
 Sangchul Han, International Journal of Emerging Trends in Engineering Research, 8(8), August 2020, 4201 - 4205

4201

ABSTRACT

One of significant energy-saving techniques for processor is
DVFS (Dynamic Voltage/Frequency Scaling).In real-time
embedded systems, DVFS schemes coupled with task
schedulers control the execution speed of tasksas low as
possible while satisfying the tasks’ timing constraints. This
article proposes an aggressive DVFS technique for EDZL
(Earliest Deadline until Zero Laxity) scheduling. Taking
advantage of the gap between actual execution amount and
worst-case execution demand, our technique lowers the
execution speed of tasks aggressively. It starts a task at a low
speed. The speed is raised later if the actual execution amount
of the task exceeds half of the worst-case execution demand in
order not to violate its timing constraints. We show through
simulation that our technique can reduce the energy
consumption.

Key words :DVFS, EDZL Scheduling, Real-Time Systems,
Multiprocessor

1. INTRODUCTION

Since the capacity of battery is limited, energy-saving is one
of significant concerns in battery-powered embedded systems.
Many techniques have been devised to reduce energy
consumption of computer components such as processor,
memory, display, etc[23]-[25].To reduce energy consumption
within processor, recent processors provide the capability of
changing the supply voltage/frequency, which is called DVFS
(dynamic voltage/frequency scaling). Lowering the supply
voltage/frequency causes a processor to execute tasks slower
but to consume much less energy. Examples of DVFS
technology are EIST(by Intel), IET (by ARM), and
PowerNow!(by AMD)[3]-[5].
Theissue of employing DVFS in real-time embedded systems
is that if the execution speed of real-time task is excessively
low the task may fail to meet its timing constraints. The
execution speed of real-time tasks should be controlled
carefully.In real-time embedded systems, DVFS schemes
need to be tightly coupled with task scheduler and adjust
processor speed as low as possible while satisfying the tasks’
timing constraints, i.e. their deadline.
There are many researches on DVFS technique for real-time
embedded systems equipped with multiprocessors (or

multicore). Well-known DVFS techniques in partitioned
scheduling are[6]-[9]. In partitioned scheduling, several tasks
are mapped onto a processor (or a core) and executed only on
that core. Each processor deploys uniprocessor scheduling
algorithm such as[10] and [11]. DVFS techniques in global
scheduling are [12]-[16]. In global scheduling, tasks can
execute on any available core at any time. The advantage of
global scheduling over partitioned scheduling is that it can
achieve higher processor utilization and it does not need
repartitioning.
A global scheduling algorithm for multiprocessor real-time
systems is Earliest Deadline until Zero Laxity (EDZL) [17]. In
EDZL scheduling, jobs (task instances) whose laxity is zero
are executed immediately. The remaining jobs with positive
laxity are given a priority following EDF (Earliest Deadline
Frist) policy. Any EDF-schedulable task set is also
schedulable by EDZL [18], and EDZL’s schedulability is
better than other EDF variants [19]-[21].Some research work
has studied DVFS techniques for EDZL scheduling. [14] and
[22] proposed a task-level static scheme for periodic task set
where speed of task is determined before execution. [26]
proposed a job-level static scheme where speed of job is
determined when the job is released, and the speed is not
altered during execution.
In this paper, we propose a simple and aggressive job-level
dynamic DVFS technique for EDZL scheduling algorithm on
multicore platforms. Taking advantage of the gap between
actual execution amount and worst-case execution demand,
our technique starts a job at a low speed. The speed is raised
later if the actual execution amount of the job exceeds half of
the worst-case execution demand in order not to violate its
timing constraints. If a job uses much less processor time than
its worst-case execution demand, the job can complete its
execution at the low speed. The job’s energy consumption can
be reduced safely. We show through simulation that our
technique is energy-efficient in scheduling real-time tasks.

2. SYSTEM MODEL

The system is composed of m processing cores which of each
have an individual clock. The clock frequency of cores can be
controlled independently. The current speed of core isf / fmax
where f is the current frequency and fmax is the maximum
frequency. The range of core speed is [fmin/fmax, 1] where fminis
the minimum frequency. For an instance, if a job is executed
on a core from t1 to t2atspeed0.7, the amount of execution is (t2
- t1) 0.7.

A Simple and Aggressive Dynamic Voltage/Frequency

Scaling Technique for EDZL Scheduling on Multiprocessors
Sangchul Han

Dept. of Software Technology, Konkuk University, Korea, schan@kku.ac.kr

 ISSN 2347 - 3983
Volume 8. No. 8, August 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter27882020.pdf

https://doi.org/10.30534/ijeter/2020/27882020

 Sangchul Han, International Journal of Emerging Trends in Engineering Research, 8(8), August 2020, 4201 - 4205

4202

The power dissipation of core is modelled as P V2f,wheref is
the frequency and V is the supply voltage [2]. When we lower
the execution speed of core, we usually decrease both
frequency and supply voltage. As the execution speed
decreases, the power dissipation declines dramatically.
In our task model, a taskiis denoted by a tuple of a period i

and a worst-case execution time ei, i.e.,i = (ei, pi).ei is the
amount of time to fulfil the worst-case execution demand of i
assuming it always executes at speed 1.A task generates jobs
periodically.i,j denotes the j-th job generated byi at j∙pi
(j=0,1,2,…). i,jdemands at most ei time unit processor time. It
should finish its execution by timedi,j = pi(j+1) which is called
absolute deadline. denotes a set of n tasks, = {1, 2, …, n}.
i‘s utilization is defined byui=ei/pi and i‘s total utilization is
defined byU() =ui.

We definei,j‘s remaining execution at time tasri,j(t). If i,j

executes all the remaining execution at speed s, the remaining
execution time is ri,j(t)/s. The laxity of a job is defined as the
maximum amount of time for which the job can idle (or may
not execute)without missing its deadline. This amount of time
depends upon the speed at which the job executes during its
remaining execution. Suppose i,j executes its remaining
execution at speed s, its laxity at time t is as the equation
below.

,࢚), (࢙ = ࢊ − ࢚ −
(࢚),࢘

࢙
 (1)

3. DVFS TECHNIQUES FOR EDZL SCHEDULING

3.1 Related Work
EDZL is a simple but effective multiprocessor real-time
scheduling algorithm. By adding a simple barrier condition,
zero laxity, to global EDF scheduling, it overcomes the
multiprocessor anomaly of global EDF and achieves a higher
utilization. A simple utilization-based schedulability testis
presented in [18] and a precise schedulability test is proposed
in [19]-[20].Another schedulability test is proposed by Lee et
al [21].We call this test as Lee’s test in this article. [21]
showed that Lee’s test is tighter than other EDZL
schedulability tests.
There are some studies on DVFS technique for EDZL
scheduling.[14] proposed a task-level static technique that
computes a uniform speed to which the speed of all tasks can
be safely altered to reduce energy consumption. [22]
proposed another task-level static technique. It computes a
uniform speed using Lee's test and calculates an individual
speed of task based on the uniform speed. Every job
belonging to a task runs at the individual speed, but jobs
belonging to different task may execute at different speed .It
was shown that the determined individual speed is always
lower than or equal to the uniform speed. [26] proposed a
job-level static DVFS technique. By combining the individual
speed of [22] with MOTE [1], if a job executes for a shorter
time than its worst-case execution demand, the speed of its
next job on the same core is lowered utilizing the unused
processor time. The technique is job-level static in the sense

that the execution speed of job is determined at its release time
and the speed does not change until the job completes.
Different jobs generated by a task may have different speed.

3.2A Job-Level Dynamic DVFS Technique
This section presents a simple and aggressive job-level
dynamic DVFS technique for EDZL scheduling. Our
technique is based on Han’s individual speed
[22].Itaggressively lowers the execution speed of heavy tasks,
specifically whose utilization is greater than 0.5. The
execution speed of light tasks is always its individual speed Si.
When a heavy job (an instance of heavy task) is released, the
job starts execution at a low speed Si

L =Si-(1-Si). The job keeps
this speed while its accumulated processor time is less than
half of the worst-case execution demand. We call this time
instance as half time. At that time, the speed of the job is
raised to Si + (1-Si) and kept until the job finishes. The total
processor time used by this job does not exceed the amount of
time allowed to this job in case of the worst-case execution at
speed Si. Hence it does not hinder other jobs from meeting
deadline. If the job finishes earlier than its half time, it is sure
that the energy consumption of the job is less than would be
otherwise. Our technique is job-level dynamic in the sense
that the speed of job may change during its execution. To
make sure that heavy jobs do not interfere with other jobs,
their priority should be given as if they executed at speed Si.
Thus their laxity should be calculated as li,j(t,Si).Algorithm 1
describes the scheduling procedure.

Algorithm 1.Job-level dynamic DVFS for EDZL scheduling

release_job(τi,j):

ifui> 0.5then
Si

L = 2Si– 1
else

Si
L = Si

acc_exec = 0 // accumulative execution amount

set_ priority(τi,j):

ifli,j(t,Si)==0 then
τi,j.priority = 0 // highest priority

else
τi,j.priority = di,j // according to EDF

schedule_jobs():

foreachτi,j in ready queue
set_priority(τi,j)
done
foreach mhighest priority job

set_speed(τi,j)
execute_job(τi,j)

 done

set_ speed(τi,j):

ifacc_exec>worst_case_exec/2then

 Sangchul Han, International Journal of Emerging Trends in Engineering Research, 8(8), August 2020, 4201 - 4205

4203

core_speed = 1
else
core_speed = Si

L

execute_ job(τi,j):

acc_exec += used_ time*core_speed

4. EXPERIMENTS

We evaluate our DVFS technique incorporated with EDZL
scheduling through simulation. Periodic task sets are
generated as follows. For each m = 4,8,16, the total utilization
is incremented from 0.25m to 0.90m with a step of 0.2.For
each utilization,we generate 100 tasks sets. When generating
taskτi, pi and ui are randomly chosen from a uniform
distribution over (10,1000] and (0.1,1], respectively. Then ei
is calculated by pi × ui. Every task set is testedusing Lee’s test
[21]. If a task set does not pass the test, we discard it and
generate another task set. In the simulation, the actual
execution time of τi,j are randomly chosen from [1, ei].

The processor model of our experiment is shown in Table 1.
When a job is scheduled to execute on a core, the core’s
supply voltage and frequency are changed together to the
lowest level of which the speed is higher than or equal to the
job’s speed. On a job’s completion, we sum up its energy
consumption. The amount of energy consumed is modeled as
follows.

ࡱ = ࢋ)ࡼ ⁄࢙) (2)

where e is the amount of processor time the job execute, s is
the execution speed on that time interval, and P is the power
dissipation at the voltage/frequency level.

Table 1: Characteristics of StrongARM SA-1100
Speed Volt.(V) Freq.(MHz) Power(%)
1.000 1.50 206 100
0.947 1.42 195 78.9
0.874 1.30 180 63.2
0.801 1.20 165 50.0
0.728 1.15 150 39.9
0.655 1.10 135 33.6
0.583 1.08 120 33.3
0.510 0.95 105 19.8
0.437 0.90 90 15.0
0.364 0.82 75 11.8
0.291 0.80 60 9.44

For each task set, the energy consumption during a
hyper-period is calculated by summing up the energy
consumption of all jobs of all tasks in the task set. Then the
amount of energy consumption is normalized to the amount of
energy consumption without any DVFS technique. We
average the normalized energy consumption of task sets with

the same total utilization.
Figure 1, 2, 3, and4show the average normalized energy
consumption for m = 2, 4,8, 16, respectively. In the figures,
Han denotes the average normalized energy consumption of
the individual speed scheme presented in [22].The figures
demonstrate that our technique further reduces energy
consumption. Han’ scheme cannot reclaim dynamic slack
time that occurs when a job actually demand a less amount of
execution than the worst-case. By aggressively lower the
speed of heavy jobs, our technique reclaims such slack time.
For instance, when m = 2 and the total utilization is 1.6, our
scheme saves 6.36%of normalized energy in average. For a
fixed number of cores, on the whole, more energy can be
saved as the total utilization increases. For task sets with high
total utilization, it is likely that there exist heavy execution
tasks. Such tasks may have much slack time if their jobs
actually demand far less execution than the worst-case. Those
slack time can be reclaimed by dynamic DVFS techniques
like our scheme.

Figure 1: Energy consumption (m=2)

Figure 2: Energy consumption (m=4)

 Sangchul Han, International Journal of Emerging Trends in Engineering Research, 8(8), August 2020, 4201 - 4205

4204

Figure 3: Energy consumption (m=8)

Figure 4: Energy consmption (m=16)

5. CONCLUSION

This paper proposes a simple and aggressive
voltage/frequency scaling scheme for EDZL scheduling
algorithm. Our scheme aggressively lowers the execution
speed of heavy jobs to reclaim slack time. If a job uses much
less processor time than its worst-case execution demand, we
can achieve a considerable energy reduction. The proposed
technique can lessen energy consumption compared with
Han’s scheme by at most 6.36%.

REFERENCES
1. V. Nelis, J. Goossens, R. Devillers, and N. Navet,

Power-aware real-time scheduling upon identical
multiprocessor platforms, in Proc. IEEE International
conference on sensor networks, ubiquitous and
trustworthy computing (SUTC’08), pp. 209–216, 2008.

2. A. Chandrakasan, S. Sheng, and R. Brodersen.
Low-Power CMOS Digital Design, IEEE Journal of
Solid-State Circuit, vol. 27, no. 4, pp. 473–484, 1992.
https://doi.org/10.1109/4.126534

3. Intel Product Specifications. Retrieved November 29,
2018, from: https://ark.intel.com/.

4. J. Khan, S. Bilavarn, and C. Belleudy. Energy Analysis
of a DVFS based power strategy on ARM platforms,
in Proc. IEEE Faible Tension Faible Consommation
(FTFC), Paris, France, pp. 1–4, 2012.

5. AMD Products. Retrieved November 29, 2018, from:
http://www.amd.com/en-us/products.

6. H. Aydin, and Q. Yang, Q. Energy-aware partitioning
for multiprocessor real-time systems,in Proc. 17th
International Symposium on Parallel and Distributed
Processing (IPDPS’03), Nice, France, 2013.

7. J.J.Chen, and T.W. Kuo. Multiprocessor
energy-efficient scheduling for real-time tasks with
different power characteristics,in Proc. the 2005
International Conference on Parallel Processing
(ICPP’05), Oslo, Norway, pp. 13–20, 2005.

8. C.Y. Yang, J.J. Chen, and T.W Kuo. An approximation
algorithm for energy-efficient scheduling on a chip
multiprocessor. in Proc. Conference on Design,
Automation and Test in Europe (DATE’05), Munich,
Germany, pp. 468–473, 2005

9. J.J. Chen, and C.F. Kuo. Energy-efficient scheduling
for real-time systems on dynamic voltage scaling
(DVS) platforms,in Proc. 13th IEEE International
Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA’07), Daegu, Korea, pp.
28–38, 2007.
https://doi.org/10.1109/RTCSA.2007.37

10. C.L. Liu, and J.W. Layland. Scheduling Algorithms for
Multiprogramming in a HardReal-Time
Environment ,Journal of the ACM. vol. 20, no. 1, pp.
46–61, 1973.

11. N.C. Audsley, A. Burns, M.F. Richardson, and A.J.
Wellings. Hard real-Time scheduling: the
deadline-monotonic approach, in Proc. IFAC/IFIP
Workshop on Real Time Programming, Atlanta, USA, pp.
127-132, 1991.

12. K. Funaoka, A. Takeda, S. Kato, and N. Yamasaki.
Dynamic Voltage and Frequency Scaling for Optimal
Real-Time Scheduling on Multiprocessors,in Proc. 3rd
IEEE International Symposium on Industrial Embedded
Systems (SIES’08), Le Grande Motte, France, pp. 27–33,
2008.
https://doi.org/10.1109/SIES.2008.4577677

13. V. Nelis, J. Goossens, R. Devillers, and N. Navet.
Power-Aware Real-Time Scheduling upon Identical
Multiprocessor Platforms,in Proc. IEEE International
Conference on Sensor Networks, Ubiquitous and
Trustworthy Computing (SUTC’08), Taichung, Taiwan,
pp. 209–216, 2008.

14. X. Piao, H. Kim, Y. Cho, S. Han, M. Park, and M. Park.
Power-Aware EDZL Scheduling upon Identical
Multiprocessor Platforms,in. Proc. International
Conference on Reliable and Autonomous Computational
Science (RACS 2010), Atlanta, USA, pp. 61–80, 2010.

15. S. Funk, V. Berten, C. Ho, and J. Goossens. A global
optimal scheduling algorithm for multiprocessor
low-power platforms,in Proc. 20th International
Conference on Real-Time and Network Systems, Pont à
Mousson, France,pp. 71–80, 2012.

 Sangchul Han, International Journal of Emerging Trends in Engineering Research, 8(8), August 2020, 4201 - 4205

4205

16. S. Han, M. Park, X. Piao, and M. Park. A dual speed
scheme for dynamic voltage scaling on real-time
multiprocessor systems,The Journal of
Supercomputing,vol. 71, no. 2, pp. 574–590, 2015.

17. S. Cho, S.K. Lee, A. Han, and K.J. Lin. Efficient
Real-Time Scheduling Algorithms for Multiprocessor
Systems,IEICE Trans on Communications, vol. E85-B,
no. 12, pp. 2859–2867, 2002.

18. M. Park, S. Han, H. Kim, S. Cho, and Y. Cho.
Comparison of Deadline-based Scheduling
Algorithms for Periodic Real-Time Tasks on
Multiprocessor ,IEICE Trans on Information and
Systems,vol. E88-D, no. 3, pp. 658–661, 2005.
https://doi.org/10.1093/ietisy/e88-d.3.658

19. M. Cirinei, and T.P. Baker. EDZL Scheduling
Analysis,in Proc. 19th Euromicro Conference on
Real-Time Systems (ECRTS’07), Pisa, Italy, pp. 9–18,
2007.

20. T.P. Baker, M. Cirinei, and M. Bertogna. EDZL
scheduling analysis,Real-Time Systems,vol. 40, no. 3, pp.
264–289, 2008.

21. J. Lee, and I. Shin. EDZL Schedulability Analysis in
Real-Time Multicore Scheduling,IEEE Transactions
on Software Engineering, vol. 39, no. 7, pp. 910–916,
2013.

22. S. Han, M. Park, and W. Paik.Dynamic
Voltage/Frequency Scaling for EDZL Scheduling in
Multicore Real-Time Systems, Journal of Engineering
and Applied Sciences, vol. 14, no. 21, pp. 8039-8046,
2019.

23. M S. Kumar, F. Noorbasha, S. Inthiyaz, M. Jameela, A.
Sandhya, Md. Imran, and S. K. Tulasi. Low Power
Carry Look-Ahead Adder using Transmission Gate
Multiplexer, International Journal of Emerging Trends
in Engineering Research, vol. 8, no. 1, 2020.
https://doi.org/10.30534/ijeter/2020/03812020

24. B. Lakshmi, and B. Navyasri. Energy Efficient Routing
Mechanism for Harsh Environment in Wireless
Sensor Networks, International Journal of Emerging
Trends in Engineering Research, vol. 7, no. 9, 2019.
https://doi.org/10.30534/ijeter/2019/04792019

25. P.S. Akram, G.V. Ganesh, A. S. Kumar, K.S. Chand, and
M.R. Varma. Non-Volatile 7T1R SRAM cell design for
low voltage applications, International Journal of
Emerging Trends in Engineering Research, vol. 7, no. 11,
2019.
https://doi.org/10.30534/ijeter/2019/487112019

26. S. Han. Energy-aware EDZL Scheduling of Periodic
Tasks on Multicore Systems, International Journal of
Emerging Trends in Engineering Research, vol. 8, no. 4,
2020.
https://doi.org/10.30534/ijeter/2020/18842020

