liu and H. Zhang, “A novel
bat algorithm with habitat selection and Doppler
effect in echoes for optimization.” Expert Systems with
Applications, 42 (17), 6350–6364, 2015.

222. D. Rodrigues, L. A., Pereira, R. Y. Nakamura, K. A.
Costa, X. S. Yang, A. N. Souza and J. P. Papa, “A
wrapper approach for feature selection based on bat
algorithm and optimum-path forest.” Expert Systems
with Applications”, 41 (5), pp. 2250–2258, 2014.

223. X. S. Yang and X. He, “Bat algorithm: Literature
review and applications,” International Journal of
Bio-Inspired Computation, 5 (3), pp. 141–149,2013.

224. X. S. Yang and A. H. Gandomi, “Bat algorithm: A
novel approach for global engineering optimization,”
Engineering Computations, 29 (5), pp. 464–483, 2012.

225. Y. A. Alsariera, and K.Z. Zamli, “A real-world test
suite generation using the bat-inspired t-way
strategy.” In The 10th Asia Software Testing
Conference (SOFTEC2017) (Vol. 10, pp. 71-79), 2017.

226. T. Ashish, S. Kapil, and B. Manju, “Parallel bat
algorithm-based clustering using MapReduce.” In
Networking Communication and Data Knowledge
Engineering (pp. 73-82). Springer, Singapore, 2018.

227. A. Sharma, and N. Sehgal, “Enhanced test case
prioritization technique using bat algorithm,” 2018.

228. M. M. Öztürk, “A bat-inspired algorithm for
prioritizing test cases.” Vietnam Journal of Computer
Science, 5(1), pp.45-57, 2018.

Omdev Dahiya et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 414 - 434

432

229. Y.A. Alsariera, H.A.S Ahmed, H. S. Alamri, M.A.
Majid, and K.Z. Zamli, “A bat-inspired testing
strategy for generating constraints pairwise test
suite.” Advanced Science Letters, 24(10),
pp.7245-7250, 2018.

230. X. Huang, P. Li, and Y. Pu, “Amplitude angle
modulated bat algorithm with application to zero-one
knapsack problem.” IEEE Access, 7, pp.27957-27969,
2019.

231. X. S. Yang and S. Deb, “Cuckoo search via Lévy
flights,” In Nature & Biologically Inspired Computing,
20 09. NaBIC 20 09. World Congress on (pp. 210–214).
IEEE, 2009.

232. G. S. Walia and R. Kapoor, “Intelligent video target
tracking using an evolutionary particle filter based
upon improved cuckoo search.” Expert Systems with
Applications, 41 (14), pp. 6315–6326, 2014.

233. X. S. Yang and S. Deb, “Engineering optimisation by
cuckoo search.” International Journal of Mathematical
Modelling and Numerical Optimisation, 1 (4), pp.
330–343, 2010.

234. X. S. Yang, and S. Deb, “Multiobjective cuckoo search
for design optimization.” Computers & Operations
Research, 40 (6), pp. 1616–1624, 2013.
https://doi.org/10.1016/j.cor.2011.09.026

235. S. Araghi, A. Khosravi, and D. Creighton, “Intelligent
cuckoo search optimized traffic signal controllers for
multi-intersection network.” Expert Systems with
Applications, 42 (9), pp. 4422–4 431, 2015.

236. X. S. Yang, and S. Deb, “Cuckoo search: Recent
advances and applications.” Neural Computing and
Applications, 24 (1), pp. 169–174, 2014.

237. A. K. Bhandari, V. K. Singh, A. Kumar, and G. K.
Singh, “Cuckoo search algorithm and wind driven
optimization-based study of satellite image
segmentation for multilevel thresholding using
Kapur’s entropy.” Expert Systems with Applications,
41 (7), pp. 3538–3560,2014.

238. A. H. Gandomi, X. S. Yang, and A. H. Alavi, “Cuckoo
search algorithm: A metaheuristic approach to solve
structural optimization problems,” Engineering with
computers, 29 (1), 17–35, 2013.

239. A. Gotmare, R. Patidar, and N. V. George, “Nonlinear
system identification using a cuckoo search optimized
adaptive Hammerstein model,” Expert Systems with
Applications, 42 (5), pp. 2538–2546, 2015.

240. M. Kumar and T. K. Rawat, “Optimal design of FIR
fractional order differentiator using cuckoo search
algorithm.” Expert Systems with Applications, 42 (7),
pp. 3433–3449, 2015.

241. X. S. Yang and S. Deb, “Cuckoo search: Recent
advances and applications,” Neural Computing and
Applications, 24 (1), pp. 169–174, 2014.

242. P. R. Srivastava, D. V. P. kumarreddy, M.
Srikanthreddy, Ch. V.B. RamarajuIch. Manikanthnath,
“Test case prioritization using cuckoo search,”
Advanced automated software testing, 2012.

243. M. Khari, and P. Kumar, “A novel approach for
software test data generation using cuckoo
algorithm.” In Proceedings of the second international
conference on information and communication
technology for competitive strategies (pp. 1-6), 2016.

244. S. Dhabal, S.Tagore, and D. Mukherjee, “An improved
Cuckoo Search Algorithm for numerical
optimization.” In 2016 International Conference on
Computer, Electrical & Communication Engineering
(ICCECE) (pp. 1-7). IEEE, 2016.

245. M. Khari, and P. Kumar, “An effective meta-heuristic
cuckoo search algorithm for test suite optimization.”
Informatica, 41(3), 2017.

246. H. Haixian, and F. Jing, “Research on Multi-objective
Test Case Generation Based on Cuckoo Search.” In
2018 IEEE 3rd Advanced Information Technology,
Electronic and Automation Control Conference
(IAEAC) (pp. 1619-1623). IEEE, 2018.

247. M. Shehab, A.T. Khader, and M. Laouchedi, “A hybrid
method based on cuckoo search algorithm for global
optimization problems.” Journal of ICT, 17(3),
pp.469-491, 2018.

248. S. Sharma, S.A.M. Rizvi, and V. Sharma, “A
Framework for Optimization of Software Test Cases
Generation using Cuckoo Search Algorithm.” In 2019
9th International Conference on Cloud Computing,
Data Science & Engineering (Confluence) (pp.
282-286). IEEE, 2019.

249. P. Dhareula, and A. Ganpati, “Cuckoo Search
Algorithm for Test Case Prioritization in Regression
Testing,” International Journal of Recent Technology
and Engineering (IJRTE), Volume-8 Issue-3, September
2019.

250. S. Benkhaira, and A. Layeb, “Face Recognition Using
RLDA Method Based on Mutated Cuckoo Search
Algorithm to Extract Optimal Features.”
International Journal of Applied Metaheuristic
Computing (IJAMC), 11(2), pp.118-133, 2020.

251. X. S. Yang, “Firefly algorithms for multimodal
optimization,” In Stochastic algorithms: Foundations
and applications (pp. 169–178). Berlin Heidelberg:
Springer, 2009.

252. X. S. Yang. “Firefly algorithm, stochastic test
functions, and design optimization,” International
Journal of Bio-Inspired Computation, 2(2): pp.78–84,
2010.

253. P. R. Srivastava, B. Mallikarjun, and X. S. Yang,
“Optimal Test Sequence Generation using firefly
algorithm,” Swarm and Evolutionary Computation,”
Elsevier, 8, 44, 2013.

254. X. S. Yang and S. Deb. “Eagle strategy using levy
walk and firefly algorithms for stochastic
optimization.” In Nature Inspired Cooperative
Strategies for Optimization (NICSO2010), pp. 101–111,
Springer, 2010.

255. M. Xu and G. Liu, “A multipopulation firefly
algorithm for correlated data routing in underwater

Omdev Dahiya et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 414 - 434

433

wireless sensor networks,” Int. J. Distrib. Sens. Netw.,
pp. 245–253, 2013.

256. A. H. Gandomi, X. S. Yang, S. Talatahari, A. H. Alavi,
“Firefly algorithm with chaos.” Communications in
Nonlinear Science and Numerical Simulation”, 18 (1),
89–98, 2013.

257. F. Ozsoydan and A. Baykasoglu, “A multi-population
firefly algorithm for dynamic optimization
problems,” in Proceeding of International Conference
on Evolving and Adaptive Intelligent Systems (EAIS),
Douai, France, pp.1–7, 2015.

258. A. Kavousi-Fard, H. Samet, and F. Marzbani, “A new
hybrid modified firefly algorithm and support vector
regression model for accurate short-term load
forecasting.” Expert systems with applications, 41 (13),
pp. 6047–6056, 2014.

259. A. H. Gandomi, X. S. Yang, and A. H. Alavi, “Mixed
variable structural optimization using firefly
algorithm,” Computers & Structures, 89 (23), pp.
2325–2336, 2011.

260. N. C. Long, P. Meesad and H. Unger, “A highly
accurate firefly based algorithm for heart disease
prediction,” Expert Systems with Applications, 42 (21),
pp. 8221–8231, 2015.

261. S. Lukasik and S. Zak, “Firefly algorithm for
continuous constrained optimization tasks,” In
Computational collective intelligence. Semantic web,
social networks, and multiagent systems (pp. 97–106).
Berlin: Springer, 2009.

262. A. Rahmani and S. A. MirHassani, “A hybrid
Firefly-Genetic Algorithm for the capacitated facility
location problem,” Information Sciences, 283, pp.
70–78, 2014.

263. X. S. Yang and X. He, “Firefly algorithm: Recent
advances and applications,” International Journal of
Swarm Intelligence, 1 (1), pp. 36–50, 2013.

264. A. Mishra, C. Agarwal, A. Sharma, and P. Bedi,
“Optimized gray-scale image watermarking using
DWT–SVD and Firefly Algorithm,” Expert Systems
with Applications, 41 (17), pp. 7858–7867, 2014.

265. O. P. Verma, D. Aggarwal, and T. Patodi, “Opposition
and dimensional based modified firefly algorithm,”
Expert Systems with Applications, 44, pp. 168–176,
2016.

266. X. S. Yang, S. S. S. Hosseini, and A. H. Gandomi,
“Firefly algorithm for solving non-convex economic
dispatch problems with valve loading effect,” Applied
Soft Computing, 12 (3), pp. 1180–1186, 2012.

267. X. S. Yang, “Flower pollination algorithm for global
optimization.” In Unconventional computation and
natural computation (pp. 240–249). Berlin Heidelberg:
Springer, 2012.

268. M. Khatibsyarbini, M.A. Isa, D. N. Jawawi, H.N.A.
Hamed, and M.D.M. Suffian, “Test Case Prioritization
Using Firefly Algorithm for Software Testing.” IEEE
Access, 7, pp.132360-132373, 2019.

269. I. Arora, and A. Saha, “Software fault prediction using
firefly algorithm.” International Journal of Intelligent
Engineering Informatics, 6(3-4), pp.356-377, 2018.

270. N.L. Hashim, and S.Y. Dawood, “Test case
minimization applying firefly algorithm.” Int J Adv
Sci Eng Inf Technol, 8(4), pp.1777-1783, 2018.

271. N. Rathee, R.S. Chillar, S. Vij, and S. Kukreja,
“Automatic Optimization of Test Path Using Firefly
Algorithm.” In Harmony Search and Nature Inspired
Optimization Algorithms (pp. 717-729). Springer,
Singapore, 2019.

272. A. Pandey, and S. Banerjee, “Test Suite Optimization
Using Firefly and Genetic Algorithm.” International
Journal of Software Science and Computational
Intelligence (IJSSCI), 11(1), pp.31-46, 2019.

273. X. S. Yang, M. Karamanoglu, and X. He,
“Multiobjective flower algorithm for optimization.”
Procedia Computer Science, 18, pp. 861–868, 2013.

274. G. Bekdas, S. M. Nigdeli, and X. S. Yang, “Sizing
optimization of truss structures using flower
pollination algorithm.” Applied Soft Computing, 37,
pp. 322–331, 2015.

275. X. S. Yang, M. Karamanoglu, and X. He, “Flower
pollination algorithm: A novel approach for
multi-objective optimization.” Engineering
Optimization, 46 (9), pp.1222–1237, 2014.

276. S. M. Nigdeli, G. Bekda, and X. S. Yang, “Application
of the flower pollination algorithm in structural
engineering.” In Metaheuristics and optimization in
civil engineering (pp. 25–42). Berlin: Springer, 2016.

277. M.N. Kabir, J. Ali, A.A. Alsewari, and K.Z. Zamli, “An
adaptive flower pollination algorithm for software
test suite minimization.” In 2017 3rd International
Conference on Electrical Information and
Communication Technology (EICT) (pp. 1-5). IEEE,
2017.
https://doi.org/10.1109/EICT.2017.8275215

278. A.B. Nasser, K.Z. Zamli, and B.S. Ahmed, “Dynamic
Solution Probability Acceptance Within the Flower
Pollination Algorithm for Combinatorial.” Intelligent
and Interactive Computing: Proceedings of IIC 2018,
67, p.3, 2019.

279. A.B. Nasser, K.Z. Zamli, A.A. Alsewari, and B.S.
Ahmed, “Hybrid flower pollination algorithm
strategies for t-way test suite generation.” PloS one,
13(5), 2018.

280. M. Abdel-Basset, and L.A. Shawky, “Flower
pollination algorithm: a comprehensive review.”
Artificial Intelligence Review, 52(4), pp.2533-2557,
2019.

281. A.B. Nasser, and K.Z. Zamli, “Self-adaptive
population size strategy based on flower pollination
algorithm for T-way test suite generation.” In
International Conference of Reliable Information and
Communication Technology (pp. 240-248). Springer,
Cham, 2018.

Omdev Dahiya et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 414 - 434

434

282. P. Dhareula, and A. Ganpati, “Software Test Case
Prioritization Using Genetically Modified Flower
Pollination Algorithm (Gm-Fpa).” International
journal of scientific and technology research, vol. 8,
issue 12, pp 298-306, 2019.

283. P. Dhareula, and A. Ganpati, “Flower Pollination
Algorithm for Test Case Prioritization in Regression
Testing.” In the 4th International Conference on
Information and Communication Technology for
Sustainable Development (ICT4SD 2019) on July 5th
-6th, Springer, Goa, India, 2019.

284. A. Mucherino, and O. Seref, “Monkey search: a novel
metaheuristic search for global optimization.” In AIP
conference proceedings (Vol. 953, No. 1, pp. 162-173).
American Institute of Physics, 2007.

285. W. T. Pan, “A new fruit fly optimization algorithm:
taking the financial distress model as an
example.” Knowledge-Based Systems, 26, pp.69-74,
2012.

286. M. D. Li, H. Zhao, X. W. Weng, and T. Han, “A novel
nature-inspired algorithm for optimization: virus
colony search,” Adv. Eng. Software 92 pp. 65–88,
2016.

287. W. Yong, W. Tao, Z. Cheng-Zhi, H. Hua-Juan, “A new
stochastic optimization approach dolphin swarm
optimization algorithm,” Int. J. Comput. Intell. Appl.
15 (02), 2016.

288. M. Jain, V. Singh, and A. Rani, A., “A novel
nature-inspired algorithm for optimization: Squirrel
search algorithm,” Swarm and evolutionary
computation, 44, pp.148-175 2019.

289. X. Qi, Y. Zhu, and H. Zhang, “A new meta-heuristic
butterfly-inspired algorithm,” Journal of
computational science, 23, pp.226-239, 2017.

290. A. H. Gandomi, and A. H. Alavi, “Krill herd: a new
bio-inspired optimization algorithm,” Commun.
Nonlinear Sci. Numer. Simulat. 17 (12) pp. 4831–

4845, 2012.
291. K. M. Passino, “Biomimicry of bacterial foraging for

distributed optimization and control.” IEEE control
systems magazine, 22(3), pp.52-67, 2002.

292. R. Tang, S. Fong, X. S. Yang, and S. Deb, “Wolf search
algorithm with ephemeral memory,” In Seventh
International Conference on Digital Information
Management (ICDIM 2012) (pp. 165-172). IEEE, 2012.

293. X. Zhang, B. Sun, T. Mei, and R. Wang, “Post-disaster
restoration based on fuzzy preference relation and
bean optimization algorithm,” In IEEE youth
conference on information computing and
telecommunications (pp. 271–274), 2010.

294. X. Zhang, S. Huang, Y. Hu, Y. Zhang, S. Mahadevan,
and Y. Deng, “Solving 0–1 knapsack problems based
on amoeboid organism algorithm”, Applied
Mathematics and Computation, 219, 9959–9970, 2013.

295. M. Hersovici, M. Jacovi, Y. S. Maarek, D. Pelleg, M.
Shtalhaim, and S. Ur, “The sharksearch algorithm.

An application: Tailored web site mapping,”
Computer Networks and ISDN Systems, 30, pp. 317–326,
1998.

296. M. Yazdani and F. Jolai, “Lion optimization algorithm
(LOA): A nature-inspired metaheuristic algorithm.”
Journal of Computational Design and Engineering, 3
(1), 24–36, 2015.

297. M.C. Su, S.Y. Su, and Y. X. Zhao, “A swarm-inspired
projection algorithm.” Pattern Recognition, 42(11),
pp. 2764-2786, 2009.
https://doi.org/10.1016/j.patcog.2009.03.020

298. O. Dahiya and K. Solanki, S. Dalal, A. Dhankhar,
“Regression Testing: Analysis of its Techniques for
Test Effectiveness,” International Journal of advanced
trends in computer science and engineering, Vol. 9, No.
1, 2020. [Accepted] [In Press].

