

Volume 7, No. 12 December 2019 International Journal of Emerging Trends in Engineering Research

Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter277122019.pdf https://doi.org/10.30534/ijeter/2019/277122019

Artificial Intelligence Face Recognition for applicant tracking system

Dr Nishad Nawaz

Assistant Professor Department of Business Management, College of Business Administration, Kingdom University, Sanad, Riffa, Kingdom of Bahrain. Email ID: nishadnawaz@hotmail.com

ABSTRACT

The technology impact more in the organization, it is forcing to change their basic functions, irrespective of industry functions. To catch the requirement, the companies forcing to hire human resources. The aim of the is to find duplication of applicant's face through the principal component analysis algorithms. The study tested the pre-corded images of the applicants and concluded with further research ideas.

Key words: artificial intelligence, face detection, face recognition, face tracking and human sensing.

Classification: Technical paper.

1. INTRODUCTION

As we all know the progress of technology, machines are beneficial and sophisticated, machines-based tools introduced in all service sectors. Artificial intelligence (AI) applications are extensively using by society. Most of the areas occupied such as computer science, education, finance, ecology, health care, e-commerce, customer service, transportation and so on, furthermore, enhancing the professional life of many.

Nowadays, artificial intelligence has infiltrated in the recruitment market, and many services are offering by <u>own-made AI applications</u> to help in job searching and other recruitment-related works.

The recruitment process has many activities involved [1], but the present study is proposed to identify duplication of the applicant in a while shorting resume with the help of face recognition.

2. REVIEW LITERATURE

The technology 4.0 version was accommodating many of the facilities to create active with human-computer interaction and overcoming with traditional devices in the industry. Furthermore, the recruitment industry also is a part of using devices in the activities. The face detection via many images in the process is complicated, therefore, need to develop a new algorithm to solve the problem.[2]. The identification of

human activity in the organization is critical to know suspicious behaviour, besides, required to recognize the of accuracy and minimum processing time of image of target applicant, and this will integrate with support of hardware and their applications.[3], [4].

The skin will differ based on region segmentation, the facial image of the candidate will make change drastically, [5]. In the process of face recognition use varieties of style to keep data to administer, the concluded their comparative study is every method is correct as per the environmental factor.[6].

Using of the Biometrics systems in the identification of human face, store pf physical properties of people in electronic form, focused more on face recognition detecting by using of principal component analysis algorithms and based that it will pre-record the face image samples..[7] As per the [8] eigenspace technique is used to identify face recognition and another piece of work stated that using of eigenspace method formulate real-time images with two-dimensional way of the image characteristic,[9]. The applicant while searching employer's database, the applicant tracking system required to provide user queries, that will be possible with a combination of semantic search and concluded that it is like a database search of applicants. [10].

After precise observation of the literature review, the author found that there is a scope to study on artificial intelligence face recognition for the applicant to reduce the gap in practice and literature and developed following statement for the study. The system must take the face of a person as an input image. It will be as input image is compared with available training images already present in the database. Similar images of a person are add in a class. A class contains a similar image that is of one person's images with slight variations. Then the system should reply the input image is match with which class image. The study used principal component analysis and MATLAB to get desired results.

3. SYSTEM ARCHITECTURE

Below figure 1 shows the basic steps used in digital image processing.

- Image restoration focusing on to improve image appearance
- Processing of colour image importance for significant in digital image to insert internet.
- Using wavelets representing the image resolution
- Dealing with the compression method minimizes the storage demand and save the image as per the bandwidth.
- Dealing with the morphological process used for extracting image components and represent the shape of the image
- The procedure of segmentation inserts partition of the image into objects or parts of the constituent.
- Out of description is the segmentation stage, which includes raw data pixel, boundary regions of the image.
- The process of recognition assigns an object into descriptors.

Figure 1: Basic process in digital image processing

Figure 1 :Basic process in digital image processing

Figure 2 :Training image storage process

Figure 2 for training images, here the study select one image, will store in the database. This will be considered as training images.

Figure 3: Testing image storage process

Figure 3 Image testing process. In this select image used for testing purpose. Moreover, the image will not storage in database. This image will calculate eigen values and display results as a class.

3.1 Flow chart for image testing

Figure 4 :Flowchart designed for training and testing images

Start

Figure 5: Flow chart for face recognition from face space

3.2 Tracking Algorithm

1

- **Step 1:** obtain face images $I_1, I_2, ..., I_M$ (training faces) (the face images must be *centered* and of the same *size*)
- **Step 2:** represent every image *Ii* as a vector T_i
- **Step 3:** compute the average face vector Ψ :

Step 4: subtract the mean face
$$\psi = 1 / M \sum_{i=1}^{M} \tau_i$$

Figure 6 :Flowchart for face recognition using eigen values

Step 5: compute the covariance matrix C:

$$C = 1 / M \qquad \sum_{n = 1}^{M} \phi_n \phi_{\overline{n}} - AAT$$

where $A = [\Phi_1 \Phi_2 \dots \Phi_M] (N^2 xM \text{ matrix})$

Step 6: compute the eigenvectors ui of AA^{T} The matrix AA^{T} is very large.

Step 6.1: consider the matrix $A^{T}A$ (MxM matrix)

Step 6.2: compute the eigenvectors vi of $A^T A$ $A^T Avi = \mu i vi$

What is the relationship between *usi* and *vi*?

 $A^{T}Avi = \mu i vi = >A A^{T}Avi = \mu i Avi$ $CAvi = \mu i Avi$ or Cui = mi ui where ui = Avi

Thus, AA^{T} and $A^{T}A$ have the same eigenvalues and their eigenvectors are related as follows: ui = Avi

Note 1: AA^{T} can have up toN^{2} eigenvalues and eigenvectors.

Note 2: $A^{T}A$ can have up to M eigenvalues and eigenvectors.

Note 3: The M eigenvalues of $A^{T} A$ (along with their corresponding

eigenvectors) correspond to the *M* largest eigenvalues of AA^{T} (along

with their corresponding eigenvectors).

Step 6.3: compute the *M* best eigenvectors of AA^{T} : ui = Avi (**important:** normalize ui such that ||ui|| = 1)

Step 7: Keep only K eigenvectors (corresponding to the K largest eigenvalues)
Face Pacagnitian Using Figure faces

Face Recognition Using Eigenfaces

Given an unknown face image T^{\Box} (centered and of the same size like the training faces) follow these steps:

Step 1: normalize $\top: \Phi = \top - \Psi$

Step 2: project on the eigenspace

$$\boldsymbol{\phi} = \sum_{i=1}^{K} w_{i} u_{i} \left(w_{i} = u_{i} \boldsymbol{\phi} \right)$$

Step3: represent
$$\Phi$$
 as $\Omega = \begin{bmatrix} wl \\ w2 \\ ... \\ wK \end{bmatrix}$

Step 4: find $er = \Box \min l \|\Omega - \Omega l\|$

Step 5: if er < Tr, then \top \Box is recognized as face *l* from the training set.

The distance *er* is called distance within the face space (difs)

Face detection using Eigenfaces

Given an unknown image T

Step 1: compute $\Phi = -\Psi$

Step 2: compute

$$\phi = \sum_{i=1}^{K} w_{i} u_{i} \quad (w_{i} = u_{i} \tau_{\phi})$$

Step 3: compute $e_d = ||\Omega - \Omega||$

Step 4: if $e_d < T_d$, then - is a face.

The distance e_d is called distance from face space(dffs)

3.3 Tracking syntax for reading all applicant images Tracking syntax for reading all applicant images

Face recognition is done by using eigen values. We can classify the faces by using the below eigen values.

FacesEigen valuesFace 1 0.2272 Face 2 0.710 Face 3 0.2342 Face 4 0.2975 Face 5 0.2935 Face 6 0.2516 Face 7 0.2433 Face 8 0.2544 Face 9 0.2643 Face 10 0.2596 S2Face 1Face 1 0.1715 Face 2 0.1704 Face 3 0.1722 Face 4 0.1696 Face 5 0.1742 Face 6 0.1777 Face 7 0.1806 Face 8 0.1762 Face 9 0.1758 Face 10 0.1815 S3S3Face 3 0.1948 Face 4 0.1977 Face 5 0.1984 Face 6 0.2128 Face 7 0.2075 Face 8 0.2089 Face 9 0.2150 Face 10 0.2096	S1		
Face 1 0.2272 Face2 0.2710 Face3 0.2342 Face4 0.2975 Face5 0.2935 Face6 0.2516 Face7 0.2433 Face8 0.2544 Face9 0.2643 Face10 0.2596 S2Face2 0.1704 Face3 0.1722 Face4 0.1696 Face5 0.1742 Face6 0.1777 Face7 0.1806 Face8 0.1762 Face9 0.1758 Face10 0.1815 S3Face3 0.1915 Face4 0.1977 Face5 0.1948 Face4 0.1977 Face5 0.1984 Face6 0.2128 Face7 0.2075 Face8 0.2089 Face9 0.2150		Eigen values	
Face3 0.2342 Face4 0.2975 Face5 0.2935 Face6 0.2516 Face7 0.2433 Face8 0.2544 Face9 0.2643 Face10 0.2596 S2Face1Face3 0.1715 Face3 0.1722 Face4 0.1696 Face5 0.1742 Face6 0.1777 Face7 0.1806 Face8 0.1762 Face9 0.1758 Face10 0.1815 S3S3Face4 0.1977 Face3 0.1948 Face4 0.1977 Face5 0.1984 Face6 0.2128 Face7 0.2075 Face8 0.2089 Face9 0.2150	Face 1		
Face4 0.2975 Face5 0.2935 Face6 0.2516 Face7 0.2433 Face8 0.2544 Face9 0.2643 Face10 0.2596 S2Face1 0.1715 Face2 0.1704 Face3 0.1722 Face4 0.1696 Face5 0.1742 Face6 0.1777 Face7 0.1806 Face8 0.1762 Face9 0.1758 Face10 0.1815 S3S3Face3 0.1915 Face3 0.1948 Face4 0.1977 Face5 0.1984 Face6 0.2128 Face7 0.2075 Face8 0.2089 Face9 0.2150	Face2	0.2710	
Face5 0.2935 Face6 0.2516 Face7 0.2433 Face8 0.2544 Face9 0.2643 Face10 0.2596 S2Face1 0.1715 Face2 0.1704 Face3 0.1722 Face4 0.1696 Face5 0.1742 Face6 0.1777 Face7 0.1806 Face8 0.1762 Face9 0.1758 Face10 0.1815 S3S3Face3 0.1948 Face4 0.1977 Face5 0.1984 Face6 0.2128 Face7 0.2075 Face8 0.2089 Face9 0.2150	Face3	0.2342	
Face6 0.2516 Face7 0.2433 Face8 0.2544 Face9 0.2643 Face10 0.2596 S2 52 Face1 0.1715 Face3 0.1704 Face3 0.1722 Face4 0.1696 Face5 0.1742 Face6 0.1777 Face7 0.1806 Face8 0.1762 Face9 0.1758 Face10 0.1815 S3 53 Face4 0.1977 Face3 0.1948 Face4 0.1977 Face5 0.1984 Face6 0.2128 Face7 0.2075 Face8 0.2089 Face9 0.2150	Face4	0.2975	
Face7 0.2433 Face8 0.2544 Face9 0.2643 Face10 0.2596 S2Face1 0.1715 Face2 0.1704 Face3 0.1722 Face4 0.1696 Face5 0.1742 Face6 0.1777 Face7 0.1806 Face9 0.1758 Face10 0.1815 S3S3Face3 0.1915 Face4 0.1977 Face5 0.1948 Face4 0.1977 Face5 0.1984 Face6 0.2128 Face7 0.2075 Face8 0.2089 Face9 0.2150	Face5	0.2935	
Face8 0.2544 Face9 0.2643 Face10 0.2596 S2 52 Face1 0.1715 Face2 0.1704 Face3 0.1722 Face4 0.1696 Face5 0.1742 Face6 0.1777 Face7 0.1806 Face8 0.1762 Face9 0.1758 Face10 0.1815 S3 53 Face3 0.1915 Face3 0.1948 Face4 0.1977 Face5 0.1984 Face6 0.2128 Face7 0.2075 Face8 0.2089 Face9 0.2150	Face6	0.2516	
Face9 0.2643 Face10 0.2596 S2 0.1715 Face1 0.1715 Face2 0.1704 Face3 0.1722 Face4 0.1696 Face5 0.1742 Face6 0.1777 Face7 0.1806 Face8 0.1762 Face9 0.1758 Face10 0.1815 S3	Face7		
Face10 0.2596 S2 Face1 0.1715 Face2 0.1704 Face3 0.1722 Face4 0.1696 Face5 0.1742 Face6 0.1777 Face7 0.1806 Face9 0.1758 Face10 0.1815 S3 Face2 0.1951 Face3 0.1977 Face4 0.1977 Face5 0.1984 Face6 0.2128 Face7 0.2075 Face8 0.2089 Face9 0.2150	Face8		
S2 Face1 0.1715 Face2 0.1704 Face3 0.1722 Face4 0.1696 Face5 0.1742 Face6 0.1777 Face7 0.1806 Face9 0.1758 Face10 0.1815 S3			
Face10.1715Face20.1704Face30.1722Face40.1696Face50.1742Face60.1777Face70.1806Face80.1762Face90.1758Face100.1815S3Face30.1915Face40.1977Face50.1984Face60.2128Face70.2075Face80.2089Face90.2150		0.2596	
Face2 0.1704 Face3 0.1722 Face4 0.1696 Face5 0.1742 Face6 0.1777 Face7 0.1806 Face8 0.1762 Face9 0.1758 Face10 0.1815 S3 5 Face3 0.1915 Face4 0.1977 Face5 0.1984 Face6 0.2128 Face7 0.2075 Face8 0.2089 Face9 0.2150			
Face3 0.1722 Face4 0.1696 Face5 0.1742 Face6 0.1777 Face7 0.1806 Face8 0.1762 Face9 0.1758 Face10 0.1815 S3			
Face4 0.1696 Face5 0.1742 Face6 0.1777 Face7 0.1806 Face8 0.1762 Face9 0.1758 Face10 0.1815 S3			
Face5 0.1742 Face6 0.1777 Face7 0.1806 Face8 0.1762 Face9 0.1758 Face10 0.1815 S3			
Face6 0.1777 Face7 0.1806 Face8 0.1762 Face9 0.1758 Face10 0.1815 S3	Face4		
Face7 0.1806 Face8 0.1762 Face9 0.1758 Face10 0.1815 S3	Face5	0.1742	
Face80.1762Face90.1758Face100.1815S3Face10.1915Face20.1951Face30.1948Face40.1977Face50.1984Face60.2128Face70.2075Face80.2089Face90.2150	Face6		
Face90.1758Face100.1815S3Face10.1915Face20.1951Face30.1948Face40.1977Face50.1984Face60.2128Face70.2075Face80.2089Face90.2150	Face7		
Face100.1815S3Face10.1915Face20.1951Face30.1948Face40.1977Face50.1984Face60.2128Face70.2075Face80.2089Face90.2150			
S3Face10.1915Face20.1951Face30.1948Face40.1977Face50.1984Face60.2128Face70.2075Face80.2089Face90.2150	Face9	0.1758	
Face10.1915Face20.1951Face30.1948Face40.1977Face50.1984Face60.2128Face70.2075Face80.2089Face90.2150	Face10	0.1815	
Face20.1951Face30.1948Face40.1977Face50.1984Face60.2128Face70.2075Face80.2089Face90.2150			
Face30.1948Face40.1977Face50.1984Face60.2128Face70.2075Face80.2089Face90.2150	Face1	0.1915	
Face40.1977Face50.1984Face60.2128Face70.2075Face80.2089Face90.2150	Face2	0.1951	
Face50.1984Face60.2128Face70.2075Face80.2089Face90.2150	Face3		
Face6 0.2128 Face7 0.2075 Face8 0.2089 Face9 0.2150	Face4	0.1977	
Face7 0.2075 Face8 0.2089 Face9 0.2150	Face5	0.1984	
Face8 0.2089 Face9 0.2150	Face6	0.2128	
Face9 0.2150	Face7	0.2075	
Face10 0.2096			
	Face10	0.2096	

If the eigen values range from 0.23-0.29 then these faces are classified as class 1 faces. If the eigen values range from 0.17-0.21 then these faces are classified as class 2 faces. If the eigen values range from 0.19-0.21 then these faces are classified as class 3 faces and similarly for other faces.

Reading all the images	subplot(2,2,3);		
% Load the ATT image set	<pre>imshow(ScaleImage(reshape(V(:,nImages-1),imsize)));</pre>		
$\mathbf{k} = 0;$	title('2st eigen face');		
for i=1:1:6	<pre>subplot(2,2,4); plot(diag(D)); title('Eigen values');</pre>		
for j=1:1:10	Reconstruction of the image		
filename =	image_index = 12; %index of face to be reconstructed		
$sprintf('C:\MATLAB\att_faces\sdotsdotsdotsdotsdotsdotsdotsdotsdotsdot$	reconst = V*KLCoef;		
<pre>image_data =imread(filename);</pre>	diff = abs(reconst(:,image_index) - x(:,image_index));		
$\mathbf{k}=\mathbf{k}+1;$	<pre>strdiff_sum = sprintf('delta per pixel:</pre>		
$x(:,k) = image_data(:);$	%e',sum(sum(diff))/nPixels);		
anot_name(k,:) = $sprintf(\%2d:\%2d',i,j); \%$	figure;		
for plot annotations	subplot(2,2,1);		
end;	imshow((reshape(avrgx+reconst(:,image_index), imsize)));		
end;	title('Reconstructed');		
Calculating mean	<pre>subplot(2,2,2); imshow((reshape(avrgx+x(:,image_index),</pre>		
nImages = k; %total	<pre>imsize)));title('original');</pre>		
number of images	Applying Euclidean distance		
imsize = size(image_data); % size of image (they all	image_index = 40;		
should have the same size)	for i=1:1:nImages		
nPixels = imsize(1)*imsize(2); %number of pixels in image	dist_comp(i) =		
x = double(x)/112; % convert to double and	<pre>sqrt(dot(KLCoef(image_index,:)-KLCoef(i,:),</pre>		
normalize	KLCoef(image_index,:)-KLCoef(i,:))); %euclidean		
%Calculate the average	$strDist(i) = cellstr(sprintf('\%2.2f\n',dist_comp(i)));$		
avrgx = mean(x')';	4. RESULTS		
for i=1:1:nImages	The testing strategies classified as black-box testing and		
x(:,i) = x(:,i) - avrgx; % substruct the	white-box testing, the black-box mainly aim to interface level and white-box testing the software and predicting on close		
average	examination of details of procedural.		
end;	Testing Strategies:		
<pre>subplot(2,2,1); imshow(reshape(avrgx, imsize)); title('mean</pre>			
face');	Training is the most crucial period of the system. It is training of images that decide how well the system is going to work.		
Calculating covariance matrix and finding eigen values	Number of test samples must be optimal. It should not be		
cov_mat = x'*x;	more, thus increasing the burden on the user, neither it should be so small that it is not able to recognize the image. To test this optimal number here we have considered 60 images of six		
[V,D] = eig(cov_mat); %eigen values of cov matrix			
$V = x*V*(abs(D))^{-0.5};$	persons. Each persons 10 images are considered with some variations in each of the face. Here we are selecting individual images and adding these images to the database. These images are considered as training images.		
<pre>subplot(2,2,2); imshow(ScaleImage(reshape(V(:,nImages</pre>			
),imsize))); title('1st eigen face');			

Sample images:

Sample images shown below were collected from the ORL database available in the internet. 400 images are available in this database we have taken 60 images.

S No	Test image	Training image
1	(a. 6) 	
2		
3		
4	122	22222222222
5		
6	in the second	

The results of all the faces are taken as test images individually and then compared with other faces already present in the database and then Euclidean distance is calculated and distance from face space is also calculated.

S.n	Image	Clas	Euclidean	Distance from
0	s	s	Distance	facespace
1	face1	1	5.2742e+003	2.33456+003
2	face2	1	6.5801e+003	1.8946e+003
3	face3	1	4.2707e+003	2.74756+003
4	face4	1	5.4086e+003	1.8056e+003
5	face5	1	3.6036e+003	1.9174e+003
6	face6	1	3.6036e+003	1.9174e+003
7	face7	1	2.1142e+003	2.4646e+003
8	face8	1	3.7614e+003	2.2800e+003
9	face9	1	5.0469e+003	2.3498e+003
10	face10	1	3.9000e+003	2.3745e+003
11	face1	1	1.3312e+003	2.1282e+003
12	face2	1	908.0876	1.7267e+003
13	face3	1	592.3151	1.9892e+003
14	face4	1	992.6756	1.7416e+003
15	face5	1	914.7324	2.1271e+003

The above are 20 images of two classes. Each class contains ten images of a particular person taken with slight variations. The individual image is taken as test image, and its Euclidean distance and distance from face space are calculated. It also displays that a particular face is similar to which class face.

Sample outputs: Input : select 1 face image

After performing face recognition Output: The nearest class is number 1 with a distance equal to 5.2742e+003 The distance from Face Space is 2.33456+003

5. CONCLUSION

The study aims to know the facial recognition of an applicant to avoid duplication in the process of recruitment, especially in shortlisting of curriculum vitae and resume of the applicant. The study has adopted principal component analysis, MATLAB and eigenface approach to achieve desired outcomes.

5.1 AVENUES FOR FUTURE RESEARCH.

The study has limitation in its sample applicant images. The researchers can extend their study using taking more applicant images, with facial expression, iris, eyes and noise. There are sophisticated tools can be used as mobile sensor network and robotics automation process, to evaluate curriculum vitae, scheduling, sourcing, digital foot print, personality screening and applicant emotional intelligence.

REFERENCES

- N. Nawaz, How far have we come with the study of artificial intelligence for recruitment process, Int. J. Sci. Technol. Res., vol. 8, no. 07, pp. 488–493, 2019.
- M. H. Yang, D. J. Kriegman, and N. Ahuja, Detecting faces in images: a survey, *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 24, no. 1, pp. 34–58, 2002. https://doi.org/10.1109/34.982883

- 3. I. S. and A. W. Waqas Haider, Hadia Bashir, Abida Sharif, A survey on face detection and recognition techniques, *Res. J. Recent Sci.*, vol. 3, no. 4, pp. 56–62, 2005.
- A. Sharma, R. Kumar, and V. Mansotra, Real time face detection, recognition and tracking system for human activity tracking, Int. J. Innov. Res. Comput. Commun. Eng. (An ISO Certif. Organ., vol. 3297, no. 6, pp. 11449–11455, 2016.
- M. Baykara and R. Das, Real time face recognition and tracking system, 2013 Int. Conf. Electron. Comput. Comput. ICECCO 2013, no. November 2013, pp. 159–163, 2013.
- A. Gurel, C., & Erden, Design of a face recognition system, 15th Int. Conf. Mach. Des. Prod., no. June, 2012.
- S. Sanju and R. Sharma, An analytical survey on face recognition systems, Int. J. Ind. Electron. Electr. Eng., vol. 6, no. 3, pp. 61–68, 2018.
- A. Pentland, B. Moghaddam, and T. Starner, View-based and modular eigenspaces for face recognition, *Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.*, vol. 02139, pp. 84–91, 1994.
- 9. M. Turk and A. Pentland, Eigedces for recognition, J. Cogn. Neurosci., vol. 3, no. 1, pp. 72–86, 1991. https://doi.org/10.1162/jocn.1991.3.1.71
- 10. L. Q. Ha and M. Rahman, **Semantic search on applicant tracking system**, *Ijarcce*, vol. 6, no. 5, pp. 635–640, 2017.

https://doi.org/10.17148/IJARCCE.2017.65122

USER MANUAL

Main Menu

After selecting an image

