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ABSTRACT 
 
Recently a machinery fault detection technique based on the 
fictitious frequency response function (FRF) was developed 
especially when a measurement sensor cannot be attached to 
an ideal point due to geometric or environmental restrictions. 
The fictitious FRF based fault detection method has the great 
flexibility in regards to choice of sensor locations such that 
they can be selected almost arbitrarily. However, the method 
requires two sensors and assumes low correlation between 
two simultaneously measured signals within the interested 
frequency range. This assumption of low correlation is vague 
in practical applications. In this paper, the fault diagnostic 
performance of the method is investigated in regards to the 
correlation coefficient between two measured signals. A 
practical guideline for the selection of the two sensor 
locations is then proposed.  
 
Key words: Fictitious Frequency Response Function, 
Correlation Coefficient, Sensor Location, Fault Detection.  
 
1. INTRODUCTION 
 
Nowadays, detecting an incipient fault symptom is becoming 
increasingly important in the area of condition-based 
maintenance (CBM) of rotating machinery. Accordingly, 
numerous fault detection techniques have been introduced 
based on the time-series analysis, statistical and artificial 
intelligence techniques, and time-frequency analysis [1~3]. 
Most of these diagnostic methods utilize measured vibration 
signals. In order to successfully apply such methods, the 
measurement sensors must be attached as close to the fault 
component of interest as possible. For example, Ogbonnaya et 
al. emphasized on the importance of knowing where and how 
to take vibration readings, and concluded that the 
measurement sensors should be attached to the bearing caps 
of the gas turbine engines [4]. Another example is that an 
acceleration sensor is attached directly on to the gearbox 
when the narrowband demodulation analysis for detecting 
localized gear faults is performed [5].  
 
 

 

The importance of sensor locations is not limited to condition 
monitoring area, but includes many other practical 
engineering applications such as designing smart devices [6, 
7]. However, it is not always possible to place measurement 
sensors on ideal points in most practical situations as a result 
of geometric restriction or temperature limitation. In such 
cases, the measurement sensors have to placed somewhere 
away from the component of interest. As a result, the 
signal-to-noise ratio of the measured signal may become too 
low to detect any incipient fault symptom, hence most fault 
detection methods may not be easily applicable. 
 
Recently, the concept of fictitious frequency response function 
(FRF) has been developed and applied to various engineering 
problems [8 – 11]. Particularly, in order to overcome the 
problems mentioned above, the fictitious FRF based fault 
detection method has been made using two simultaneously 
measured vibration signals and proved to be very effective in 
incipient fault detection [9]. However, the assumption made 
in this method is that the cross-spectrum between two signals 
measured during healthy operating condition of a machine is 
very low in the range of the expected fault frequencies. This 
assumption is somewhat vague and may result to challenges 
in the practical application to situation if one lacks any prior 
knowledge on the expected fault frequencies. That is, two 
measured signals are correlated in some frequencies while 
they are not correlated in some other frequencies. Therefore, 
it can be very complicated and time consuming to examine 
every expected fault frequency in detail in order to check 
whether the selected sensor locations are valid. 
 
The aim of this paper is to present a practical and easy 
guideline for selecting two measurement sensor locations for 
the fictitious FRF based fault detection method on the basis of 
the correlation coefficient in the time domain. In practice, as 
cited above, two simultaneously measured signals possess 
both correlated and uncorrelated components. For instance, 
the rotating frequency and its harmonics are correlated 
components regardless of the location of the two 
measurement sensors, while the noise dominated frequencies 
tends to be less correlated as the distance between two sensors 
widens. 

 
 

On the Selection of Sensor Locations for the Fictitious FRF based Fault 
Detection Method 

Kihong Shin1 
1 Department of Mechanical & Automotive Engineering, Andong National University, Andong, Korea, 

kshin@anu.ac.kr 
 

                                                                                                                                                                                                                             
    ISSN   2347 - 3983 

Volume 7, No. 11 November 2019  
International Journal of Emerging Trends in Engineering Research 
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter277112019.pdf 

https://doi.org/10.30534/ijeter/2019/277112019 
 

 

  



Kihong Shin,  International Journal of Emerging Trends in Engineering Research, 7(11), November  2019, 569 - 575 

570 
 

 

Consequently, the correlation coefficient between two signals 
cannot be zero regardless of whether the machine is in healthy 
conditions or not, but is dependent on the locations of 
measurement sensors. In other words, the correlation 
coefficient between two signals is very high when two sensors 
are closely placed to each other even for noise dominated 
frequencies. Conversely, the correlation coefficient becomes 
small enough to apply the fictitious FRF based fault detection 
method successfully when the two sensors are sufficiently 
placed away from each other. 
 
In this paper, the correlation coefficient for various pairs of 
sensors is examined using the same experimental setup as in 
[9], and the fault diagnostic performance is compared based 
on the sensor pairs. Consequently, it was demonstrated that 
the correlation coefficient in the time domain could be used as 
a good practical guideline for determining the sensor 
locations for the fictitious FRF based fault detection method. 
 
2. A BRIEF REVIEW OF THE FICTITIOUS FRF 
BASED FAULT DETECTION METHOD 
 
This section briefly reviews the principle concept of the 
fictitious FRF based fault detection method [9]. Consider 
Figure 1 that shows a single input and two outputs model, 
which corresponds to two arbitrarily selected sensor locations. 
Let X1( f  ) and X2( f ) be the frequency representation of 
measured signals in healthy operating condition. If two 
measurement sensors are placed sufficiently away from each 
other, the correlation between two signals is very low (but not 
perfectly uncorrelated) for noise dominated frequency 
components. The cross-spectral density function of those 
frequencies can therefore be written as 
 

1 2
( ) 0X XS f   (1) 

 

Y1( f ),
measured signal at S1

New excitation 
source, S( f )

Path 1, H1

Path 2, H2 Y2( f ),
measured signal at S2





U1( f )

X1( f ), signal at healthy condition

X2( f ), signal at healthy condition

U2( f )

 
Figure 1: Single input - two outputs model 

 
Later, if a new excitation source, S( f ) occurs as a result of a 
new localized fault within the previously noise dominated 
frequency region, then the newly measured signals Y1( f ) and 
Y2( f ) at the same measurement points contain both 

uncorrelated noise signals at healthy condition and correlated 
new fault signals as shown in Figure 1. Therefore, the 
cross-spectral density function between two signals at this 
frequency component can be written as  
 

1 2

*
1 2( ) ( ) ( ) ( )Y Y ssS f H f H f S f  (2) 

 
Although the cross-spectrum expressed in equation (2) 
contains the fault source power, the fault symptom may not be 
easily noticeable due to a poor signal-to-noise ratio especially 
in the case of an incipient fault. The fictitious FRF based fault 
detection method solves this problem by utilizing a fictitious 
input-output relationship between two cross-spectral density 
functions as shown in Figure 2. 
 

Hfic( f )1 2
( )X XS f

1 2
( )Y YS f

Healthy condition A new faultA fictitious FRF
 

Figure 2: A fictitious input-output model 
 

The fictitious FRF, Hfic( f ), informs the difference between the 
healthy state and the faulty state of the machine, and can be 
written as 
 

1 2

1 2 1 2

*
1 2

fic

( ) ( ) ( ) ( )
( )

( ) ( )
Y Y ss

X X X X

S f H f H f S f
H f

S f S f
   (3) 

 
The denominator of equation (3), 

1 2
( )X XS f , is very small in 

the healthy condition as described in equations (1). This 
means that the magnitude of the fictitious FRF may be greatly 
amplified if there is a new fault source power, ( )ssS f . This 
demonstrates that the fictitious FRF based fault detection 
method can be very useful in monitoring early fault even 
when the ideal sensor points are unavailable.  
 
However, if the denominator of equation (3), 

1 2
( )X XS f , is 

large, i.e., two signals are correlated to some degree at that 
frequency, the fault symptom may not be detected until the 
fault source power, ( )ssS f  becomes strong enough. Thus, the 
right choice of the sensors location is an important practical 
aspect. 
 
3.  FAULT DETECTION PERFORMANCE AND 
CORRELATION COEFFICIENTS FOR VARIOUS 
SENSOR PAIRS 
 
As mentioned in the previous section, a pair of sensor 
locations should be carefully selected for the fictitious FRF 
based fault detection method in order to detect any fault 
symptoms as early as possible. Since there is no analytic 
approach of finding the appropriate sensor locations, in this 
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paper, the use of correlation coefficient in the time domain is 
investigated by examining the fault diagnostic performance 
based on the correlation coefficients calculated for various 
cases of sensor pairs.  
 
The same experimental setup is used as in [9], however, a 
couple of more sensor locations are considered as shown in 
the following section. It is validated that the correlation 
coefficient could easily be utilized as practical guideline of 
judging whether the selected location of the two sensors is 
appropriate or not. 
 
3.1 Description of the Experimental Setup 
 
Consider an experimental setup as shown in Fig. 3 where a 
rotor is driven by a servo AC motor at 30 Hz (1800 rpm) and 
is supported by two ball bearings. Four measurement points 
are considered: one accelerometer (S1) is attached on the 
far-end bearing housing while three accelerometers (S2 ~ S4) 
are attached on the base frame as shown in the figure 3 . 
 

S2

S1

S3

S4

 
Figure 3: Experimental setup and measurement points 

 
Two fault cases at the far-end bearing are considered: one on 
the outer race and the other on the inner race of the bearing. 
The bearing fault characteristic frequency of each case is 
given by [12] 

 
BPFO (Ball-pass frequency, outer race)

1 cos
2

BPFI (Ball-pass frequency, inner race)

1 cos
2

r

r

nf d
D

nf d
D





   
 

   
 

 (4) 

 
where fr is the rotating frequency of the rotor, n is the number 
of balls, d is the ball diameter, D is the pitch diameter, and  is 
the angle of the load from the radial plane. The parameters in 
this experiment are fr  30 Hz, n  8, d  8 mm, D  34.5 mm, 
and   0, and the expected fault characteristic frequencies 
are BPFO  93 Hz and BPFI  147 Hz, respectively. 
 

3.2 Fault Detection Performance and Correlation 
Coefficients for Various Sensor Pairs 
 
Four accelerometer signals were measured simultaneously for 
each of the three conditions of the far-end bearing: healthy, 
outer race fault, and inner race fault. A total of six pairs of 
sensors are considered in the construction of cross-spectral 
density functions that corresponds to the sensor pairs given 
by: ‘S1 & S2’, ‘S1 & S3’, ‘S1 & S4’, ‘S2 & S3’, ‘S2 & S4’, and ‘S3 & 

S4’. 
 
The cross-spectral density function for the healthy condition 
is utilized as an input while that of the faulty condition is used 
as an output when the fictitious FRF is obtained as shown in 
Figure 2. 
 
The fault detection performance is quantitatively examined 
for each pair of sensors. First, the magnitude spectrums of the 
fictitious FRFs in the case of the outer race bearing fault are 
shown as in Figure 4. The outer race fault characteristic 
frequency (93 Hz) is observed for all cases of sensor pairs. 
However, sensor pairs of ‘S1 & S4’, ‘S2 & S4’ and ‘S3 & S4’ 
exhibited the fault frequency more distinctively compared to 
the other three sensor pairs which are relatively close to each 
other. 
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(a) Sensor pair: S1 & S2 
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(b) Sensor pair: S1 & S3 
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(c) Sensor pair: S1 & S4 
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(d) Sensor pair: S2 & S3 
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(e) Sensor pair: S2 & S4 
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(f) Sensor pair: S3 & S4 

 

Figure 4: Magnitude spectrum of the Fictitious FRF in the 
case of BPFO 

Similar results are obtained in the case of inner race bearing 
fault where the fault characteristic frequency was found to be 
147 Hz as shown in Figure 5. The same sensor pairs as in the 
case of the outer race bearing fault (S1 & S4, S2 & S4 and S3 & 
S4) reveals the fault frequency better compared to the other 
sensor pairs.  These results indicate that a larger distance 
between two sensors implies a smaller correlation to the fault 
characteristic frequency in healthy bearing condition. 
Specifically, the denominator of equation (3) is small, thus, 
the magnitude of the fictitious FRF at this fault frequency is 
greatly amplified for the sensor pairs of ‘S1 & S4’, ‘S2 & S4’ 
and ‘S3 & S4’. Notably, sensor pair with the largest distance 
(S3 & S4) showed the greatest magnitude as shown in Figure 
4(f) and Figure 5(f). 
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(a) Sensor pair: S1 & S2 
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(b) Sensor pair: S1 & S3 
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(c) Sensor pair: S1 & S4 
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(d) Sensor pair: S2 & S3 
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(e) Sensor pair: S2 & S4 
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(f) Sensor pair: S3 & S4 

 

Figure 5: Magnitude spectrum of the Fictitious FRF in the 
case of BPFI 

 
From the results shown above, it could be emphasized that the 
distance between two measurement sensors should be wide 
enough for better detection of a fault symptom. However, it is 
not easy to decide whether the selected sensors are located 
sufficiently far away from each other. Since there is no 
analytic solution for this, the correlation coefficient calculated 
in the time domain is investigated whether it could be used as 
a crucial reference in selection of sensor locations. The 
correlation coefficient is a measure of the linear relationship 
between two signals, and is defined as [13].  
 

1 2

1 2

1 2Cov( , )
x x

x x

x x


 
  (5) 

 
where Cov(x1,x2) is the covariance between signals x1(t) and 
x2(t), while 

1x
 and 

2x  are the standard deviation of the 

signals. The correlation coefficients between signals 
corresponding to each sensor pairs for various bearing 
conditions are calculated and listed in Table 1. 
 
For all bearing conditions, sensor pairs of ‘S1 & S4’, ‘S2 & S4’ 
and ‘S3 & S4’ showed significantly low values compared to the 
other sensor pairs, as highlighted in bold font in the table 
above. These sensor pairs are exactly similar to those which 
have shown better fault detection performance in Figure 4 and 
5.  
 

Table 1: Sensor pairs and corresponding correlation 
coefficients for various bearing conditions 

Sensor 
pair 

Healthy 
condition 

Outer-rac
e defect 

Inner-rac
e defect Average 

S1 & S2 0.754 0.712 0.730 0.730 

S1 & S3 0.736 0.683 0.781 0.733 

S1 & S4 0.193 0.177 0.194 0.188 

S2 & S3 0.747 0.671 0.770 0.729 

S2 & S4 0.204 0.143 0.215 0.187 

S3 & S4 0.178 0.192 0.268 0.213 

 
The differences in correlation coefficients is more clearly 
visible in Figure 6(a), and the correlation coefficients 
averaged over three bearing conditions are shown in Figure 
6(b). In order to compare the fault detection performance 
clearly, the magnitude of fault frequency component for each 
sensor pair is shown in Figure 6(c) for the outer race fault case 
and in Figure 6(d) for the inner race fault case, respectively. 
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(a) Correlation coefficients 
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(b) Average value of correlation coefficients 
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(c) Magnitude of the BPFO component 

 

S1 & S2 S1 & S3 S1 & S4 S2 & S3 S2 & S4 S3 & S4
Sensor pairs

0

100

200

300

400

500

600

M
ag

ni
tu

de
 (B

PF
I)

 
(d) Magnitude of the BPFI component 

 

Figure 5: Magnitude spectrum of the Fictitious FRF in the 
case of BPFI 

 
Figure 6 indicates that the fault diagnostic performance is 
greatly related to the correlation coefficient between the two 
measured signals, such that the sensor pairs having a 
sufficiently low correlation coefficient guarantee a good fault 
detection ability. In this specific experiment, the cases which 
the correlation coefficient was less than 0.3 showed 
outstanding fault diagnostic performance. Conversely, those 

with a correlation coefficient of about 0.7 or above showed 
poorer performance. In this case, although the fault 
characteristic frequency can be observed in the fictitious FRF, 
it may not be suitable for detecting an incipient fault 
symptom. 
 
From the correlation analysis, it may be concluded that a 
simple calculation of correlation coefficient in the time 
domain can be utilized as a good criterion to determine 
whether a selected pair of sensors are located appropriately. 
Although the experimental results shown in this paper cannot 
be generalized for all machines, a correlation coefficient 
lower than 0.3 may be proposed as a useful guideline for 
selecting sensor locations. 
 

5. CONCLUSION 
 
In this paper, the importance of sensor locations is 
emphasized when applying the fictitious FRF based fault 
detection method by quantitatively comparing the fault 
diagnostic performance with respect to the locations of two 
measurement sensors. Experimental results demonstrate that 
the distance between the sensors must be large enough such 
that the correlation coefficient between two measured signals 
is sufficiently low in order to detect an early fault symptom 
 
For the experiments shown in this paper, correlation 
coefficient below 0.3 resulted in good diagnostic performance 
while in cases of correlation coefficient above 0.7 exhibited 
poorer performance. Even though the relationship between 
the correlation coefficient and the sensor locations may not be 
generalized analytically, the result of correlation analysis 
verifies that the correlation coefficient could be utilized as a 
crucial practical guideline to judge whether the pair of 
measurement sensors are located appropriately, and that the 
values of correlation coefficients shown in this paper may be 
utilized as a good reference for other applications. 
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