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ABSTRACT 
 
Filter Bank based Multi-Carrier technique is a viable 
solution to obtain higher spectral efficiency, out-of-band 
emissions, higher energy and extended data rates over 
Orthogonal Frequency Division Multiplexing (OFDM) of 
future 5G applications. To achieve the significant gains at 
the massive MIMO-FBMC system, low complexity 
compressed sensing method serves along with the 
generalized approximate message passing (GAMP) 
algorithm is proposed into time-domain scenarios. However, 
the sparsity estimation between the communicating 
channels, non-zero vector distribution can be taking into 
consideration the Gaussian mixture accordingly, learn their 
characteristics towards the expectation-maximization 
procedure. The results of the simulation have proved the 
performance of the proposed estimation approach of channel 
keeping with minimum pilot overhead and developed 
exceptional Bit Error Rate (BER) performance of the 
system. 
 
Key words: Approximate message passing, Compressed 
sensing, Channel estimation, Gaussian Mixture, Massive 
MIMO-OFDM. 
 
1.  INTRODUCTION 
 
The huge demand of high data rates in 5G technology, the 
conventional MIMO antenna system needs to extend 
massive MIMO to increase the potential support of spectral 
efficiency, reliability & overall system capacity [1, 5]. The 
subsequent work analyzed on massive MIMO systems [2], to 
provide higher spectral efficiency using simple techniques of 
transmission and reception. Because of more number of 
transmitters and receivers are using at massive MIMO 
systems, the CSIT acquisition resembles as a most 
challenging problem [15]. 
      In FDD systems no channel reciprocity attained due to 
usage different frequencies in uplink and downlink 
transmission. Usually, estimating pictures of the channel 

requires a specific sequence to train provided that 
information of the previous outputs received in course of 
training on standard procedure is available. Additional 
feedback is required for getting the statistics of non-
stationary MIMO. To circumvent this situation, a novel 
technique of CSI determination along with feedback strategy 
giving accurate reliable CSIT having reduced complexity as 
well as overhead is desirable. Compressed sensing is offers 
suitable method for estimating short sequence type of sparse 
with unknown statistics [11, 12]. In this paper, combined of 
LS and CS techniques are used to obtain estimation in FDD 
[15, 16] having various of sparse and dense vectors. Due to 
improved recovery performance methods in [3], Bayesian 
estimation scores over other equivalent methods; it can 
increase monitoring of fractional space of the channel by 
reducing pilot overhead.  
 
The Massive MIMO-FBMC is preeminent and supportive 
technology to 5G wireless applications that has to maintain 
excellent data rate and accuracy. To achieve these eminent 
properties, knowledge of channel information is a most 
challenging issue in massive MIMO- FBMC systems, 
therefore, it is necessary to apply relevant estimation 
techniques to channels between all transmitting and 
receiving antennas accordingly. In general, communicating 
channels are inherently sparse; however, the majority of 
channels viewed as zero coefficients at channel impulse 
response (CIR). With a focus on channel sparsity, we 
implemented the compressed sensing method to characterize 
the channel properties of the proposed model [1].  
   The sparsity adaptive matching pursuit (SAMP) provides 
high performance at a wide range of practical applications 
without channel sparsity. However, there is inconsistency 
between convergence speed and recovery accuracy because 
SAMP has maintained a constant step size [2, 3]. OFDM is 
one of the modulating systems that provide to mitigate 
interference and cross talk resulting from the conversion of 
the serial data stream into parallel data stream at different 
frequencies. OFDM massive MIMO compressed sensing 
based channel estimation is set as sparse and dense vectors. 
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These vectors are a combination of zero and nonzero vectors 
respectively. On the perfect sparse recovery, the sparse 
signal is reconstructed through the support of the LS 
technique [12]. 
The expectation-maximization (EM) steps are established to 
accomplish quantities of estimation following a Gaussian 
mixture model. Furthermore, the generalized approximate 
message passing (GAMP) which is an active algorithm in 
i.i.d distributed random signal [14] is exploiting to develop 
the expectation step and also mitigate computational 
complexity. The fast iterative truncation algorithm (FITRA) 
which is for sparse representation that was In current work, 
we established and compared with a renewed compressed 
sensing aided over Gaussian mixture algorithms for down 
link massive MIMO-FBMC system with a reference of ZF 
pre-coding technique respectively. To estimate the error 
performance, the truncated and Bernoulli Gaussian mixture 
procedures are considered and entrusted to the unknown 
signal.  
Simulated results found that the suggested algorithms 
provide a substantial improvement in terms of computational 
difficulties. The remainder part of this work is partitioned as 
per the following. Second Section discusses down link 
system model. The third and forth section covers training 
sequence design and the principle of estimation of the 
proposed technique, the fifth and sixth section addresses the 
random noise with GAMP and covers GAMP based FBMC 
channel estimation for comparing various OMP approaches, 
seventh section includes discussions of simulation results, 
and finally seventh section concludes. 
 
2.  SYSTEM MODEL 
 
Consider the transmitter, receiver antennas TN and RN  
respectively, and M  subcarriers through time-domain 
MIMO-FBMC system. In addition to a set of parallel data 
symbols are transmitted through a bank of synthesis and 
analysis filters. The prototype filter decides the localization 
in time-domain and frequency-domain of the generated 
waveform. The frequency-domain data symbols to be 
transmitted on the thm subcarrier of the thk time constant in 

thi transmit antenna is ( )i
mx k . 

 

 

 
 
 
 
 
 
 
Figure 1: Outline of compressive learning. 
 

The ( )i
mx k  is defined as ( ) ( )i i

m md k k , where ( )i
md k and 

( )i
m k are real data and real orthogonality between adjacent 

grids, respectively. The transmitted signal represented in 
time-domain as follows: 
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Here ( ) p n represents the proto type filter. 
The received signal can be described with variance 2
behalf of thj antenna as given by 
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The desired time-frequency decoded signal from filter bank 
output at thq subcarrier and tht time constant in the thj
antenna is described by 
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3.  GAUSSIAN MIXTURE GENERALIZED AMP 

To address the random Gaussian noise, generalized AMP 
(GAMP) algorithm, proposal was made by Rangan [7]. This 
proposed approach need not require knowledge about 
푝 (. ) and the postulated noise variance, nevertheless it 
presents great recovery performance, that need to know 
about these postulated information. In this Gaussian-mixture 
GAMP algorithm, we consider the coefficient in 풙 =
[푥 ,푥 , … ,푥 ] is approaching to the i.i.d distribution with 
marginal probability density function can be expressed as  

  
푝 (푥; 휆,흎,휽,휙) 	= (1 − 휆)훿(푥)

+ 휆 휔 풩(푥;휃 ,휙 )																									(7) 
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Where 훿(∙) function denotes Dirac delta identity and 휆 is the 
percentage of sparsity rate. And (휔,휃,휙)  coefficients are 
expressed as the weight, mean, and variance of 푘 	Gaussian 
Mixture components respectively. In the remainder part 
∑ 휔 = 1 and zero mean and variance 휓 is used as noise. 
Here, the postulated parameters of GM-GAMP 풒 ≜
	(휆,흎,휽,휙,휓) are taken into consideration as known and 
fixed variables. Firstly, carry out the conditional 
distribution 	푝 | (푦 |푧 ;풒) ; the expanded postulated 
approximation can be expressed as 
 

푝 |풀 푧 풚; 푝̂ , 휇 ,풒 ≜
푝 | (푦 |푧 ;풒)풩 푧 ; 푝̂ ,휇
∫ 푝 | (푦 |푧;풒)풩 푧; 푝̂ , 휇

				(8) 

 
The moments of above density function under AWGN 
assumption is as 

퐸 |풀 푧 풚; 푝̂ ,휇 ,풒 = 푝̂ +
휇

휇 + 휓
(푦 − 푝̂ )														(9a) 

var |풀{푧 풚; 푝̂ ,휇 ,풒} =
휇 휓
휇 + 휓

)																																					(9b) 

 
Secondly for computing the conditional 
distribution 	푝 | (푥 |풚;풒) ; the expanded postulated 
approximation can be expressed as 
 

푝 |풀(푥 |풚; 푟̂ ,휇 ,풒) ≜
푝 (푥 ;풒)풩(푥 , 푟̂ ,휇 )
∫푿푝 (푥;풒)풩(푥, 푟̂ ,휇 )

																	(10) 

 
To achieve subsequent approximation of GM-GAMP 
substitute the postulated parameters (3) into (8) and 
simplified expression can be given as 
 
푝 |풀(푥 |풚; 푟̂ ,휇 ,풒) = 

(1− 휆)훿(푥 ) + 휆 휔 풩(푥 ; 푟̂ , 휇 )
풩(푥 ; 푟̂ , 휇 )

휍 	 

= (1 − 휋 )훿(푥 ) + 휋 훽 , 풩(푥 ;훾 , , 푣 , ) 												(11) 

 
In (11) 휋 indicates posterior support probability values, 
Pr	{푥 ≠ 0|풚;풒}  of GM-GAMP approximation. The 
normalized factor in (11) can be written as 
 
휍 ≜ ∫푿푝 (푥;풒)풩(푥, 푟̂ , 휇 ) = (1 − 휆)풩(0; 푟̂ , 휇 ) 

+휆 휔 풩(0; 푟̂ − 휃 ,휇 + 휙 )			(12) 

 
Both (13) and (14) can be derived from (13a) through 
Gaussian probability density function multiplication rule. In 
(14) the following dependent variables can be given by 
 

휋 ≜
1

1 +
∑ 훽 ,

(1 − 휆)풩(0; 푟̂ , 휇 )

																																			(13a) 

훾 , ≜

푟̂
휇 + 휃 /휙

1
휇 + 1/휙

and	푣 , ≜
1

1
휇 + 1/휙

																											(13b) 

훽 , ≜ 휆휔 풩(0; 푟̂ ;휃 ,휇 + 휙 )	and	훽 , ≜
훽 ,

∑ 훽 ,
					(13c) 

 
To achieve effectiveness of GAMP approximation along 

with L-term Gaussian Mixture is used to overcome 
difficulties on realistic implementations. Using Bayesian 
parameter estimate method through AMP algorithm [4] 
provides accurate approximation that involved with central-
limit-theorem, together with independent identically 
distributed zero-mean Gaussian A. 

4. GAMP-BASED FBMC CHANNEL ESTIMATION 

Let combine all receiving antennas to justify in matrix form 
as 
 
y = Ah + z                (14) 
 
Where  and A h is the vector matrix of the channel, having a 

dimension of RN M , with  
R

( )(1) (2)
N = × , , ... TNA I A A A

and 11 12 = , , ... 
T R

TT T T
N N  h h h h respectively. Consider the 

estimation of  P P M pilot subcarriers from 
compressed sensing theory, rewrite the (14) yields, 
 
퐘 = 퐀 퐡 + 퐙 	         (15) 
 

Here Py denotes respected frequency domain channel vector 

and PA is the P rows of A of channel vector. 

The PDF of Gaussian prior distribution for modeling of the 
sparsity of the channel, the CIR taps, 	ℎ  are identified as 
follows: 
 

( ) ( ; ;    ) 1 ( )
nh l l

h h

K Kp h CN h h
L L

    
 

  
      

(16) 

Here 
h

K
L

denotes sparsity rate that are non-zero CIR 

coefficients and    211( ; ; ) n nh
l l nCN h e

        
expressed as complex Gaussian probability density function. 
The CIR coefficients can be found from pilot observations of 
푃푁 , the estimated values are expressed by 

	ℎ = ∑ 	ℎ 푝(	ℎ 푌 )	          (17) 
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5.  CS-BASED FBMC CHANNEL ESTIMATION 

In this section describes the CS based massive MIMO 
channel estimation model of 푛  antenna that is denoted as 

풚 = diag (퐗 )퐅 퐡 + 풛 																																														(18) 

 
To estimate unknown vector 퐡  of massive MIMO 

system, the proposed CS recovery algorithm is employed. In 
many conventional greedy algorithms requires priori 
information at receiver side. Moreover, the greedy iteration 
schemes suffer with inaccuracy and more computational 
complexity [12, 15]. Either of these two schemes has been 
successfully detected the fading channel information [14]. 

 
Algorithm 1: 

CS-Based Channel Estimation of Massive MIMO-FBMC 
 

Input: The first formulations 	ℎ , 휏  and I  are selected. 

1. Initialize  ℎ (0) = 휏 (0) = 푡 = 푠̂(−1) = 0  
2. 휏 (푡) = ∑ |푎 | 휏 (푡)  and 		푝̂ (푡) =

∑ 푎 ℎ (푡)− 휏 (푡)푠̂ (푡 − 1); compute m value 
for each step  of linear output; 

3. 푡 = 푡 + 1 
4. 휏 (푡) = 1/휏 (푡) + 	휎 and 	푠̂ (푡) = (푦 −

푝̂ (푡))/휏 (푡) + 	휎 ; compute m value for each 
step of nonlinear output; 

5. 휏 (푡) = 1/∑ |푎 | 휏 (푡)  and 푟̂ (푡) = ℎ (푡) +
휏 (푡)1/∑ 푎 푠̂ (푡); compute n value for each 
step of linear input; 

6. ℎ (푡 + 1) = ∑ 푏 푝∈[ ]  and 휏 (푡 + 1) =
∑ |푏 | 푝∈[ ] − ℎ (푡 + 1) ; compute n value for 
each step nonlinear input; 

7. 푝 = 휙(푏 ; 푟̂ (푡), 휏 (푡))퐾푃  
8. 푃 =

1− 휙 0; 푟̂ (푡), 휏 (푡) +

	∑ 휙(푏 ; 푟̂ (푡), 휏 (푡))∈[ ]  
9. 휙 푢; 푟̂ (푡), 휏 (푡) = exp	(−|푢 − 푟̂ (푡)| /휏 (푡)) 

End while 
Output: estimate the CIR		ℎ (푡 + 1) 

    However, the proposed CS recovery algorithm need not 
consider the channel level as a prior information. This 
iteration is in accordance with the Partial common support 
information (PCSI) and depending on an iteration threshold. 
The PCSI of the 푛  receive antenna is expressed by 

 

퐈 = 퐈 + (푛 − 1)퐿																																																										(19) 

In the CS based channel estimation algorithm the 
following notations are involved.   

Updated measurement matrix, Observation vector, column 
index, iteration threshold, updated index, estimated channel 
vector, and residual are expressed by 	A ,푌 , λ , ε,Λ , r ,퐡 ,  
respectively [5]. There are two major challenges with 
applying OMP to massive data [13]. Firstly, the computation 
complexity and an iteration storage cost are relatively large 
and secondly, the single coefficient selection simultaneously 
requires the corresponding k iterations to estimate with k 
coefficient of q. whenever, the k iterations are increases that 
leads impracticably slow down its performance.  

CS based schemes (Static or Dynamic LS, OMP, CS-
Aided and BCS), the number of iterations are based on 
sparsity level of the channel [3, 6, 11] whereas the proposed 
method closes iteration only when the residual is on the 
threshold of 0. Consequently, the recovery accuracy can be 
assured. Moreover, when acquired accurate partial common 
support information, the number of iterations are limited; 
leads decrease in computational complexity of the proposed 
method. 
To achieve this objective, we propose a Gaussian mixture 
(GM) methodical approach and afterwards by utilizing the 
expectation-maximization (EM) method [8, 14] to determine 
the noise variance and GM parameters. However, no need 
for concern quantities for the EM updates because these 
computations made by suggested GAMP algorithm to 
decrease computational complexity [9]. The proposed 
generalized EM-TGM-AMP and EM-BGM-AMP can be 
effectively addressing at parametric estimation with i.i.d 
zero-mean Gaussian. 

6. DISCUSSIONS AND SIMULATION RESULTS 
 

The efficiency of proposed truncated Gaussian mixture 
EM-GAMP and Gaussian Bernoulli EM-GAMP algorithm 
can be compared in accordance with obtained results of 
zero-forcing (ZF) pre-coding OMP and CS-Aided approach.  

 

Figure 2: MSE versus SNR recovery performance to 
compressed sensing based OFDM with various schemes.  
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 Figure 2 has presented the OFDM comparison of various 
schemes of NMSE performance with known error value of 
푘  (assume estimate channel coefficient 	푘 = 2 ). The 
estimation methods are employing with the previous support 
information shows the poor performance upon the 
unbalanced parameter arises, whereas the quality of support 
information is trivial to the proposed approaches. Because 
the imperfect channel coefficients are evaluated by a 
compressed sensing (CS) algorithm and has low mismatched 
influence. In addition, if erroneous coefficients are selected 
by this method that clipping step can terminate the impact of 
erroneous coefficients. In addition, proposed and CS-Aided 
methods can be maintained the constant support information. 

 
Figure 3: MSE versus SNR recovery performance to 
compressed sensing based FBMC with various schemes. 

Figure 3 indicates the FBMC performance of MSE versus 
SNR with various schemes.. Since, the noise level of CS 
algorithms are fundamentally sensitive, the estimation 
methods are employing with CS, including the considered 
approaches, yields great outcome in range of SNR.  

 
 

 
 

 
 
 
 
 

 
 

 
 

 
 
Figure 4: MSE versus SNR performance Comparison of to 
Compressed sensing based FBMC and OFDM with various 
schemes. 

Moreover, the CS-Aided, OMP and ZF pre-coding 
scheme show comparatively low error. And the SNR 
between 8 dB to 11 dB, the proposed schemes produces 
better results than ZF and OMP. Throughout the simulation 
results on figure 4, the proposed schemes can be obtained 
the lowest error rate than ZF and the basic greedy algorithm 
is called the OMP. 

The effectiveness MSE with different algorithms is proved 
in Figure5. It appears that the suggested schemes are 
achieved better Signal to noise ratio (SNR) performance 
compared to the ZF pre-coding. However, the ZF provides 
the least-norm solution. 

Figure 5: SNR performance of compressed sensing based 
FBMC and OFDM with various schemes at 6db, 8dB and 
10dB respectively. 

In order to sustain the same, must have to remove the 
undesirable characteristics, i.e. perfect normalization is 
must.  In comparison to this, LS based schemes have less 
error. For SNR between 8-11 dBs, the proposed schemes are 
better than ZF and as reasonably good performance. Overall, 
the performed proposed methods have less error than 
conventional CS techniques. 
     According to estimate made by comparison, the GM-
based CS approaches are easy to determine better training 
signals. Thus, quality of channel estimate is evaluated by the 
intended GM-based CS approaches which provides 
outperform through flagship challenge of the training 
signals. 
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Figure 6: BER versus SNR performance Comparison of to 
compressed sensing based FBMC and OFDM with various 
schemes. 
 

Figure 6 indicates the BER versus SNR performance 
Comparison of to Compressed sensing based FBMC and 
OFDM with various schemes. The EM-TGM-GAMP 
algorithm achieved more low BER compared to other CS 
algorithms in the FBMC environment. The estimation 
accuracy also can be better by making use of the common 
sparsity in massive MIMO system. 
 
7. CONCLUSION 

 
This work focused on estimate the channel efficacy over 

OFDM and FBMC based massive MIMO downlink system 
under various approaches of compressed sensing with 
Gaussian mixture learning. Particularly the composition of 
the GAMP technique with the EM iterative methods and 
they facilitate the less computational complexity through 
designed pilot approach. Through the continuous support of 
the CS-Aided approach, the pilot overhead is reduced where 
insufficient sparsity of the channels. The favorable channel 
performance is achieved by the use of EM-TGM-GAMP, 
EM-BGM-GAMP, and CS-Aided schemes. The obtained 
simulation figures give the truncated GM appears better 
performance than GB distribution in CS environment. And 
also provide outperform achievement compared to the ZF 
and OMP techniques. The proposed CS framework schemes 
mitigate the pilot overhead and substantially contribute 
better performance to estimate channel efficiency.  
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