
Suhaila Mohd. Yasin et al., International Journal of Emerging Trends in Engineering Research, 8(1.2), 2020, 187 - 194

187


ABSTRACT
For functional testing of web applications, fault-seeding is a
method in which a software tester creates several modified
versions of a web application that contain errors. They are
useful for discovering faults that can compromise a web
application’s behaviour. Using a fault taxonomy to guide the
fault-seeding of a system increases the confidence that the
seeded faults are realistic. This paper presents a systematic
review of fault taxonomies that are introduced for testing web
applications. Selection of relevant literature is performed by
applying the inclusion and exclusion criteria. Six significant
fault taxonomies for web testing are then selected and
analysed. We suggest three fault classes or sub-classes that
can be incorporated into a fault taxonomy namely the warning
notification fault, media fault and orphan page fault. Finally,
some major areas where the fault taxonomies are commonly
applied are health software applications, cloud computing,
Android applications and desktop applications.

Key words : Fault taxonomy, fault-seeding, software testing,
web applications, functional testing.

1. INTRODUCTION

Web applications are software program that runs on a web
server. They have become seemingly ubiquitous [1],
frequently utilised to complete a myriad of tasks. Their
existence has profoundly changed the society’s traditional
approach to almost any tasks due to their flexibility,
availability and accessibility. Web applications enable the
tasks to be completed with little restraint on time and physical
boundaries, therefore increasing productivity and
profitability. However, web applications’ developers have
been constantly challenged with incorporating these
advantages to their released products while minimising their
errors simultaneously [2].

A software is susceptible to errors particularly if it is
complicated and consisting of an extensive amount of codes
[3]. The heterogeneous nature of a web application poses a
great challenge to testing [1] when a fault can be caused by
either a web component or a number of them combined.

Figuring out the characteristics of a severe bug is not a
straightforward task. For functional testing, the main concern
is on the faults that disrupt a web application’s function.

In software testing, real faults are highly valuable compared
to artificial faults. For a web application, the existence of a
real fault is often discovered and reported by its user.
Therefore, it is often easy to find a well-documented report of
real faults for a web application. Nevertheless, artificial faults
may substitute and provide a close indicator for real faults [4].
This is useful when a web application’s bug report record is
minimal or poorly maintained.

One of the ways of creating artificial faults is through
fault-seeding. Proposed by Lipton et al. [5], this concept is
achieved by creating several modified versions of a system
that contain errors, which are then used when evaluating the
fault detection rate of a set of test cases. However, the
fault-seeding should apply an established fault classification
to ensure that the produced artificial faults are realistic.Work
that explores existing faults in web applications introduces a
fault classification after exhaustively investigate the faults’
characteristic [6]-[10]. These work use several terms to
describe the fault classification such as fault taxonomy, bug
taxonomy and mutation operator. In this paper, the term ‘fault
taxonomy’ is used to describe the fault classification.

This paper presents various fault classifications that are
proposed in the field of web application functional testing
over the years. The aim of this paper is to investigate the
applicability of these fault classifications for different kinds of
web applications and improvements that are proposed.
Additionally, several potential suggestions are also proposed
to classify faults in web applications that do not seem to have
an explicit class of their own.

The rest of this paper is organised as follows. Section 2
presents the web applications fault taxonomies that are
covered in this paper. Section 3 describes the methodology of
the fault taxonomy review. Section 4 presents the results and
discusses the outcome of the review activity. Finally, Section
5 presents the conclusion of this paper.

A Review on Fault Taxonomies for Web Testing

Suhaila Mohd. Yasin1, Shuhaida Ismail2
1Department of Software Engineering, Faculty of Computer Science and Information Technology, Universiti Tun

Hussein Onn Malaysia, Johor, Malaysia, ysuhaila@uthm.edu.my
2Department of Mathematics and Statistics, Faculty of Applied Sciences and Technology, Universiti Tun Hussein

Onn Malaysia, Johor, Malaysia, shuhaida@uthm.edu.my

 ISSN 2347 - 3983
Volume 8. No. 1.2, 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter2681.22020.pdf

https://doi.org/10.30534/ijeter/2020/2681.22020

Suhaila Mohd. Yasin et al., International Journal of Emerging Trends in Engineering Research, 8(1.2), 2020, 187 - 194

188

2. THE FAULT TAXONOMY REVIEW
METHODOLOGY

Budgen and Brereton [11] described the fundamentals and
guideline of a systematic review in Software Engineering.
With respect to this, a systematic review of existing fault
taxonomies for web applications is performed to properly
identify, document and analyse common characteristics of the
relevant literature in fault taxonomies. To achieve this
objective, this systematic review adopts the following review
processes [12]: planning the review, conducting the review
and reporting the outcomes from the review.

2.1 Systematic Review Plan

Table 1 presents the data extraction form that is used in this
work. While the objective of this review have been described
above, the rest is explained here. This systematic review
considers published work from three categories: technical
reports, journal articles and conference proceedings. The
work must be sourced from a university’s website and
established electronic databases like IEEE, SPRINGER,
ELSEVIER and ACM that range from 2000 to 2019.

Table 1: Data extraction form
Data ID In number format
Type (Journal, conference, Technical

report)
Year (between 2000 to 2019)
Publication
source

(Name of
journal/conference/report)

Search source (University’s repository/Electronic
database)

Title (Title of the work)
Author (All author)
Citation (Number of last 5 years direct

citations if available)
Validation (Summary of validation activity)
Extension or
application

(Data ID, title of work,
extension/application)
Arranged by newest if more than
one work exists.

In terms of quality, a published work on fault taxonomy that
receives significant direct citations in the last 5 years is
preferred as it indicates its visibility and applicability among
the research community. During data extraction, the focus is
directed to the following information: Year of the published
article, the number of citations, description of the fault
taxonomy (title, author, publication details), types of web
applications, support tools and additional remarks that
describe existing applications, criticisms, extensions or
modifications.
Aside from the usual information that the data extraction
form specifies, the data extraction form is also designed to

consider the following requirement:
1. What research questions that the work is addressing?
2. What research methodology is applied?
3. Does the outcome of the work fully or partially satisfies

the requirement or scope of the review?
4. Has the work been validated empirically? If not, why?

After establishing the plan for this systematic review, the
review process begins.

2.2 Conducting the Review
Fig. 1 illustrates the review activity. It consists of five main
activities namely identification of research, selection of
studies, assessment of quality and finally data extraction and
synthesis. These activities are discussed according to the
Software Engineering procedure for systematic review [12].

Capitalize only the first word in a paper title, except for
proper nouns and element symbols. For papers published in
translation journals, please give the English citation first,
followed by the original foreign-language citation [8].

Figure 1: The review activity

A. Identification of research
Several search strategies are employed. Firstly, a list of
keywords is developed. Table 2 presents the keywords that are
considered during this activity. The keywords are searched
exclusively or using Boolean AND’s and OR’s to form
various combinations of keywords. Multiple searches on
various sources such as the electronic databases and
university’s resource sites are performed. Subsequently, some
search activities are performed on Google Scholar to verify
the citation status of a work and other relevant work that cite
and extend the primary work. Aside from this, the reference
section of the published work is analysed to identify other
work that is also relevant to this systematic review. Negative
as well as positive publication of a work is reviewed equally.
EndNote is used for bibliography management. The search
activity is documented to track the progress of the search
activity. Table 3 presents the search activity results.

Suhaila Mohd. Yasin et al., International Journal of Emerging Trends in Engineering Research, 8(1.2), 2020, 187 - 194

189

Table 2: Keywords used in the search activity
No. Keyword Alternative spelling
1. Fault taxonomy Fault taxonomies, bug

taxonomy, bug
taxonomies, defect
taxonomy, defect
taxonomies

2. Fault
classification

Fault classes, failure
classification, failure
classes, bug classes

3. Fault analysis Bug analysis, failure
analysis

4. Mutation
operator

Mutation operators,
mutation analysis,
mutation testing

5 Vulnerability
taxonomy

Vulnerability taxonomies,
vulnerability,
vulnerabilities

Table 3: Results of the search activity

Database Number of
articles

Number of selected
articles

ACM 7 0
Elsevier 3 1
IEEE 22 3
Research
Gate

6 1

Springer 6 0
University 9 1
Total 53 6

B. Selection of studies
Several criteria for the selection of studies are proposed after
the following research questions (RQ) are formulated:

RQ1. What types of fault taxonomy exists for web

application testing from 2000 to 2020?
RQ2. How is the fault taxonomy formulated?
RQ3. How is the fault taxonomy applied, reviewed or

validated?
RQ4. How is the fault taxonomy extended?

With respect to the inclusion criteria, the following are
considered:

1. Include published work from 2000 to 2019 that received

at least 1 direct citation.
2. If a work that fits inclusion criterion 1 is unpublished,

include the work if it is sourced from a university’s repository
or resource site.

3. Include work from established electronic databases like
IEEE, SPRINGER, ELSEVIER and ACM

In contrast, the exclusion criteria apply to work with the

following issue:

1. It is published before 2000.
2. It is a preliminary work that lacks empirical evidence

and/or, poorly documented.
3. In the case of multiple publications, the publication with

the least citation is eliminated.

An expert panel is consulted throughout the review activity
for feedback on the included and excluded work. However, we
are responsible for the final selection of the fault taxonomies
after careful deliberation of the feedback is made.

C. Assessment of quality
To organise the reviewed literature, several quality criteria
are considered during the quality assessment activity of the
included work. The quality criteria are arranged from the
most important to the least important:

1. The number of quality citations: A quality citation is

defined as a direct citation received from a journal article or a
conference proceeding.

2. Empirical evidence: A work is superior in quality if it is
supported with an empirical evaluation.
3. Extension: A work is superior in quality if it has been
extended by other work.

D. Data extraction and synthesis
The data collection and synthesis are performed
simultaneously. Each work is analysed to extract information
that is specified in the data extraction form presented in Table
1. The activities are performed on 9 work that has been
selected. Duplicate work is excluded based on the third
exclusion criterion. This systematic review provides only a
descriptive synthesis of the collected data that is presented in
Table 3. Quantitative synthesis is beyond the scope of this
review as the main interest is focused on the applicability of
the fault taxonomy.

2.3 Review Report
The outcome of the exhaustive data extraction and synthesis
are presented in the next section. Ultimately, a conclusion is
presented to shape the future direction of this work.

3. FAULT TAXONOMIES FOR WEB APPLICATIONS

For testing web applications, different fault taxonomies have
been proposed for different aspects and kinds of web
applications. Our review revealed six fault taxonomies that
are selected. For brevity, each fault taxonomy is assigned with
an abbreviation that best describes it. The following is a brief
description of the selected fault taxonomies.

3.1 The E-Commerce Bug Taxonomy

Vijayaraghavan and Kaner [6] introduce E-Commerce Bug
Taxonomy (EcBT). EcBT describes e-commerce failures that

Suhaila Mohd. Yasin et al., International Journal of Emerging Trends in Engineering Research, 8(1.2), 2020, 187 - 194

190

are discovered by using several approaches such as analysing
electronic bug databases, brainstorming additional types of
problem and refinement through peer review. The failures are
categorised into 45 top-level fault classes that are arranged
under two main lists: component failures and qualitative
failures. While only a brief example is reported [6], the full
fault taxonomy is available online1.

3.2 The Causes of Failures in Web Applications

Pertet and Narasimhan [7] compile the Causes of Failures in
Web Applications (CFWA) after investigating various actual
incidents of website outages. Additionally, several case
studies of system failures are examined. The results of these
activities lead to the release of a report for common failures
observed in web applications. This report contains an
appendix that serves as a quick reference for an observed web
application’s failure.

3.3 The Object-Oriented Web Fault Taxonomy

The Object-Oriented Web Fault Taxonomy (OOWFT) is
introduced for mutation-testing of the .NET web applications.
Mansour et al. [8] identify and propose three distinct classes
of the .NET web applications: the code-behind file which
contains VB.NET and C#.NET codes, the presentation file
which targets the HTML and layout tags of the web
application and event feature which considers the interactions
between the code-behind file and the presentation file classes.
In these classes, several mutation operators that can be
applied while performing mutation testing to the .NET web
applications are introduced.

3.4 The Web Fault Taxonomy

The Web Fault Taxonomy (WFT) [9] begins from an initial
effort to construct a top-down fault taxonomy by two software
testers through an analysis of the high-level characteristics of
web applications. The fault taxonomy is refined by a
bottom-up validation effort using real faults collected from
several bug reports in SourceForge2. WFT consists of six
main fault classes: the multi-tier architecture, the Graphical
User Interface (GUI) based on browser functionalities, the
session-based user interaction, the hyperlinked structure, the
HTTP protocol-based communication between client and
server and the mechanisms for user authentication.

3.5 Web Application Fault Classification

Sampath et al. [13] develop the Web Application Fault
Classification (WAFC) as a guide for a group of graduate and

1 A Taxonomy of E-Commerce Risks and Failures -
http://www.testingeducation.org/a/tecrf.pdf
2 SourceForge - https://sourceforge.net/

undergraduate students who participate in a fault detection
experiment. The experiment requires the students to
manually seed realistic faults into three web applications.

Interestingly, WAFC is introduced after extending another
work that proposes an initial fault classification that is used
for user-session based testing [14]. In WAFC, faults are
classified into five types, namely data store faults, logic faults,
form faults, appearance faults and link faults. Another work
supports the applicability of WAFC through an exploratory
study on two actual open-source web applications [10].

3.6 Web Mutation Operators

Praphamontripong et al. [15] introduce the Web Mutation
Operators (WMO) that addresses the testing of control and
state connections between a web application’s software
components. Using a support tool called WebMuJava, 11
mutation operators for HTML and JSP are applied to create
artificial faults in the transition of these web application’s
components. Five types of transitions are considered: simple
link transition, form link transition, component expression
transition, operational transition and redirect transition.

4. RESULTS AND DISCUSSION
The results are presented according to the research questions
posed in Section 2.2. The salient and concise manner of the
presented result intends to offer a higher comprehension of
the work that has been completed and provide a base for the
future direction of the research.

4.1 RQ1: What types of fault taxonomy exists for web
application testing from 2000 to 2020?

Fig. 2 shows the distribution of articles that are discovered
during the systematic literature review activity. The final
selection of six fault taxonomies is derived after the exclusion
criteria are applied to the relevant literature. The analysis of
the relevant literature indicates that existing fault taxonomies
cover a myriad of fault classes that were briefly described in
Section 3. The most extensive fault taxonomies are EcBT and
WFT respectably, with an overlap observed on several fault
classes. Overlaps are observed on component-related and
database-related fault classes. Even though EcBT focuses its
fault classes on E-commerce web applications, we do not see
any issues if a significant number of its fault classes that cover
component failures are applied to other types of web
applications. Further, we note similarities between the
qualitative fault classes of EcBT and WFT’s protocols and
authentications fault classes, with the former choose to align
its fault classes with existing software quality attributes,
whereas the latter focuses on web application’s architecture
attributes.

Suhaila Mohd. Yasin et al., International Journal of Emerging Trends in Engineering Research, 8(1.2), 2020, 187 - 194

191

0

2

4

6

8

10
20

00
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09
20

10
20

11
20

12
20

13
20

14
20

15
20

16
20

17
20

18
20

19

Number of published articles

Figure 2: Number of articles discovered in the systematic review

Next, we observed that several fault taxonomies are interested
in real faults (EcBT, CFWA, WFT and WAFC) while others
proposed specific mutation operators for artificial faults and
use a real web application to validate these mutation operators
(OOWFT and WMO).

Lastly, we notice that a fault class from EcBT [6] can benefit
from further extension due to the advancement in modern web
applications. Consequently, this review suggests on
extending an existing fault class and introducing new fault
classes: error/warning notification faults, media faults and
dead-end page faults.

A. Error/warning notification faults
While there is an existing fault class that covers faults relating
to an error or warning notification (i.e. error
messages/exception handling fault class) [6], it is reasonable
to extend the existing fault class to cover more faults. An
example from several actual observations of a web application
like OpenBiblio3, for instance, includes a warning for an
out-of-range date selection. In the existing fault class, it
addresses the incorrect expiration date fault for payment
error-handling, but there is no specific mention on
out-of-range date error-handling, which can occur in forms
not exclusive to payment only. In the case of OpenBiblio, it
can occur when a staff member changes the due date for a
loaned library material, which in turn can automatically
trigger a fine for late return of the material. Overlooking this
fault can cause a series of faults in reporting a user’s
outstanding balance, which indirectly leads to a less desirable
user impression on the efficiency of a web application.

B. Media faults
With the recent technology advancement, modern web
applications are more visually attractive and imitate a desktop
application look. Such a feature is prevalent in Rich Internet
Applications (RIA) that use a variety of media to achieve its
functionality.

3 OpenBiblio - https://obiblio.sourceforge.net/

While the term ‘media faults’ seems generic, this is merely an
initial suggestion that covers common media elements like an
interactive text, image, audio and video. With sufficient effort
to research this fault category, it is necessary to expand it into
several sub-categories that cover more media elements that
can be manipulated by the user. Some examples of common
faults related to a web application’s media include
unsupported types of media (e.g. using contemporary, less
common font types), corrupted media, and explicit media that
lacks an appropriate warning for the user.

C. Dead-end and orphan page faults
A dead-end page is a term in Search Engine Optimisation
(SEO) that describes a technical flaw of a web application
when a web page does not provide an optional outgoing
navigation element (e.g. links or buttons) [16]. An orphan
page also shares this characteristic with an additional issue of
lacking an incoming navigation element [16]. While this fault
does not seem serious, it causes a serious functional issue if
the affected web page contains a significant task or if it should
direct the user to another significant web page. For instance,
if a user accesses a web application to purchase an item and
completes the payment instruction, the web application
should provide the user with a receipt and a link to either
return to the main page or log out of the web application. If
the web page that displays the receipt is a dead-end page, it
does not allow the user to proceed to the aforementioned
choices, forcing the user to stay even after the task is
complete.

4.2 RQ2: How is the fault taxonomy formulated?

As shown in Table 4, there are similarities and also disparities
between these fault taxonomies with respect to the approach
taken to formulate them. Typically, fault taxonomies that do
not consider mutation-testing like EcBT, CFWA, WFT and
WAFC are more inclusive of real faults in the effort of
validating and enhancing the fault classes. Whereas OOWFT
and WMO are more focused on a domain-based solution that
can be applied to the test problem at hand. The latter’s
enhancement is also customised towards the specific domain
of testing, as opposed to the former that favours
generalisation.

4.3 RQ3: How is the fault taxonomy applied, reviewed or
validated?

Table 5 summarises the number of citations for each fault
taxonomies to date. CFWA has the highest citations to date
while WMO is the least cited fault taxonomy. This is expected
as WMO is the newest fault taxonomy introduced compared
to the rest. We suspected the high citations for CFWA is due
to the comprehensiveness of the fault taxonomy. With respect
to WAFC, the updated work showed considerable effort was
made to improve the fault taxonomy.

Suhaila Mohd. Yasin et al., International Journal of Emerging Trends in Engineering Research, 8(1.2), 2020, 187 - 194

192

Table 4: Characteristics of the fault taxonomies
Fault
taxonomy

Characteristics

EcBT [6]  Fault classes are initially formulated by
brainstorming.

 Further refinements made by searching in
electronic databases and bug databases
for related open-source software sites and
adopting of the Software Quality
Characteristics (ISO-9126) and finally
from peer review.

CFWA
[7]

 Fault classes are formulated when
categorising real web application’s faults
that were collected by a survey.

 The fault classes contain non-malicious
failures and security violations.

 A quantitative estimation of the failure,
sample symptom and recovery
recommendation are also included.

OOWFT
[8]

 Introduces system specific mutation
operators.

 Mutation operators are formulated by
separating a .NET file into two
code-level files that distinguish the .NET
file’s code-behind and event features.

WFT [9]  Fault classes are formulated by
identifying web application’s features.

 Real faults are then collected and
matches with the fault classes.

 The fault classes are available publicly
for further contributions.

WAFC
[13]

 Fault classes are formulated by
distinguishing a fault’s physical location
in a web application and how it
manifested.

 Real faults from two web applications
were used to refine the fault classes.

WMO
[15]

 Introduces mutation operators for control
and state connections testing between a
web application’s components.

 Faults are created for five types of
transitions between a web’s components.

 Further refinement is suggested after a
validation activity using a support tool.

It also indicates that the fault taxonomy has reached a level of
maturity that is often seek by researchers who wish to apply an
established fault taxonomy instead of creating a new one.
Nevertheless, looking at the number of citations alone is not
sufficient to determine the applicability of the fault taxonomy.
Next, the scope and year of these citations are analysed.

Table 6 describes the scope of research where the fault
taxonomy has been cited, whereas Fig. 3 illustrates the
distribution of the citations from 2015 to date. It is evident
that CFWA is the most applied fault taxonomy across various
software disciplines, particularly in cloud computing. While

there is a lack of application for EcBT and WMO in the last 5
years, they have been actively reviewed by work that either
adopt them or strive to develop a new fault taxonomy for a
different software disciplines. This is observed in EcBT
[17]-[19], WMO [20], CFWA [21]-[23], OOWFT [24]-[25],
WFT [25]-[26] and WAFC [27] respectively.

Table 5: The number of citations for each fault taxonomy to date

Fault
Taxonomy

(abbreviated
)

Citations

EcBT [6] 37
CFWA [7] 181
OOWFT [8] 48
WFT [9] 35
WAFC [13] 137
WMO [15] 9
Total 447

Table 6: Scope of research where citations exist
Fault

Taxonomy
Scope (software discipline)

EcBT [6] Web applications, Android
applications, blockchain systems,
health software applications, service
oriented architecture (SOA) based
systems and video games.

CFWA [7] Web applications, web services,
cloud computing systems, enterprise
applications, health software
applications, large scale systems,
space missions software systems and
video streaming applications,

OOWFT
[8]

Web applications, web services,
database applications, large scale
systems, mobile applications and
spreadsheet applications.

WFT [9] Web applications, rich Internet
applications and desktop
applications.

WAFC
[13]

Web applications, graphical user
interface (GUI) applications and
rich Internet applications

WMO [15] Web applications, Android
applications, hybrid systems, mobile
applications and smart contract
programs.

Suhaila Mohd. Yasin et al., International Journal of Emerging Trends in Engineering Research, 8(1.2), 2020, 187 - 194

193

4.4 RQ4: How is the fault taxonomy extended?

A fault taxonomy is considered as extended when one or more
changes were suggested by other work. The suggested
changes can either be removing existing fault classes or
adding new fault classes (or subclasses). This review
discovered that out of these 6 fault taxonomies, WAFC and
WMO were extended in later work. One of WAFC’s fault
classes, logic fault is expanded to cover more sub-classes of
faults. Aside from this, a new type of fault class called
compatibility faults is also introduced [10]. With respect to
WMO, recent work suggested a modification of the fault
taxonomy by removing three mutation operators that are
found to have less significant on the outcome of the testing in
terms of the fault detection capability [28].

1

1

2

1

3

0

13

15

14

7

8

2

2

2

3

1

1

1

1

3

3

1

0

0

9

8

4

3

6

1

6

5

8

3

9

1

2015

2016

2017

2018

2019

2020

Number of citations

Y
ea

r

WMO WAFC WFT

OOWFT CFWA EcBT

Figure 3: The number of citations from between 2015 and now

(2020)

5. CONCLUSION
This paper presents fault taxonomies for web application
functional testing that were selected for their applicability and
extendibility. In this paper, we systematically reviewed
existing fault taxonomies that are proposed for testing web
applications. We described a plan to review the existing
literature. Next, we conducted the review and reported the
outcome. We identified six fault taxonomies that fulfil the
inclusion and exclusion criteria of the systematic review. We
investigated identified their characteristics and application on
web applications. We also discussed on past effort on
extending these fault taxonomies. In addition, we proposed
several suggestions on extending a fault taxonomy. Finally,
based on the review of current work that extends the fault
taxonomies, we suggest the same effort should be made to
improve the usability and compatibility of these fault
taxonomies in state-of-the-art web applications.

APPENDIX
Appendixes, if needed, appear before the acknowledgment.

ACKNOWLEDGEMENT

The authors would like to thank the Ministry of Higher
Education Malaysia (MOHE) for supporting this research
under Fundamental Research Grant Scheme Vot No.
FRGS/1/2018/STG06/UTHM/03/3 and partially sponsored
by Universiti Tun Hussein Onn Malaysia.

REFERENCES
1. Y.-F. Li, P. K. Das, and D. L. Dowe, "Two decades of

web application testing—A survey of recent advances,"
Information Systems, vol. 43, pp. 20-54, July 2014.

2. J. Goyal, and B. Kishan, "Progress on Machine Learning
Techniques for Software Fault Prediction," International
Journal of Advanced Trends in Computer Science and
Engineering, vol. 8, no. 2, pp. 305-311, April 2019.

3. B. Yetukuri, J. S. Miriyala, S. Mundru, and Y.
Sangeetha, "Software Bug Prediction," Journal of
Critical Reviews, vol. 7, no. 11, pp. 3952-3956, July
2020.

4. R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R.
Holmes, and G. Fraser, "Are mutants a valid substitute
for real faults in software testing?," in Proceedings of the
22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, Hong Kong,
China, 2014, pp. 654-665.

5. R. Lipton, "Fault diagnosis of computer programs,"
Student Report, Carnegie Mellon University, 1971.

6. G. Vijayaraghavan and C. Kaner, "Bug taxonomies: Use
them to generate better tests," in Software Testing
Analysis & Review Conference, Orlando, USA, 2003.

7. S. Pertet and P. Narasimhan, "Causes of Failure in Web
Applications," Carnegie Mellon University, Parallel

Suhaila Mohd. Yasin et al., International Journal of Emerging Trends in Engineering Research, 8(1.2), 2020, 187 - 194

194

Data Laboratory, Technical Report CMU-PDL-05-109,
2005.

8. N. Mansour and M. Houri, "Testing web applications,"
Information and Software Technology, vol. 48, no. 1, pp.
31-42, January 2006.

9. A. Marchetto, F. Ricca, and P. Tonella, "Empirical
validation of a web fault taxonomy and its usage for fault
seeding," in 9th IEEE International Workshop on Web
Site Evolution, Paris, France, 2007, pp. 31-38.

10. Y. Guo and S. Sampath, "Web application fault
classification - An exploratory study," in Proceedings of
the Second ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement,
Kaiserslautern, Germany, 2008, pp. 303-305.

11. D. Budgen and P. Brereton, "Performing systematic
literature reviews in software engineering," in
Proceedings of the 28th International Conference on
Software Engineering, Shanghai, China, 2006, pp.
1051–1052

12. B. Kitchenham, "Procedure for undertaking systematic
reviews," Computer Science Department, Keele
University (TRISE-0401) and National ICT Australia Ltd
(0400011T. 1), Joint Technical Report, 2004.

13. S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and A. S.
Greenwald, "Applying concept analysis to
user-session-based testing of web applications," IEEE
Transactions on Software Engineering, vol. 33, no. 10,
pp. 643-658, October 2007.

14. S. Elbaum, G. Rothermel, S. Karre, and I. Fisher,
"Leveraging user-session data to support web application
testing," IEEE Transactions on Software Engineering,
vol. 31, no. 3, pp. 187-202, March 2005.

15. U. Praphamontripong and J. Offutt, "Applying mutation
testing to web applications," in Third International
Conference on Software Testing, Verification, and
Validation Workshops, Paris, France, 2010, pp. 132-141.

16. M. Dudharejia. SEO Terminology: Orphan and
Dead-End Pages. [online] Available at:
<https://www.searchenginejournal.com/seo-terminology
-orphan-and-dead-end-pages/7373/> [Accessed 17 July
2020].

17. H. K. Rajaram, J. Loane, S. T. MacMahon, and F. Mc
Caffery, "Taxonomy�based testing and validation of a
new defect classification for health software," Journal of
Software: Evolution and Process, vol. 31, no. 1, p.e1985,
January 2019.

18. M. Jimenez, M. Papadakis, T. F. Bissyandé and J. Klein,
"Profiling Android Vulnerabilities," in 2016 IEEE
International Conference on Software Quality,
Reliability and Security (QRS), Vienna, 2016, pp.
222-229.

19. Z. Wan, D. Lo, X. Xia and L. Cai, "Bug Characteristics
in Blockchain Systems: A Large-Scale Empirical Study,"
in 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR), Buenos Aires,
2017, pp. 413-424.

20. L. Deng and J. Offutt, "Reducing the Cost of Android
Mutation Testing," in Proceedings of the 30th
International Conference on Software Engineering and
Knowledge Engineering, California, USA, 2018, pp.
542-547.

21. T. Wang, J. Wei, W. Zhang, H. Zhong, and T. Huang,
"Workload-aware anomaly detection for web
applications," Journal of Systems and Software, vol. 89,
pp. 19-32, March 2014.

22. T. Pitakrat, D. Okanović, A. van Hoorn, and L. Grunske,
"Hora: Architecture-aware online failure prediction,"
Journal of Systems and Software, vol. 137, pp. 669-685,
March 2018.

23. T. A. Majchrzak, M. Sakurai, and N. Serrano,
"Conceptualizing and Designing a Resilience
Information Portal," in Proceedings of the 51st Hawaii
International Conference on System Sciences, Hawaii,
USA, 2018, pp. 45-54.

24. S. M. Yasin, P. A. Strooper, and J. R. Steel, "A
pseudo-genetic algorithm for optimising test cases," in
Proceedings of the International MultiConference of
Engineers and Computer Scientists, Hong Kong, China,
2017, pp. 500-507.

25. M. S. Biçer and B. Diri, "Predicting defect prone
modules in web applications," in International
Conference on Information and Software Technologies,
Vilnius, Lithuania, 2015, pp. 577-591.

26. D. K. Jain, A. Kumar, S. R. Sangwan, G. N. Nguyen, and
P. Tiwari, "A particle swarm optimized learning model
of fault classification in Web-Apps," IEEE Access, vol. 7,
pp. 18480-18489, February 2019.

27. R. Bhan, M. S. Ahmad, M. Jain, A. Singh, R. Pamula
and P. Faruki, "VM Availability in Presence of Malicious
Attacks in Open-Source Cloud," in 2019 9th
International Conference on Cloud Computing, Data
Science & Engineering (Confluence), Noida, India,
2019, pp. 26-30.

28. U. Praphamontripong and J. Offutt, "Finding
redundancy in web mutation operators," in Proceedings
of the IEEE International Conference on Software
Testing, Verification and Validation Workshops, Tokyo,
Japan, 2017, pp. 134-142.

