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ABSTRACT 
 
One of significant energy-saving techniques for processor is 
DVFS (Dynamic Voltage/Frequency Scaling).In real-time 
embedded systems, DVFS schemes coupled with task 
schedulers control the execution speed of tasksas low as 
possible while satisfying the tasks’ timing constraints. This 
article proposes an aggressive DVFS technique for EDZL 
(Earliest Deadline until Zero Laxity) scheduling. Taking 
advantage of the gap between actual execution amount and 
worst-case execution demand, our technique lowers the 
execution speed of tasks aggressively.  It starts a task at a low 
speed. The speed is raised later if the actual execution amount 
of the task exceeds half of the worst-case execution demand in 
order not to violate its timing constraints. We show through 
simulation that our technique can reduce the energy 
consumption.  
 
Key words :DVFS, EDZL Scheduling, Real-Time Systems, 
Multiprocessor 
 
1. INTRODUCTION 
 
Since the capacity of battery is limited, energy-saving is one 
of significant concerns in battery-powered embedded systems. 
Many techniques have been devised to reduce energy 
consumption of computer components such as processor, 
memory, display, etc[23]-[25].To reduce energy consumption 
within processor, recent processors provide the capability of 
changing the supply voltage/frequency, which is called DVFS 
(dynamic voltage/frequency scaling).  Lowering the supply 
voltage/frequency causes a processor to execute tasks slower 
but to consume much less energy. Examples of DVFS 
technology are EIST(by Intel), IET (by ARM), and 
PowerNow!(by AMD)[3]-[5].  
Theissue of employing DVFS in real-time embedded systems 
is that if the execution speed of real-time task is excessively 
low the task may fail to meet its timing constraints. The 
execution speed of real-time tasks should be controlled 
carefully.In real-time embedded systems, DVFS schemes 
need to be tightly coupled with task scheduler and adjust 
processor speed as low as possible while satisfying the tasks’ 
timing constraints, i.e. their deadline. 
There are many researches on DVFS technique for real-time 
embedded systems equipped with multiprocessors (or 
 

 

multicore). Well-known DVFS techniques in partitioned 
scheduling are[6]-[9]. In partitioned scheduling, several tasks 
are mapped onto a processor (or a core) and executed only on 
that core. Each processor deploys uniprocessor scheduling 
algorithm such as[10] and [11]. DVFS techniques in global 
scheduling are [12]-[16]. In global scheduling, tasks can 
execute on any available core at any time. The advantage of 
global scheduling over partitioned scheduling is that it can 
achieve higher processor utilization and it does not need 
repartitioning. 
A global scheduling algorithm for multiprocessor real-time 
systems is Earliest Deadline until Zero Laxity (EDZL) [17]. In 
EDZL scheduling, jobs (task instances) whose laxity is zero 
are executed immediately. The remaining jobs with positive 
laxity are given a priority following EDF (Earliest Deadline 
Frist) policy. Any EDF-schedulable task set is also 
schedulable by EDZL [18], and EDZL’s schedulability is 
better than other EDF variants [19]-[21].Some research work 
has studied DVFS techniques for EDZL scheduling. [14] and 
[22] proposed a task-level static scheme for periodic task set 
where speed of task is determined before execution. [26] 
proposed a job-level static scheme where speed of job is 
determined when the job is released, and the speed is not 
altered during execution. 
In this paper, we propose a simple and aggressive job-level 
dynamic DVFS technique for EDZL scheduling algorithm on 
multicore platforms. Taking advantage of the gap between 
actual execution amount and worst-case execution demand, 
our technique starts a job at a low speed. The speed is raised 
later if the actual execution amount of the job exceeds half of 
the worst-case execution demand in order not to violate its 
timing constraints. If a job uses much less processor time than 
its worst-case execution demand, the job can complete its 
execution at the low speed. The job’s energy consumption can 
be reduced safely. We show through simulation that our 
technique is energy-efficient in scheduling real-time tasks.  
 
2. SYSTEM MODEL 
 
The system is composed of m processing cores which of each 
have an individual clock. The clock frequency of cores can be 
controlled independently. The current speed of core isf / fmax 
where f is the current frequency and fmax is the maximum 
frequency. The range of core speed is [fmin/fmax, 1] where fminis 
the minimum frequency. For an instance, if a job is executed 
on a core from t1 to t2atspeed0.7, the amount of execution is (t2 
- t1)  0.7.  
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The power dissipation of core is modelled as P  V2f,wheref is 
the frequency and V is the supply voltage [2]. When we lower 
the execution speed of core, we usually decrease both 
frequency and supply voltage. As the execution speed 
decreases, the power dissipation declines dramatically.  
In our task model, a taskiis denoted by a tuple of a period i 

and a worst-case execution time ei, i.e.,i = (ei, pi).ei is the 
amount of time to fulfil the worst-case execution demand of i 
assuming it always executes at speed 1.A task generates jobs 
periodically.i,j denotes the j-th job generated byi at j∙pi 
(j=0,1,2,…). i,jdemands at most ei time unit processor time. It 
should finish its execution by timedi,j = pi(j+1) which is called 
absolute deadline. denotes a set of n tasks, = {1, 2, …, n}.  
i‘s utilization is defined byui=ei/pi and i‘s total utilization is 
defined byU() =ui.  
 
We definei,j‘s remaining execution at time tasri,j(t). If i,j 

executes all the remaining execution at speed s, the remaining 
execution time is ri,j(t)/s. The laxity of a job is defined as the 
maximum amount of time for which the job can idle (or may 
not execute)without missing its deadline. This amount of time 
depends upon the speed at which the job executes during its 
remaining execution. Suppose i,j executes its remaining 
execution at speed s, its laxity at time t is as the equation 
below. 
 

,࢚), (࢙ = ࢊ − ࢚ −
(࢚),࢘

࢙
               (1) 

 
3. DVFS TECHNIQUES FOR EDZL SCHEDULING 

3.1 Related Work 
EDZL is a simple but effective multiprocessor real-time 
scheduling algorithm. By adding a simple barrier condition, 
zero laxity, to global EDF scheduling, it overcomes the 
multiprocessor anomaly of global EDF and achieves a higher 
utilization. A simple utilization-based schedulability testis 
presented in [18] and a precise schedulability test is proposed 
in [19]-[20].Another schedulability test is proposed by Lee et 
al [21].We call this test as Lee’s test in this article. [21] 
showed that Lee’s test is tighter than other EDZL 
schedulability tests. 
There are some studies on DVFS technique for EDZL 
scheduling.[14] proposed a task-level static technique that 
computes a uniform speed to which the speed of all tasks can 
be safely altered to reduce  energy consumption. [22] 
proposed another task-level static technique. It computes a 
uniform speed using Lee's test and calculates an individual 
speed of task based on the uniform speed. Every job 
belonging to a task runs at the individual speed, but jobs 
belonging to different task may execute at different speed .It 
was shown that the determined individual speed is always 
lower than or equal to the uniform speed. [26] proposed a 
job-level static DVFS technique. By combining the individual 
speed of [22] with MOTE [1], if a job executes for a shorter 
time than its worst-case execution demand, the speed of its 
next job on the same core is lowered utilizing the unused 
processor time. The technique is job-level static in the sense 

that the execution speed of job is determined at its release time 
and the speed does not change until the job completes. 
Different jobs generated by a task may have different speed. 

3.2A Job-Level Dynamic DVFS Technique 
This section presents a simple and aggressive job-level 
dynamic DVFS technique for EDZL scheduling. Our 
technique is based on Han’s individual speed 
[22].Itaggressively lowers the execution speed of heavy tasks, 
specifically whose utilization is greater than 0.5. The 
execution speed of light tasks is always its individual speed Si. 
When a heavy job (an instance of heavy task) is released, the 
job starts execution at a low speed Si

L =Si-(1-Si). The job keeps 
this speed while its accumulated processor time is less than 
half of the worst-case execution demand. We call this time 
instance as half time. At that time, the speed of the job is 
raised to Si + (1-Si) and kept until the job finishes. The total 
processor time used by this job does not exceed the amount of 
time allowed to this job in case of the worst-case execution at 
speed Si. Hence it does not hinder other jobs from meeting 
deadline. If the job finishes earlier than its half time, it is sure 
that the energy consumption of the job is less than would be 
otherwise. Our technique is job-level dynamic in the sense 
that the speed of job may change during its execution. To 
make sure that heavy jobs do not interfere with other jobs, 
their priority should be given as if they executed at speed Si. 
Thus their laxity should be calculated as li,j(t,Si).Algorithm 1 
describes the scheduling procedure. 
 
Algorithm 1.Job-level dynamic DVFS for EDZL scheduling 
 
release_job(τi,j): 

ifui> 0.5then 
Si

L = 2Si– 1 
else  

Si
L = Si 

acc_exec = 0    // accumulative execution amount 
 
set_ priority(τi,j): 

ifli,j(t,Si)==0  then 
τi,j.priority = 0     // highest priority 

else  
τi,j.priority = di,j   // according to EDF 

 
schedule_jobs(): 

foreachτi,j in ready queue 
set_priority(τi,j) 
done 
foreach mhighest priority job 

set_speed(τi,j) 
execute_job(τi,j) 

      done 
 
set_ speed(τi,j): 

ifacc_exec>worst_case_exec/2then 
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core_speed = 1 
else 
core_speed = Si

L 
 
execute_ job(τi,j): 

acc_exec += used_ time*core_speed 
 

 
4. EXPERIMENTS 
 
We evaluate our DVFS technique incorporated with EDZL 
scheduling through simulation. Periodic task sets are 
generated as follows. For each m = 4,8,16, the total utilization 
is incremented from 0.25m to 0.90m with a step of 0.2.For 
each utilization,we generate 100 tasks sets. When generating 
taskτi, pi and ui are randomly chosen from a uniform 
distribution over (10,1000] and (0.1,1], respectively. Then ei 
is calculated by pi × ui. Every task set is testedusing Lee’s test 
[21]. If a task set does not pass the test, we discard it and 
generate another task set. In the simulation, the actual 
execution time of τi,j are randomly chosen from [1, ei]. 
 
The processor model of our experiment is shown in Table 1. 
When a job is scheduled to execute on a core, the core’s 
supply voltage and frequency are changed together to the 
lowest level of which the speed is higher than or equal to the 
job’s speed. On a job’s completion, we sum up its energy 
consumption. The amount of energy consumed is modeled as 
follows.  
 

ࡱ = ࢋ)ࡼ ⁄࢙ )               (2) 
 
where e is the amount of processor time the job execute, s is 
the execution speed on that time interval, and P is the power 
dissipation at the voltage/frequency level. 
 

Table 1: Characteristics of StrongARM SA-1100  
Speed Volt.(V) Freq.(MHz) Power(%) 
1.000 1.50 206 100 
0.947 1.42 195 78.9 
0.874 1.30 180 63.2 
0.801 1.20 165 50.0 
0.728 1.15 150 39.9 
0.655 1.10 135 33.6 
0.583 1.08 120 33.3 
0.510 0.95 105 19.8 
0.437 0.90 90 15.0 
0.364 0.82 75 11.8 
0.291 0.80 60 9.44 

 
For each task set, the energy consumption during a 
hyper-period is calculated by summing up the energy 
consumption of all jobs of all tasks in the task set. Then the 
amount of energy consumption is normalized to the amount of 
energy consumption without any DVFS technique. We 
average the normalized energy consumption of task sets with 

the same total utilization. 
Figure 1, 2, 3, and4show the average normalized energy 
consumption for m = 2, 4,8, 16, respectively. In the figures, 
Han denotes the average normalized energy consumption of 
the individual speed scheme presented in [22].The figures 
demonstrate that our technique further reduces energy 
consumption. Han’ scheme cannot reclaim dynamic slack 
time that occurs when a job actually demand a less amount of 
execution than the worst-case. By aggressively lower the 
speed of heavy jobs, our technique reclaims such slack time. 
For instance, when m = 2 and the total utilization is 1.6, our 
scheme saves 6.36%of normalized energy in average. For a 
fixed number of cores, on the whole, more energy can be 
saved as the total utilization increases. For task sets with high 
total utilization, it is likely that there exist heavy execution 
tasks. Such tasks may have much slack time if their jobs 
actually demand far less execution than the worst-case. Those 
slack time can be reclaimed by dynamic DVFS techniques 
like our scheme. 
 

 
Figure 1: Energy consumption (m=2) 

 
 

 
Figure 2: Energy consumption (m=4) 
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Figure 3: Energy consumption (m=8) 

 
 

 
Figure 4: Energy consmption (m=16) 

 
 
5. CONCLUSION 
 
This paper proposes a simple and aggressive 
voltage/frequency scaling scheme for EDZL scheduling 
algorithm. Our scheme aggressively lowers the execution 
speed of heavy jobs to reclaim slack time. If a job uses much 
less processor time than its worst-case execution demand, we 
can achieve a considerable energy reduction. The proposed 
technique can lessen energy consumption compared with 
Han’s scheme by at most 6.36%. 
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