
Christian Schindler et al., International Journal of Emerging Trends in Engineering Research, 9(7), July 2021, 1008 – 1019

1008

ABSTRACT

In this paper, speed and reliability improvements of the
deployment of Catrobat’s Pocket Code are described. Pocket
Code is open source and has over 500 contributors and about
28,000 active installs. It is a multilingual application, also
supporting right-to-left languages such as Arabic, Farsi, and
Sindhi. A major challenge to continuous deployment is the
mandatory manual acceptance testing done by product
owners. A second major challenge is the maintenance of an
up-to-date app description in multiple languages: For Google
Play, the app-description including screenshots must be
translated to all supported languages. This leads to a huge
number of repetitive tasks. These tasks, when carried out by
humans are not only prone to errors but also the time
needed, and the quality of the outcome differs between their
executions. For instance, if screenshots for the descriptions
are created manually, deployment is further deferred.
Therefore, automatic screenshot creation for all languages is
highly desirable. This paper describes our solution for
continuous deployment facing these challenges using
Fastlane (app-release tool), and Jenkins (continuous
integration server), and the staged deployment approach of
Google. The latter supports postponing deployment steps
that are not easily automatable to later phases. Overall, the
approach was successfully implemented for Pocket Code. It
was also tested with another Catrobat app, Pocket Paint. This
shows, the approach can be transferred to fit the deployment
process of other multilingual apps.

Key words: Continuous deployment; Internationalization
(I18n); Mobile application; Pocket Code

1. INTRODUCTION & BACKGROUND

1.1. Catrobat Project

The Catrobat1project was initiated in 2010 by Prof. Slany at
the Institute of Software Technology at Graz University of
Technology. The name Catrobat is used for a set of
creativity tools for various platforms and mobile devices as
well as a visual programming language inspired by the well-
known Scratch2framework which was developed at the MIT
Media Lab. It is hosted on GitHub; it is free and independent
and uses an open source license. More than 500 volunteers

1 https://catrobat.org
2 https://scratch.mit.edu/

from over 20 countries contribute to this project. Agile
methods such as Extreme Programming and their underlying
principles are used for development and management of the
project [1]. The focus of the Catrobat project is the
development and improvement of Pocket Code for Android
[2] and iOS.

1.2. Pocket Code

Pocket Code is the integrated development environment
(IDE) for the brick based visual programming language
Catrobat. Within Pocket Code, programs can be created,
executed, uploaded to, and downloaded from its web sharing
platform3. It is publicly available for the Android platform
and in beta testing phase for the iOS platform. Pocket Code
is thoroughly internationalized (I18n) and localized (L10n)
and can also be deployed in various flavors with custom
features, e.g., Phiro 4 or Create@School 5 . At the time of
writing, the Google developer console statistics show that
Pocket Code (for Android) has been downloaded over 500k+
times in more than 140 countries.

1.3. Continuous practices

In the software industry, continuous practices based on agile
methods are emerging to mitigate the gap between
development and deployment [3, 4]. Through the
implementation of continuous practices feedback loops
between developers and customers can be shortened which
improves the quality of the delivered product. Frequent
releases lead to a perceived increase in developer
confidence, improved customer satisfaction and bonding as
well as an increase of productivity [3,5].

1.4. Continuous integration

The term continuous integration (CI) was introduced by
Martin Fowler along with the twelve practices of the
development process called Extreme Programming (XP). CI
advocates frequent integration of new code to a centralized
repository [6–8]. One goal of continuous integration is to
create and maintain a codebase which, potentially, could be
rolled out at any given moment. Core capabilities of the
integration environment that enable such continuous

3 https://share.catrob.at/pocketcode/
4 http://www.robotixedu.com
5 https://edu.catrob.at/no1leftbehind-for-teachers

Towards continuous deployment of a multilingual mobile app

Christian Schindler 1, Kirshan Kumar Luhana 2, Wolfgang Slany3
1,2,3Graz University of Technology Graz, Austria

Corresponding authors E-mail:cschindler@ist.tugraz.at
kirshan.luhana@student.tugraz.at

 ISSN 2347 - 3983
Volume 9. No. 7, July 2021

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter28972021.pdf

https://doi.org/10.30534/ijeter/2021/28972021

Christian Schindler et al., International Journal of Emerging Trends in Engineering Research, 9(7), July 2021, 1008 – 1019

1009

integration are automatic building and testing with different
granularity levels [3]. This supports teams to improve
integration and quickly find bugs while reducing the risk of
a last minute release cancellation [6]. Therefore, every new
code which is to be integrated into the code base is issued
via a pull request (PR) and must be automatically built and
tested to ensure system stability. Many tools are available,
e.g., Bamboo CI6, Codeship7, TeamCity8, and Travis CI9, to
name a few, which all support automatic building, testing,
and packaging of new versions of the software with or
without human intervention [9].

1.5. Continuous delivery

Continuous delivery (CDe) is an important practice for agile
software development. In [10] the author found out that from
an organization’s point of view continuous delivery is rated
the second most important agile software development
practice. The combined practices of continuous integration,
automated testing and quality checking which enable teams
to continuously keep their software ’ready to release’ defines
CDe [3, 11,12,13].

1.6. Continuous deployment

Continuous deployment means to install every change in the
software directly, so it is used in production. Similar to CDe,
where the final deployment step is manual, in CD, this step
as well is fully automatic [3]. The main advantage of CD is
shortening the time to market for any changes which leads to
improved productivity [12, 14]. There are several application
domains where CD is challenging [5]. For example, in the
telecommunication domain deploying applications to the
network requires configuration for their different clients. In
the medical sector standard checks and certifications are
required before a new system can be implemented. At
factory sites automation control systems must be shut down
for deployment which cannot be done frequently due to
financial loss. Also, certain app stores, such as Apple’s App
Store, have quality assurance measures which prevent CD.

1.7. Deployment pipeline

A staged release process (the way to progress through the
release process in stages), is called a deployment pipeline
[12, 15]. Downloading the latest code from the repository
and building the binaries for further use is usually the first
stage of a deployment pipeline [15]. The term pipeline does
not necessarily imply automatic. Depending on the business
needs, the used tools or any other technical limitation of
each stage of the pipeline can be either manual or automatic.
Sometimes human intervention or authorization is required,
which poses a delay in the pipeline. Deploying the software
to the production environment is usually the last stage of the

6 https://www.atlassian.com/software/bamboo
7 https://codeship.com/
8 http://www.jetbrains.com/teamcity
9 https://travis-ci.com

pipeline. A manual deployment pipeline poses the following
challenges:

• People with tacit deployment knowledge. Consider the
possibility that the person who usually deploys is on
vacation or gets ill - who will take over?

• Deployment documentation of a manual deployment
process is in most cases outdated. Chances of errors
during deployment escalate, especially when the
responsible person changes.

• Usually manual deployment needs a long time;
therefore, minor bug fixes do not trigger a new
deployment. A severe bug, which is discovered late
during the deployment process, renders the current
deployment obsolete, i.e., a lot of expensive (manual)
work is wasted.

Repetitive and boring tasks increase the chance of errors
during manual deployment. In automatic deployment, this is
not an issue, and therefore, automation of deployment
reduces the risks of such errors. Secondly, release time is
significantly reduced and the reliability (stay timeboxed) is
increased with automation. Having an automated
deployment pipeline any authorized person can trigger the
deployment without detailed or technical knowledge of the
deployment steps. The automated deployment approach does
not need extra documentation since all steps are implicitly
documented by the executable deployment script.

1.8. Release strategy

Any new version of an app due to a bug fix, a new feature, a
feature change or a feature upgrade is potentially a new
release. Nayebi et al. [16] state that the release strategy of an
app has a direct impact on the success of a mobile app. The
release strategies of free open source software (FOSS)
projects usually can be categorized either as time or feature
based [17]. No matter which strategy is chosen (time or
feature based), in FOSS projects a tendency can be observed
that frequent releases are increasingly favored [18]. Frequent
releases mean that the scope of new features and hence the
amount of new code is limited which in turn reduces the risk
of errors for the release [19]. Three main motivations for a
frequent release approach adoption were identified by [18],
a.) the increase of project attractiveness, b.) improvement of
maintenance, and c.) the increase of market share. Project
attractiveness and market share are also apparently
influenced by the level of internationalization and proper
localization of the app. According to a study by Google and
AdMob, the number of users who have stopped using an
app, because it was not localized properly, varies between
34% and 48% [20]. The difference in percentage depends on
the origin of the data(USA; China; Japan; UK and South
Korea). Both, a frequent release approach, and the amount of
work to release a multilingual app properly, imply the
necessity of an automated deployment pipeline. Due to the
frequent developments in hardware, services and platforms
the consumer IT market rapidly grows [21]. Consumers can

Christian Schindler et al., International Journal of Emerging Trends in Engineering Research, 9(7), July 2021, 1008 – 1019

1010

pick an app from a vast library of apps with similar
functionality according their business needs and personal
preferences. Therefore, software vending companies must
pay attention to what customers want and react and adapt
properly to match the changes in the IT market [21]. Being
faster than competitors in terms of feature development
according to customers’ wishes and faster quality releases of
the software is an important success factor [22].

1.9. Localization and internationalization

Localization (L10n) means to adapt a product or its content
to meet language and cultural requirements of a specific
market [23]. Whereas internationalization (I18n) is the
creation of the prerequisites for that a product can be easily
localized [23]. Both are considered as important factors to
attract users and increase market share globally [24]. When
apps are properly translated and users’ cultural values are
reflected they feel more comfortable and productive. Pocket
Code follows design principles for I18n and L10n [25].
Support for different languages including right to left
languages (Arabic, Urdu, or Farsi etc.) is implemented on
application level which means switching between languages
can be done in the app hence there is no need to change
system settings. Furthermore, with this approach it is
possible to support even languages which are not supported
by the system. Localizing an app needs translation by
professionals or volunteer native speakers. Any user can
contribute to the translation of a project by using one of the
many user friendly desktop and online applications for
managing multilingual projects. With such tools users are
enabled to edit translations online or to export the project’s
translated string resources in various formats. Since Pocket
Code is a free and open source project it can make use of the
Crowdin 10 localization management platform free of
charge 11 . It facilitates all stakeholders to translate an
application’s string resources easily and in a reasonable
amount of time. Crowdin maintains a RESTful API over
HTTP. With GET and POST commands files can be up- or
downloaded. Also, web-hooks are supported for integration
with source code management platforms such as GitHub12.
For the Catrobat project in Crowdin more than 500
volunteers are registered and help to translate Pocket Code
into various languages. More than 57 languages have been
translated (some only partially due to the voluntariness of
the project) which can be selected and used in Pocket Code.
On Google Play 13 in contrast the applications details
(description including screenshots) are available only for 26
languages.

10 https://crowdin.com
11 https://crowdin.com/pricing
12 https://support.crowdin.com/github-integration
13 https://tinyurl.com/gplay-langsupport

1.10. Integration & deployment tools in Catrobat

The Catrobat project uses the Jenkins-CI server to
continuously integrate the code for the Android application.
For continuous deployment the tool Fastlane is used.

1.10.1. Jenkins

Jenkins 14 is a tool for build automation which facilitates
building and testing. Using Jenkins, integration can be
triggered manually, or by external events, e.g., GitHub pull
requests, or can be configured to run the build on a regular
basis. Jenkins is free and open source and is designed around
a simple extension mechanism, so anyone can write plugins
to customize its behavior. By using different plugins the
functionality of Jenkins can be changed and adapted to the
project’s needs, e.g., from being a mere continuous
integration, a continuous delivery, or a full blown
continuous deployment tool. Furthermore, there are many
convenience plugins to facilitate reporting of build and test-
results.

1.10.2. Fastlane

Fastlane15is a tool to automate a deployment pipeline16. It is
free and open source and can be used for Android and iOS
apps. When releasing a multilingual app to an app store,
such as Google Play, the description including screenshots
must be translated to properly reflect the app’s
multilingualism. When screenshots are created manually,
usually different people are required who are capable of
understanding and operating the device in the various
supported languages. This is monotonous and error prone.
Fastlane helps to automate these tasks. Also signing the app
and uploading it to an app store can be done automatically
with Fastlane. Fastlane was chosen since the provided
functionality fit the project’s needs and there were no proper
and free alternatives found. Another reason Fastlane was
chosen is the large and active community which drives the
development of the Fastlane feature set, provides excellent
documentation and support in differentcommunity forums
such as Stackoverflow17and on their GitHub project page18.

1.11. General Pocket Code deployment challenges

Developing tools to support critical tasks and interactions are
increasingly being focused by human factor researchers [26].
To increase reliability, availability and performance, these
tasks must be automated as far as possible which in turn also
improves performance, and productivity, hence automation
saves time and money. In Catrobat’s Pocket Code
deployment process the main challenges are:

14 https://jenkins.io
15 https://fastlane.tools
16 https://docs.fastlane.tools
17 https://stackoverflow.com/questions/tagged/fastlane
18 https://github.com/fastlane/

Christian Schindler et al., International Journal of Emerging Trends in Engineering Research, 9(7), July 2021, 1008 – 1019

1011

• Pocket Code’s many supported languages must be
reflected by the description including screenshots which
is shown in the app store.

• The product owners have to accept the app’s changes
before release and therefore, the acceptance tests are
currently done during the deployment preparation
which delays the actual deployment.

• Currently, the release responsible person has to fulfill
many manual steps to set up the environment to build,
sign, and align the Android application package (APK)
as well as manually test the release candidate for the
actual app store upload.

Many people of the Catrobat team work together to achieve
the goal of a releasable deployable artifact and all involved
individuals depend on each other, if one works slow the
whole deployment process is deferred. One of the
responsible development team members creates the release
branch, after that a senior member with access to the
credentials for the keys signs, aligns and uploads the APK to
our internal cloud for acceptance testing by the product
owners who test for the final go/no-go decision. On final
approval, an authorized member uploads the APK to Google
Play. Usually the app’s metadata (i.e., description and
screenshots) for all languages is not updated frequently since
this is, when done manually, a tedious and monotonous
process. Therefore, the application and its description
including the screenshots diverge with the time, which
potentially irritate customers when they don’t get what they
see. In the following sections, we describe how the current
deployment is transformed to a continuous process with
almost no human interaction.

1.12. Fastlane and Crowdin challenges

To combine the Fastlane and Crowdin tools the file-structure
and directory naming pattern has to be adapted. Fastlane’s
Screengrab tool is capable of capturing screenshots by
changing the system locals settings. It then retrieves the
screenshots from the emulator or the device for further use
in the metadata compilation process. Screengrab names its
folders with the following naming convention
languageCode-CountryCode, e.g., en-US, en-UK, de-DE,
ur-PK (see the source code of Screengrab19). Crowdin on the
other hand uses a different naming convention for its export
feature. It exports the project’s languages compressed as a
zip file having a separate folder for every language. All
folders contain an XML file named google play.xml. This
XML-file has four properties the title, the description, the
promotion text (i.e., the short description), and the app
updates (what’s new section which is not yet maintained
with Pocket Code). At the time of writing, Pocket Code
offers app localization (L10n) and internationalization (I18n)
for 57 languages. This includes languages which are not
supported by the Android system, for example Sindhi, and
Pashto. Pocket Code, furthermore, supports different dialects

19 https://tinyurl.com/fastlane-screengrab-src

such as French-African and French-French. These dialects
are also not supported by Google Play. Crowdin cannot
know and is not aware of which languages in general and
which dialects in particular are supported by Google Play. In
its language export all available translations are included
even those which are not used and therefore cannot be
uploaded to Google Play but which are used in the Pocket
Code app. At the time of writing, Google Console supports
app listings in 78 languages20. Unfortunately, this is not done
in a consistent and uniform way. Some languages are named
using only the languagecode and others with languagecode-
CountryCode, e.g., ar for all Arabic languages, hr for
Croatian, ca for Catalan but cs-CZ for Czech, en-US for
English United States, en-UK for English United Kingdom.
This behavior seems to be unspecified or random. In any
case it must be taken care of, which means that the
directories created by Fastlane must be made compatible
with Google Play for that the app descriptions and
screenshots are accepted for each language.

2. CATROBAT STATUS PRIOR TO AUTOMATION

2.1. Code Quality and Releases

In the Catrobat project about a third of the volunteers are
students who participate less than 6 months. Student
volunteers enter the project with heterogeneous knowledge
skills related to object oriented programming (OOP), agile
development methods and XP-practices. From our
experience, development of any new feature needs
approximately six months due to getting acquainted with the
project and the development. In average students need about
three months to become productive. This frequently leads to
features which are finished, if at all, at the end of the
volunteers’ participation. These features are either rushed to
release, handed over to succeeding student volunteers for
further development or finalization, or in the worst case are
abandoned. All three options are less than perfect, however
features which are released too early show the lack of clearly
defined acceptance criteria this must be addressed by the
product owners. An established frequent release plan
distributed over the year can help in this regard. In Figure 1
the commits per week over the last two years are depicted
whereas the releases are marked with diamonds. Catrobat
project’s release strategy is arbitrary. When having a look at
the releases documented on GitHub21one can see that there
are features, e.g., ’NFC’, ’Backpack’, ’2D physics’ or
’landscape mode’ which appear in more than one release. In
case of ’NFC’ it was introduced in version 0.9.22 in June
2016 and last time improved with version 0.9.29 in
September 2017. The ’Backpack’ feature was introduced in
version 0.9.21 in February 2016 and usability improved with
version 0.9.28 in March 2017. Both examples appear in four
releases over a span of a year, which indicate quality issues.

20

https://support.google.com/googleplay/androiddeveloper/answer/113469
21 https://github.com/Catrobat/Catroid/releases

Christian Schindler et al., International Journal of Emerging Trends in Engineering Research, 9(7), July 2021, 1008 – 1019

1012

Evidence for quality issues are pull requests (PR) like
#268922or #268223where with the latter over 44k lines were
removed. This shows that there is a lot of useless code in the
code base. Such quality issues in the Catrobat project can be
approached from various sides, e.g., decreasing time to
production by improving the deployment process. The
Catrobat project relies on participation of its volunteers and
frequentreleases raise motivation and status of its volunteers.
Working on a project with an arbitrary release strategy
potentially discourages volunteers when their contributions
are not released until they leave the project. Knowing that
through development work market share is gained also
increases motivation. Furthermore, [18] states that the main
advantages of frequent releases are along quick feedback and
bugfixes, increased efficiency, new collaborators and an
increased quality focus on behalf of development.It is
worthwhile to investigate the effect of frequent, regular,
releases on the Catrobat project, the motivation of the
volunteers as well as the code quality. In [27] we lay the
base for a frequent release strategy in the Catrobat project
and further elaborate the shift from arbitrary towards
continuous deployment in this paper.

Figure 1: Commits per week to the main Catrobat
repository (Catroid) in 2016 and 2017. Public full-stage
releases are marked with diamonds

2.2. Deployment process status quo

An app release must be planned carefully since failures in
the app or errors during the release process potentially have
a negative impact on the organization’s reputation, the
budget, and the users [28]. The Catrobat project’s
deployment process is easily automatable in large parts but
this was not considered until now and therefore, this venture
was always postponed. The project is hosted on GitHub and
therefore, uses git as its versioning system. A branching
model is used where a master branch reflects the status of
the currently released project and a default development
branch reflects the current state of development which
nevertheless is all time potentially releasable. Code which
would break the integrity of the development branch will not

22 https://github.com/Catrobat/Catroid/pull/2689
23 https://github.com/Catrobat/Catroid/pull/2682

be integrated and cannot be merged. Severe and urgent bugs
in the released app are handled in a way that a hotfix branch
is created from the master branch. The bug is fixed there and
the changes are merged back into the master branch and the
development branch and the APK of the app is updated in
the app store. This method is under constant evaluation and
discussion whether this is the optimal solution but it is
established within the project and accepted by the
development team. The actual deployment phase of the
Catrobat project starts after feature development has been
finished. The code must have been reviewed by peer
developers, integrated as agreed upon with the development
team’s coordinator and flagged as potentially shippable by
the product owners after they successfully went through
their feature acceptance tests. The single steps of the
deployment are very similar. Yet they have not been
automated since there are still many manual interactions in
the workflow (see Figure 2). When the feature development
phase including continuous integration has been finished the
release responsible person will create the release branch by
branching off the development branch. This branching-off
can only be done when the development branch is
potentially shippable which means that it contains only code
which has been positively tested and considered as not
breaking the application. This freshly created release branch
is once again thoroughly tested on Jenkins by executing all
automated test (lint, PMD, unit, integration, and acceptance)
to ensure integrity of the release branch. When during
execution no errors have occurred, the outcoming APK is
considered a potentially shippable artifact. This APK along
with the release notes is published in our internal
information system. As soon as it is accessible the product
owner acceptance testing starts which means the app is
thoroughly manually tested according to predefined
scenarios but also in an exploratory manner. The product
owners either accept or reject this release candidate as a
whole. A rejection by the product owners means that they
found issues with the release candidate which are rated as
“showstoppers” and which need to be fixed immediately.
The product owners create a list of prioritized issues in the
issue tracking system, the release is cancelled and the issues
are handed over to the development to fix these issues and
enhance the testbase ensure that a reintroduction of these
issues is found during future testruns. When the issues are
fixed the deployment chain is entered again from the
beginning. After acceptance through the product owners, the
release candidate is eligible for deployment. When there
have been features which changed the UI (user interface) the
screenshots for the app-store have to be captured. Up until
now this means that the screenshots have to be taken
manually for all languages to update the metadata for the
app store. For being able to upload to Google Play, the APK
must be signed and aligned. After this step the upload of the
APK to the app store, along with the description and
screenshots in all supported languages, can be done. The
final step is the announcement of the release via Catrobat
project’s communication channels. There exists a detailed

Christian Schindler et al., International Journal of Emerging Trends in Engineering Research, 9(7), July 2021, 1008 – 1019

1013

step by step documentation in the internal information
system but it is subject to continuous adjustments and
optimizations. The team constantly works on improvements
to streamline the workflow with the goal to reduce errors
and alleviate long-winded deployment steps. Human beings
have problems to keep their concentration on boring tasks
such as creating screenshots of the same app configuration in
different languages and sorting them into appropriate
folders. Put simply, they are bad at repetitive tasks [29]. A
deployment process, when it contains manual tasks, is error-
prone. This is especially true if the number of repetitive
manual tasks scale up due to, e.g., an increased number of
supported languages, or different flavors. Both examples
significantly increase the number of manual tasks in
Catrobat’s deployment process. Senior team members
despite their skills become even faster bored than rookies
and feel unchallenged which quicker leads to an increase of
introduced errors because of repetitiveness of the manual
tasks [11, 30].

Figure 2: Catrobat manual deployment workflow

2.3. Rapid increase of manual steps

The Pocket Code app exists in different flavors, which
means that there are custom build versions for partners
available having a different feature set and a different
outlook. Such flavors must be separately released in the
same way as the original app, with all metadata for the
different languages. A future goal is to support different app
stores and increase the efforts to further extend the number
of supported languages. The downside of this idea is an
explosion of repetitive manual steps. This poses a real
problem which can only be tackled by automation of manual
deployment tasks. If automation is not possible, such manual
interventions must be removed or shifted from the
deployment phase into a pre- or postdeployment phase.

3. STEPS TOWARDS CONTINUOUS DEPLOYMENT

Continuous software engineering (including continuous
deployment and release) heavily depends on applying
automation to the overall software development process
[31]. Therefore, the goal is to eliminate all repetitive manual
steps. The deployment phase must be automated as much as
possible to eradicate errors introduced by manual (i.e.,

human) intervention. The meanwhile old Catrobat
deployment workflow is depicted in Figure 2. The single
blocking activity in the deployment phase is the final
product owner approval of the release candidate. This step
must be automated, omitted or moved either before or after
the actual deployment phase. It is clear that this step is
mandatory but neither can be omitted nor fully automated
with reasonable effort and hence the only option is to move
it out of this phase. With an automatic app deployment (see
Figure 3) it becomes possible to move the final app approval
tests after the deployment to Google Play has happened. The
only premise is that this APK must not reach the public
without the final product owner approval. Fortunately, the
Google Play Developer API supports this plan by allowing
one to deploy new APKs of an app to one of the following
different default release tracks 24 :

Figure 3: Catrobat automatic deployment workflow

• The Alpha track: For this track only alpha testers are
subscribed (e.g., product owners) and are able to install
the APK.

• The Beta track: This track is only for a limited number
of invited beta testers.

• The Rollout track: Via this track a defined percentage
(ranges from 5% to 50%) of the app’s users (randomly
selected) can be reached and are informed about the
possible update.

• The Production track: This track is the public track and
is used to publish the app for all users.

At the time of writing, the Catrobat project uses only the
alpha and production tracks. The only subscribers of the
alpha track are the product owners who are informed about
the availability of the new APK in their track. They can now
install the app via Google Play on their devices. This is an
advantage compared to the manual installation in the
previous deployment approach, where they had to copy the
APK to their devices, allow “manual installation” by
activating the “Unknown sources” option in the Android
security settings, and then manually install the APK on the
device. On product owner approval of the alpha track

24 https://developers.google.com/android-publisher/tracks

Christian Schindler et al., International Journal of Emerging Trends in Engineering Research, 9(7), July 2021, 1008 – 1019

1014

version a Jenkins job is triggered to finalize the deployment.
Finalization means that the APK is promoted to the
production track and the metadata, i.e., the app description
and screenshots in all languages are uploaded. If there are
problems, either during the product owner approval tests or
during automatic deployment, the communication happens
via Catrobat’s Slack 25 infrastructure in the appropriate
channel. The best case is, that the deployed APK is moved
from the alpha to the production track and its metadata is
uploaded and displayed for the different languages. In case
of errors, reports are communicated to the developers,
translators or designers who have to fix them. With Jenkins
and Fastlane the following steps have been automated. The
deployment in the best case boils down to triggering two
events, a.) the automatic deployment to the alpha track, and
b.) after the product owner approval the promotion from the
alpha to the production track and the upload of the updated
metadata (including screenshots for all languages). The
whole deployment pipeline job with Jenkins/Fastlane, is a
simple sequence of steps (see Figure 4), which only
progresses if the previous step succeeded.

3.1. Preparations for alpha track deployment

The first part of the Jenkins job with the name deploy to
alpha track sets up the environment by cloning the
developmentbranch with the latest releasable code. Then it
builds the release candidate, i.e., the release-APK and the
debug-APK, and runs all necessary tests (LINT, PMD, UI)
using the Android emulator.

Figure 4: Catrobat’s Pocket Code deployment pipeline

3.2. Signing and aligning the APK

Once the release-APK was built, the next step of the
Jenkinsjob is to sign and align the release-APK. For the
signing process a certificate is needed which is managed and
stored by the credential plugin of the Catrobat Jenkins
server. The next step is to align the APK. Aligning ensures
that all uncompressed data such as images, are aligned on a
4-Byte boundary which allows direct access to all parts and
reduces RAM consumption even if a part contains binary
data with alignment restrictions [32]. It is recommended to
always use zipalign before distributing APKs to end-users
[32]. All android apps must be digitally signed with a
certificate prior to be able to distribute them via Google Play
[33]. To be able to publish updates for an app it is important
that all versions are always signed with the same certificate.

25 https://catrobat.slack.com

3.3. Screenshots for all languages

Within this part of the deployment the most interesting and
fruitful improvement possibilities in terms of speed and
reliability are contained. To get a consistent multilingual app
description on Google Play not only the description text has
to be translated but also the screenshots have to be taken in
the different languages. Therefore, the language settings
have to be changed and the app has to be put into the same
configuration for all languages to take the screenshots. The
person who is responsible for this work most likely does not
understand all the different languages which makes it hard to
operate the app and navigate to the desired configuration.
When this must be done manually not only is this a time
consuming task but it is a very error-prone one too.
Furthermore, the screenshots are stored on the device and
must be downloaded and then combined with the various
translations of the app’s description to form the metadata
used on Google Play. These tasks can fortunately be
automated with Jenkins and Fastlane. When the previous
pipeline steps were successfully executed Jenkins runs the
Fastlane screengrab tool to capture screenshots for the same
app configuration in all supported languages. These
screenshots are to be used for the app description on Google
Play. The screengrab tool automatically changes the system
language and then captures the screenshots with the tests in
the Espresso26test package. In Figure 5 automatically created
screenshots for six different languages of the same simple
app configuration can be seen. Some of those screenshots
are only partially translated which is due to the voluntariness
of the project. The app is put automatically into the same
simple configuration for all languages by the screeengrab-
Espresso tests. The only purpose of these tests is to navigate
the app to the desired configuration and taking the
screenshot. Therefore, these tests are kept plain and simple
since no functionality must be tested. They are created
during feature development and due to their simplicity they
are cheap. Using the package structure, the tests can be
combined to certain test collections. The following code
snippet shows a typical Espresso test to create a screenshot
of the script-area in Pocket Code. In line 5 and 7 bricks are
added to the script-area and in line 14 the screenshot is
taken:

1 package
org.catrobat.catroid.uiespresso.fastlaneScreenShots;
2 ...
3 @Test
4 public void scriptsScreens() {
5 addBrick(WaitBrick.class,
6 R.string.category_control,false);
7 addBrick(VibrationBrick.class,
8 R.string.category_motion, true);
9 try {

26 https://developer.android.com/training/testing/espresso/index.html

Christian Schindler et al., International Journal of Emerging Trends in Engineering Research, 9(7), July 2021, 1008 – 1019

1015

10 Thread.sleep(100);
11 } catch (InterruptedException e) {
12 e.printStackTrace();
13 }
14 Screengrab.screenshot("scriptScreen");
15 }

The following script is executed by Jenkins which triggers
the execution of above described espresso tests. The tests are
executed on an emulator, therefore, the screenshots are to be
downloaded from the instance and stored to the defined
locale folders (lines 7-11) to be further used as app store
metadata.

1 fastlane screengrab
2 --app_package_name 'org.catrobat.catroid'
3 --use_tests_in_packages
4 'org.catrobat.catroid.uiespresso.fastlaneScreenShots'
5 --app_apk_path 'debugapk'
6 --tests_apk_path 'debug-androidTestapk'
7 --locales "'en-US' ,'ar','zh-TW','da-DK','nl-NL',
8 'en-GB','fr-FR','fr-CA','de-DE','hi-IN','hu-HU',
9 'id','it-IT','ja-JP','ko-KR','fa','pl-PL','pt-BR'
10 ,'pt-PT','ru- RU','es-419','es-ES','es-US','sv-SE'
11 ,'th','tr-TR'"
12 --clear_previous_screenshots true

3.4. Metadata creation using Screengrab and Crowdin

Google Play expects a certain naming format of the language
folders for the app metadata. Unfortunately, this naming
format is not consistent. Furthermore, unsupported
languages such as Urdu and Sindhi must be removed in a
later step since they must not be included in the app’s
metadata. Fastlane is used to deploy an app and its metadata
to Google Play. Therefore, the Fastlane deployment pipeline
needs in each language folder the app’s title, a full
description, a short description, and an app update
information as separate text files (title.txt, short
description.txt, full description.txt, and
whatsnew.txt). Pocket Code’s deployment pipeline, which in
a later step uses Fastlane to publish the app to Google Play,
first downloads all metadata translations as a zip file from
Crowdin. This is done using the Crowdin console client27.
Within that archive all language folders with the following
(consistent) naming scheme are contained: languagecode-
CountryCode (e.g., en-US, ar-SA, sd-PK). Unfortunately,

27 https://support.crowdin.com/cli-tool/

Crowdin’s naming scheme is incompatible with the Google
Play naming scheme for languages. To make the Crowdin
output compatible with Fastlane the google play.xml file’s
content is split up into three individual text files which are
mandatory for Fastlane, i.e., title.txt, short description.txt,
and full description.txt. As a next step the previously created
three app description files for every language are merged
with the screenshot directory structure created by Fastlane’s
Screengrab. The third step makes the directory structure
naming scheme Google Play compatible by renaming the
folders according to the Google Play naming convention,
e.g., ar-SA to ar, bg-BG to bg. The directories of the
translations for languages unsupported by Google Play, such
as sd-PK and ur-PK are deleted in this step. At the time of
writing, Pocket Code has translations of the app description
for 57 languages whereas Google Play does not support ten
languages of those Pocket Code does. Therefore, ten
translations are removed prior to the upload and Google Play
displays the app descriptions and screenshots for only 47
languages. This is subject to change since Google frequently
increases the number of supported languages.

3.5. Release branch creation

When the release-APK has been signed and aligned, the
metadata (app description) has been combined with the
screenshots for all supported languages. Everything is in
place for the actual deployment, therefore, a release branch
is created (line 1) and all artifacts, i.e., code, APK, and the
app’s metadata in different languages are committed and
pushed to this branch (line 3).

1 git checkout -b $branch_name

2 ...
3 git push origin $branch_name

4 ...

3.6. Deployment to the alpha track

The release branch now contains the release candidate and
the app’s metadata. The APK can now be uploaded to the
project’s alpha track on Google Play. Unfortunately, the
alpha track has no separate metadata. That means uploaded
metadata would be public which must not happen at this
point. Therefore, at this stage of the Jenkins job only the
APK is uploaded to the alpha track without any metadata
and images (line 5, 6 of the following Fastlane supply tool
script).

Christian Schindler et al., International Journal of Emerging Trends in Engineering Research, 9(7), July 2021, 1008 – 1019

1016

Metadata will be uploaded at a later stage when the APK is

promoted from the alpha track to the production track by the
product owners.

1 fastlane supply
2 --apk $release-signed-alignedapk
3 --track alpha
4 --json_key GOOGLEPLAYSTOREKEY.json
5 --skip_upload_metadata true
6 --skip_upload_images true

3.7. Post alpha track deployment actions

The Catrobat project has various Slack channels for
maintaining timely communication. This is especially true
for everything related to a release. There exists a dedicated
Slackchannel ci-status where the Jenkins server notifies
about success or failure of a job. Every deployment build job
status is also posted to this channel. If every stage of the
pipeline including the deployment to the alpha track was
successful there are only two more stages until public
accessibility of the new app version.

3.7.1.Final app approval

The final app approval by the product owners (POs) is
completely unpredictable in terms of time and therefore, was
moved after the alpha track deployment. Although possible
and surly beneficial striving towards automatic acceptance
tests with Cucumber [34, 35], it is not possible with
reasonable effort to fully automate app approval in our case.
Since the Google Developer API supports a staged
deployment approach the product owner app approval tests
(i.e., acceptance and exploratory tests) can be relocated after
the alpha track deployment. The alpha track in the Catrobat
project is only subscribed by the product owners and so at
this stage of the deployment the APK is only available for
the POs for testing. 3.8. Promote to production
trackPromotion from the alpha to the production track only
happens when the product owner approval was finished
positively, i.e., the acceptance and exploratory tests were

successful. Once this is the case there is a Jenkins job
triggered which is following two main goals 1.) to upload
the metadata (the app description and screenshots for all
languages) to Google Play, and 2.) to promote the alpha
track APK to the production track since only then the new
version of the app is publicly available for download.

4. TIME CONSIDERATIONS

4.1. General reflection

The manual deployment process as it is depicted in Figure 2
is afflicted with four main disadvantages: First, due to the
fact that there is human interaction needed during the whole
workflow additional operating delays are generated. This
task switching, adds up and leads to an overall process
delay. Second, the manual creation of screenshots not only is
slow but very prone to errors due to its repetitive and tedious
nature. Third, manual setting of the language (either through
changing the system language or the language of the app
itself) is another disadvantage, especially if the language is
not understood by the person who operates the device.
Fourth, the final approval of the app through the product
owners is the most unpredictable manual element in the
deployment process and must be postponed after deployment
to the alpha track and after the creation of the metadata. This
is perfectly possible through the staged release approach
supported by Google Play. Disadvantage two and four have
the most impact on the delay of the deployment whereas two
(along one and three) can be mitigated through automation
and four rather through stage relocation within the pipeline.
As a benchmark, a simple manual deployment to Google
Play without running the full test-suite (lint, PMD, unit and
UI) and without the update of the metadata, i.e., the app
description with the screenshots for all languages, takes
about 25-35 minutes according to the release responsible
person. The test-suite in its size at the time of writing adds
about 15-20 minutes to the deployment time. In reality when

 a.) Arabic (ar) b.) Russian (ru-RU) c.) Japanese (ja-JP) d.) Korean (ko-KR) German (de) e.) Hindi (hi-IN)

Figure 5: Automatically created screenshots for different languages (some are only partially translated).

Christian Schindler et al., International Journal of Emerging Trends in Engineering Research, 9(7), July 2021, 1008 – 1019

1017

the manual workflow is followed the app’s metadata is
updated only when the gap between the published app
description including the screenshots and the UI of the app
becomes apparent. This is the case only because the process
to update the metadata involves taking the screenshots for all
languages manually which is tedious and error-prone and
hence is avoided whenever possible. This can lead to a
confusing situation for the users since the app and its
description on Google Play deviate too much when the
metadata update is skipped too often. With the manual
workflow the overall time needed for taking screenshots is
determined by, i.) the number of languages the screenshots
have to be captured, and ii.) the complexity of the navigation
to reach the app’s desired configuration. As an example for
the complexity of the matter, where not necessarily
navigation but consistency is the challenge, consider the
case, somebody wants to create screenshots of the Pocket
Code IDE to document programming. Using Pocket Code
scripts for these screenshots which make use of variables,
for consistency’s sake the variables used in these scripts
should also be translated, since a Thai locale using German
variable names does not look appealing, although it is of
course technically valid. So usually it is the easiest way to be
aware about this challenge and avoid it by not using
variables in Pocket Code scripts for screenshots. In any case
manual navigation tofeatures which are hidden in the depths
of the Pocket Code GUI defer the screenshot creation
significantly and should be avoided whereas this does not
affect the process negatively when screenshots are created
via automated tests.

4.2. Time measuring experiment

The magnitude of time needed for taking screenshots was
determined empirically using the following simple setting:
eight different languages including Japanese, Chinese, and
Arabic; six screenshots, i.e., six simple app configuration
which could be navigated to within a second. It must be
mentioned that meanwhile Pocket Code supports language
changing on application level which is helpful for the
manual scenario since the person taking screenshots can stay
within the app and does not need to switch to the Android
system settings to change the language. In this setting it was
possible to take six screenshots per language within three
minutes in average, independent of the language. That shows
that the configuration was simple enough since during the
experiment (48 screenshots in total) only one error was
introduced. The effect of this single error for that language
was, that due to the activities to fix the app’s configuration
and retake the screen shot, tripled the amount of time needed
for taking the screenshots from an average of three minutes
to a little more than nine minutes. We think it is safe to
assume that the number of errors positively correlates with
the configuration complexity. Furthermore, the language
itself also comes into account but depends on the cultural
background of the person conducting the experiment, since a
typical educated western person does not have language

skills for, e.g., Chinese, Japanese, Thai or Arabic. Having to
take screenshots in such a language poses the problem that
the person who operates the device must be able to navigate
the app in this language to the desired configuration. If that
person is not aware of the language, e.g., Arabic, only very
simple configurations can be reached with a reasonable
amount of time, otherwise it is likely that the operator gets
completely lost in the UI and has to switch again the
language to fix the navigation, switch back again to Arabic
to finish the screenshot.

4.3. Time extrapolation

At the time of writing, Pocket Code’s app description on
Google Play is available in 26 different languages. When we
assume, that no errors are made during screen capturing, and
the setup is simple enough to have the same speed changing
the app’s configuration for all languages, the minimum
possible time to take all screenshots is about 78 minutes
(three min in average by 26 languages). On filesystem level
screenshots have to be put into the corresponding folders
together with the translations of the app description to form
the app’s metadata in a compatible format for Google Play.
This means as an example, Arabic screenshots have to be
copied to the Arabic language folder, Chinese into the
Chinese language folder, etc. This is not as straightforward
as it might seem when done manually since it is often not
obvious for a person who is not capable to understand the 26
languages and the differences between them, such as, Arabic
and Farsi, or Russian and Serbian using the Cyrillic script. In
our experiment, we didn’t explicitly target this challenge and
chose languages that can be easily differentiated by looking
at a screenshot. We can therefore only assume that this will
be very likely a reason of significant time loss when having
to deal with similar languages using the same characters
(glyphs/symbols) which are hard to distinguish for a
layperson.

4.4. Comparison manual vs. automated

As described before, the manual approach takes at least 78
minutes. The automated approach, for all 26 languages with
six screenshots each, including the navigation of the app to
the desired configuration, downloading, and sorting the
screenshots to the correct folders, in contrast takes less than
10 minutes (545 seconds). For this comparison the product
owner approval of the app can be neglected since there are
no automatizations of these tests done yet, but, of course,
this will be a topic for the future. The overall app approval
by the product owners, in the case of the Catrobat project,
takes up to two days. This means when the manual workflow
is executed this leads to a delay of up to two days until the
app reaches the app store. Since this approval step happens
before the metadata is compiled the deployment is delayed
even more. In the staged approach, PO-approval is done
after deployment to the alpha track. If the approval was

Christian Schindler et al., International Journal of Emerging Trends in Engineering Research, 9(7), July 2021, 1008 – 1019

1018

successful the app can be promoted within seconds to the
production track and the metadata deployed within minutes.
For the duration comparison between automated and manual
workflow the following activities were considered: the
mandatory automatic test runs, the screenshot creation, the
metadata compilation, and the upload to Google Play. The
manual deployment adds up to 2hr 8 min with 15 min for the
automated test runs, 35 min for manual intervention, and 78
min for the screenshot creation (where the sorting was
neglected). The automated deployment adds up to less than
25 min with 14 min for the automated test runs, 10 min for
the screenshot creation (including the sorting to the language
folders), and less than 1 min for uploading to Google Play.
This means a total saving of at least 1 hour and 43 minutes.
Pocket Code was manually released about 42 times to
Google Play from the first release in 2013 up until 2018. The
accumulated delta between manual vs. automatic
deployment is at least 72 hours. At the first glance that is not
the most impressive figure but the true benefits of this
approach are the gained flexibility and ability to deploy
without too much of a lead time, the improved accuracy and
the saved human interaction. Furthermore, this approach
enables the project to implement a frequent release policy
with automatic metadata creation without stressing out
people with boring repetitive tasks.

5. CONCLUSION

In this paper, we presented the deployment pipeline of
Pocket
Code. Using Fastlane, Crowdin and Jenkins build server
within a staged deployment approach significantly reduces
deployment time and enables automatic creation of the app’s
metadata for Google Play. The deployment of a new feature
or a bug fix can be triggered as soon as it is ready for
release. Automation in deployment decreases release time,
increases accuracy of, and confidence in the process.
Furthermore, by limiting repetitive and error prone tasks the
deployment activity becomes more engaging and hence
raises the satisfaction and self-esteem of the release
responsible persons. In the best case of the Catrobat
project’s deployment, i.e., the product owners’ acceptance
tests were positive, only two mouse clicks are required for a
full deployment and update of the app’s metadata in all
available languages on Google Play. The first click creates
all metadata, i.e., the screenshots and app description for all
languages, commits to the release branch and uploads the
APK to the Google Play alpha track. Only the users who are
registered for the alpha track are informed about the update
and can download the app. In our case only the product
owners are registered who will then start with acceptance
testing. The second click uploads the latest app’s metadata to
Google Play and promotes the app to production for that it
becomes publicly available. An interesting part of our
deployment pipeline, and where most of the time is saved is
the automatic capturing of app screenshots and the handling
of compatibility issues which usually arise when different
tools are used in conjunction. The origin of the time gain is

in our case the automation of the metadata creation process,
i.e., the compilation of the app description translations and
the app’s screenshots for all languages, for that the app can
be fully presented in all supported languages on Google
Play. The Pocket Code deployment pipeline approach can
therefore, be of interest for all app providers who publish
multi-language apps and strive to maintain an
internationalized and localized Google Play presence. This
approach supports a software product team to keep its
deployment efforts low and focus on development. By
automating repetitive deployment tasks, this approach helps
to properly present multi-language apps, reach a broader
audience, and potentially increase market share.

ACKNOWLEDGEMENT
This is extended version of conference paper [27] presented
in IEEE International Conference

REFERENCES

1. Slany, W. Pocket code: a scratch-like integrated
development environment for your phone in
Proceedings of the companion publication of the 2014
ACM SIGPLAN conference on Systems, Programming,
and Applications: Software for Humanity (2014), 35–
36.

2. Girsang, A. S. Analyzing Android Users Based on
Google Play Store Using K-Prototype Algorithm.
International Journal of Emerging Trends in
Engineering Research 8. ISSN: 23473983 (2020).

3. Shahin, M., Babar, M. A. & Zhu, L. Continuous
Integration, Delivery and Deployment: A Systematic
Review on Approaches, Tools, Challenges and
Practices. IEEE Access 5, 3909–3943 (2017).

4. Fitzgerald, B. &Stol, K.-J. Continuous software
engineering: A roadmap and agenda. Journal of
Systems and Software 123, 176–189 (2017).

5. Leppanen, M.¨ et al. The highways and country roads
to continuous deployment. IEEE Software 32, 64–72
(2015).

6. Geiss, M. Continuous Integration and Testing for
Android. Berlin Institute of Technology (TU-Berlin)
(2012).

7. Fowler, M. Continuous Integration accessed: 2017-
12-24. https://martinfowler.com/articles/
continuousIntegration.htm.

8. Claps, G. G., Svensson, R. B. & Aurum, A. On the
journey to continuous deployment: Technical and
social challenges along the way. Information and
Software technology 57, 21–31 (2015).

9. Meyer, M. Continuous integration and its tools. IEEE
software 31, 14–16 (2014).

10. De Cesare, S., Lycett, M., Macredie, R. D., Patel, C. &

Christian Schindler et al., International Journal of Emerging Trends in Engineering Research, 9(7), July 2021, 1008 – 1019

1019

Paul, R. Examining Perceptions of Agility in Software
Development Practice. Commun. ACM 53, 126–130.
ISSN: 0001-0782. http://doi.acm.org/10.1145/
1743546.1743580(June 2010).

11. Davis, J. & Daniels, K. Effective DevOps: building a
culture of collaboration, affinity, and tooling at scale
(”O’Reilly Media, Inc.”, 2016).

12. Humble, J. & Farley, D. Continuous Delivery: Reliable
Software Releases through Build, Test, and
Deployment Automation (Pearson Education, 2010).

13. Chen, L. Continuous delivery: Huge benefits, but
challenges too. IEEE Software 32, 50–54 (2015).

14. Savor, T. et al. Continuous deployment at Facebook
and OANDA in Proceedings of the 38th International
Conference on Software Engineering Companion
(2016), 21–30.

15. Fowler, M. Deployment Pipeline accessed: 2017-12-
15. https : / / martinfowler . com / bliki/
DeploymentPipeline.html.

16. Nayebi, M., Adams, B. &Ruhe, G. Release Practices
for Mobile Apps–What do Users and Developers
Think? in Software Analysis, Evolution, and
Reengineering (SANER), 2016 IEEE 23rd
International Conference on 1 (2016), 552–562.

17. Michlmayr, M., Fitzgerald, B. &Stol, K.-J. Why and
how should open source projects adopt time-based
releases? IEEE Software 32, 55–63 (2015).

18. Cesar Brandao Gomes da Silva, A., de Figueiredo˜
Carneiro, G., Brito e Abreu, F. & Pessoa Monteiro, M.
Frequent Releases in Open Source Software: A
Systematic Review. Information. ISSN: 2078-2489.
http:
//www.mdpi.com/2078-2489/8/3/109(2017).

19. Feitelson, D. G., Frachtenberg, E. & Beck, K. L.
Development and Deployment at Facebook. IEEE
Internet Computing 17, 8–17. ISSN: 1089-7801
(2013).

20. Google. Share of App Users Who Have Stopped Using
An App Because It Was Not Localized Properly as of
March 2014. accessed: 2017-12-05. https://
www.statista.com/statistics/296304/mobileapp-
abandoment- rate- due- to- lackinglocalization/.

21. Hamunen, J. Challenges in adopting a Devops
approach to software development and operations en.
G2 Pro gradu, diplomityo (2016), 69.¨
http://urn.fi/URN:
NBN:fi:aalto-201609083476.

22. Dyck, A., Penners, R. &Lichter, H. Towards
definitions for release engineering and devopsin
Proceedings of the Third International Workshop on
Release Engineering (2015), 3–3.

23. Ishida, R. & Miller, S. K. Localization vs.
Internationalization accessed: 2018-03-25.
https://www.w3.org/ International/questions/qa-i18n.

24. Awwad, A. M. A., Schindler, C., Luhana, K. K., Ali,
Z. &Spieler, B. Improving Pocket Paint usability via
Material Design compliance and internationalization
& localization support on application level in
Proceedings of the 19th International Conference on
HumanComputer Interaction with Mobile Devices and
Services (2017), 99.

25. Usability Professionals Association. Usability Body of
Knowledge - Internationalization accessed: 201803-21.
https : / / www . usabilitybok . org/
internationalization.

26. Reason, J. Human error: models and management.
BMJ: British Medical Journal 320, 768 (2000).

27. Luhana, K. K., Schindler, C. & Slany, W. Streamlining
mobile app deployment with Jenkins and Fastlane in
the case of Catrobat’s pocket code in Innovative
Research and Development (ICIRD), 2018 IEEE
International Conference on (2018), 1–6.

28. Erich, F., Amrit, C. &Daneva, M. Report: Devops
literature review. University of Twente, Tech. Rep
(2014).

29. Versluis, G. in Xamarin Continuous Integration and
Delivery 1–5 (Springer, 2017).

30. Fallis, A. Effective DevOps 9, 1689–1699. ISBN:
9788578110796. arXiv: arXiv:1011.1669v3(2013).

31. Colomo-Palacios, R., Fernandes, E., Soto-Acosta, P.
&Larrucea, X. A case analysis of enabling continuous
software deployment through knowledge management.
International Journal of Information Management 40,
186 –189. ISSN: 0268-4012. http://
www.sciencedirect.com/science/article/pii/
S0268401217308782(2018).

32. Developer, G. zipalignaccessed: 2017-12-16. https:
//developer.android.com/studio/commandline/zipalign.
html.

33. Developer, G. Sign Your App accessed: 2017-12-17.
https://developer.android.com/studio/ publish/app-
signing.html.

34. Kamalrudin, M., Sidek, S., Aiza, M. N. & Robinson,
M. Automated acceptance testing tools evaluation in
Agile software development. Sci. Int, 1053–1058
(2013).

35. Wynne, M., Hellesoy, A. & Tooke, S. The cucumber
book: behaviour-driven development for testers and
developers (Pragmatic Bookshelf, 2017).

