
Arzieva Jamila Tileubaevna, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6576 – 6586

6576

Development of Approaches and Schemes for Proactive Information Protection
in Computer Networks

Arzieva Jamila Tileubaevna1
1Karakalpak State University,

Uzbekistan, Karakalpakstan, jamka-1980@mail.ru

ABSTRACT
This paper proposes approaches to protecting information
from the standpoint of the paradigm of their proactive
security and a method for proactively protecting
information from malicious code based on expert
assessments. The architecture of proactive information
protection based on scripts and regular expressions and the
scheme of the decision-making module against malicious
code for the implementation of more complex algorithms
for proactive information protection will be constructed.

Key words: correctness, proactive protection, violator,
intruder, secure computer systems, reliability, algorithmic
approach, malicious software, API function,
concatenation, disjunction, iteration, heuristic.

1. INTRODUCTION
 Analysis of possible solutions shows that mathematical
models of proactive protection against the actions of an
intruder at the early stages of the software life cycle most
likely cannot be numerous due to both the complexity of
formalizing such solutions and the complexity of the
solutions themselves. Thus, recently there has been an
urgent need to create new software development
technologies, initially focused on the creation of secure
software products, when intruders act at the design stage.

2. TWO MAIN AREAS OF PROACTIVE SOFTWARE
PROTECTION

The first direction is based on the so-called confidential
computing protocols. There are n protocol participants or n
processors of a computing system connected by a
communication network. Initially, each processor knows
its own part of some input value . Calculate required

, some computable function known to all
participants, so that the requirements are met:
 correctness when the value must be calculated

correctly, even if some limited part of the participants
arbitrarily deviates from the actions prescribed by the
protocol;

 confidentiality, when, as a result of the protocol
execution, none of the participants receives any
additional information about the initial values of other
participants.

It can imagine the following scenario for using this model
to develop secure software. There is some process for
which you need to implement functionality . In this case,
the consequences of an incorrect implementation are such
that it seems appropriate to go on additional costs

associated with creating a network of n processors and a
distributed algorithm for implementing . There is one
more absolutely reliable participant in the system, which
has access to the secret value and has the ability to
allocate its "share" to each processor . The name
Confidential Computing Protocols reflects the fact that the
requirement for confidentiality is fundamental; value
must not fall into the hands of an attacker.
This model makes it possible to uniformly interpret both
errors arising, for example, as a result of technical failures,
and errors arising from their introduction into
computational processes. It should be noted that
confidential computing protocols refer to protocols that are
primarily intended to protect the computing process from
the actions of a "reasonable" intruder, i.e. from an attacker
who always chooses the worst strategy for us.
The second direction is associated with the development of
the so-called self-testing and self-correcting programs.
Suppose you want to develop a program that calculates the
functions . Suppose that the implementation of this
program is ordered by a contractor who does not enjoy full
confidence.
The self-testing program is developed as a combination of
two modules. The first one evaluates the function , the
second module tests the first one by feeding some values
to it and comparing the obtained result not with
the previously calculated values of the function , but
among themselves. For this approach to have a right to
exist, the testing module must be simpler than the most
efficient algorithm for calculating a function . It should
also be noted that this module must be reliable.
The approach based on the idea of self-testing found its
development in the so-called self-correcting programs.
Such a program also consists of two modules, the first of
which calculates the function . It is assumed that this
module may return erroneous (false) values. However, if
this does not happen too often, then the second, corrective,
module, choosing some values and feeding them
to the input of the first module, it will correct all errors by
the obtained values and calculate the correct value of the
function [1]. The corrective module is subject to the same
performance requirements as the testing one.
The task of developing self-testing and self-correcting
programs and their combinations is the following task.
Let it be required to develop software that implements the
functionality . The implementation of this software has
been ordered by a contractor who is not fully trusted.
However, the consequences of the negative work of this
software are such that you can go to the costs associated

 ISSN 2347 - 3983
Volume 8. No. 9, September 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter264892020.pdf

https://doi.org/10.30534/ijeter/2020/264892020

Arzieva Jamila Tileubaevna, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6576 – 6586

6577

with the development of additional test modules, the
creation of which is entrusted to a trusted specialist. Thus,
self-testing software is a set of programs in which target
programs are used as subroutines and which is designed
for their effective testing.
The need to develop secure software using protected
modules (PM) arises when it is required to ensure the
authentication and integrity of complex software systems
created by a large team of developers, among which there
may be attackers. Such a module is a device protected
from the enemy, in which, in the event of unauthorized
access to it, the physical destruction of the main
components of the module is carried out: processor
registers and memory cells.
In order to achieve the required level of protection of such
software, the work with confidential parameters entered
into the PM is entrusted to trusted developers. In this case,
it is proposed to solve the problem of developing secure
software using the PM by developing a software and
hardware package consisting of the PM, the program to be
protected, and protocols of interaction between them.
These areas of protection can be used as the basis for
proactive software protection, while initially it is assumed
that:
one or several project participants are (or at least may be)
intruders;
In the course of development and operation, an attacker
can add to programs;
computer facilities, on which programs are executed, are
not free of hardware backups.
Thus, the scientific and practical foundations for
organizing activities to ensure proactive protection of
software are a set of organizational and technical
solutions, models and methods considered within the
framework of this activity, which allow you to execute the
following software development scenario. There is some
process for which you need to implement functionality .
Moreover, the consequences of incorrect implementation
are such that it seems appropriate to go on additional costs
associated with the creation of a network of n processors
and a distributed algorithm to implement , development
of additional oracle programs with a call to the target
computation program , introduction to calculation
schemes protected modules. Then the protection
schemes and protocols that implement the proposed
methods can provide the correct functionality , even if
there are intruders among the software developers.

3. BASIC PROVISIONS OF PROACTIVE PROTECTION OF
COMPUTER SYSTEMS

When creating complex computer systems, as a rule, the
prevailing idea of the main stages of its life cycle is used.
Such a view is effective in planning work, drawing up
work schedules, and managing various projects [2]. It is
advisable to divide the life cycle of the system into two
parts, occurring at each of the stages, their technical and
economic characteristics and factors influencing them.
In the first part of the life cycle, system analysis, design,
development, testing and testing of software and hardware

of computer systems are carried out. The nomenclature of
work at each specified set of stages, their labor intensity,
duration and other characteristics significantly depend on
the object and the development environment. For these
stages of the life cycle of computer systems, it is
characteristic and extremely important to introduce certain
protective functions into the created computer systems.
Such a process is usually called ensuring the technological
security of computer systems or, in a broader sense,
proactive security of computer systems. It is characterized
by the need to prevent the modification of computer
systems through the introduction of destructive software
and / or the introduction of destructive hardware
embedded devices into the technical means of computer
systems, as well as the need to introduce mechanisms to
prevent malicious investigation of the system and system-
wide software of computer systems.
The second part of the life cycle, reflecting the operation,
maintenance and modernization of the components of
computer systems, is relatively weakly related to the
characteristics of the facility and the development
environment. The range of work at these stages is more
stable, and their labor intensity and duration can vary
significantly and depend on the use of computer systems.
For any model of the life cycle, ensuring the high quality
of computer systems is possible only when using a
regulated technological process at each of these stages.
The stages of operation and maintenance of computer
systems correspond to the process of ensuring operational
safety or, in a broader sense, reactive safety of computer
systems. This process is characterized by the need to
protect programs from computer viruses and software
bookmarks of a posteriori type and hardware from partial
loss of their functionality. Destructive software can be
introduced through the malicious use of software research
methods and software specifications. The impact on the
hardware of computer systems can be carried out due to
various physical fields and / or a posteriori implementation
of hardware embedded devices. In addition, vulnerabilities
can also exist due to their untimely detection at the stages
of testing software and hardware of computer systems or
during their autonomous and complex testing.
Under considering the problems of creating proactively
secure computer systems, it is initially assumed that
“completely” a priori protected computer systems at the
operational stage. In this case, the violator simply has
nothing to do there [3]. Therefore, he may try to realize his
malicious intentions when creating a computer system, and
the scenarios of such actions will be characterized by the
following "portrait of the intruder."
Two generalized types of violators are considered. The
differences between them lie in their ability to interfere
with the creation of computer systems.
An offender who interferes with this process, let's call him
an active intruder, can:
 introduce intruders into teams developing various

components of computer systems;
 introduce intruders who are able to perfectly study the

"weak" points of computer systems and the features of
the technologies used;

Arzieva Jamila Tileubaevna, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6576 – 6586

6578

 carry out malicious changes originally defined for
computer systems;

 to carry out a malicious choice of irrational work
algorithms;

 introduce and use information technologies containing
software bookmarks;

 take actions that may make it easier to add bookmarks
or make them difficult to find;

 facilitate the implementation of supplies of computer
equipment containing software, hardware or hardware-
software tabs;

 form software bookmarks in a component of computer
systems that affect other components of the system;

 organize the masking of the trigger mechanism of the
software bookmark and other similar actions.

Figure 1: Methodological relationship between proactive security and the life cycle of computer systems

An intruder observing the design and construction of
computer systems can:
 receive confidential information about the

characteristics of the computer systems development
process;

 identify information with specific developers and
potential users;

 receive information about the characteristics of traffic
interactions in distributed computer systems;

 read passwords, keys, other similar identification and
authentication parameters and identify them with
specific developers and potential users, etc.

Thus, the violator will be considered as a subject making
unauthorized access to information and functional

resources when creating computer systems in order to
perform a wide range of malicious actions.

4. AN ATTEMPT TO FORMULATE THE PROBLEM OF
CREATING PROACTIVELY SECURE COMPUTER SYSTEMS
IN ACCORDANCE WITH THE NEW PARADIGM

As noted above, the central link in the creation of
proactively secure computer systems is the shift of
emphasis in ensuring information security from the
operational stage to the earlier stages of the system life
cycle (Fig.1).
At the same time, the earlier the introduction of protective
procedures into the created computer systems begins, the
more effective the protection in general will be [4].

COMMISSIONING

Development
of design
solutions

Debugging,
setting

Standalone,
comprehensive

testing

Preparation for
operation

Operation of
computer
systems

Maintenance,
support

Stage of the life cycle of computer systems

Technological security Operational security

Proactive security

Transfer of protective functions

Modernization

Arzieva Jamila Tileubaevna, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6576 – 6586

6579

Moreover, taking into account the problems of ensuring
reliability and safety at the design stages reduces the level
of resource costs for these purposes.
Methodological approach
It is natural to consider the activity of protecting the
software of computer systems within the framework of
normatively approved or generally accepted in the
scientific and technical community concepts. In terms of

goals and threats, the latter, as well as the present
methodology of proactive security of computer systems,
are essentially technologically converged. That is, there is
a certain technological similarity in structure and function
of concepts that are relatively different in origin.
Table 1 shows an illustrative analogy for proactive
information protection.

Table 1: An illustrative analogy of proactive information protection

Concepts The concept of
survivability of
computer systems

Trusted computer
systems concept

The concept of
creating high-
confidence computer
systems

Methodology of
dynamic protection
of computer systems

Methodology for
proactive security of
computer systems

Goal Ensuring the ability
of the system to
perform its functions
in time

Ensuring that the
system performs the
required functions

Ensuring well
understood and
predictable system
behavior

Enforcement of
proactive protection
strategy

Ensuring the
functioning of the
system without the
manifestation of
various negative
consequences

Threats Threats to carry out
attacks such as
intrusions, DoS,
DDoS attacks,
threats of internal
hardware and
software failures and
failures induced by
external events
(extraordinary
events, disasters)

Threats of attacks by
hackers and insiders,
external influences,
program errors and
operator errors

Internal and external
threats from natural
sources and a
"sophisticated and
well-financed
adversary"

Illegal Access
Threats

Illegal research,
copying, use and
distribution of
software

Significant differences in the listed concepts are mainly in
the features of the description of the intruder and the

taxonomy of vulnerabilities / threats / attacks for computer
systems. Table 2 describes the relationship between these
phenomena.

Table 2. The relationship between these phenomena

Property
violation

Source of
threat

Vulnerability Threat Attack Event

Reliability Violator,
objective
external
circumstances

The presence of
an unintentional
defect

The manifestation of
an unintentional
defect due to design
errors, incompetence
of developers, etc.

Unauthorized,
incompetent actions,
emergency situations

Unwanted

Security
computer
system

Enemy The presence of
a deliberate
defect

Introducing
deliberate defects

Intensification of
Intentional Defects

Malicious

Such an interconnection will make it possible to find
"common ground" in conceptual and technological
approaches of different origins to the creation of secure
computer systems.
System-wide approach
 Let be computer system designed to solve target
problems There is also a set of supporting
the process of functioning tasks . Set tasks

 и | operate using

resources .
For development team is invited , At the
same time, “good” and “bad” developers are distinguished,
that is, there are two sets and respectively. At the
same time, the entire background of the choice of
developers suggests that the power does not exceed
some predetermined limit . It is clear that . At
the same time, bad, as opposed to good, means either
incompetent (careless) or malicious developers.

Arzieva Jamila Tileubaevna, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6576 – 6586

6580

Then some of the problem statements in such an informal
scenario, taking into account the above verbal model of
behavior (portrait) of a potential offender, may be as
follows.
Informal setting 1. It is necessary to develop computer
systems , which, during operation, to develop computer
systems would solve target problems , provided all
developers are reliable.
Informal setting 2. Need to develop computer systems ,
which would solve target tasks during operation ,
provided that the number of unreliable developers does not
exceed .
Informal setting 3. It is necessary to develop computer
systems , which would solve target tasks during
operation , assuming unreliable developers (no more
than) - are passive offenders.
Informal setting 4. It is necessary to develop computer
systems , which would solve target tasks during
operation , provided that the number of unreliable
developers (no more than) - are active offenders.
Informal setting 5. It is necessary to develop computer
systems , which would solve target tasks during
operation , provided that unreliable developers (no more
than) - are both passive and active offenders.
In general, in the conditions of the above formulations of
tasks, it is clear that we must solve some proactive
protection tasks, when, under a number of conditions,
reactive security follows from the proactive nature of the
created computer system in terms of ensuring its
functional and information security.
Let us abstract further from the presence of unreliable
computer system developers. In this case, the general
informal formulation of the problem of creating
proactively secure computer systems can be formulated as
follows.
Informal setting 6. It is necessary to develop computer
systems , which would solve target tasks during
operation , at the same time, if possible, the solution of
protection tasks aimed at the stable functioning of
computer systems is transferred from the stage of its
operation to the stages preceding the commissioning of
computer systems.
Such a formulation “looks too informal”, nevertheless,
according to the authors, it is precisely such formulations
at the early stages of research that can be useful in
understanding the proposed informal staging structures.
A very important point related to the resource costs for
such a process of transferring protective functions is not
considered here [5]. At the same time, the main resource
constraints will be financial, and most importantly -
temporary, since when ensuring proactive security of
computer systems, protection issues are given increased
attention at the stage of their creation. In this case, at the
operational stage, it is assumed that the users of the CS
“can simply not pay attention” to the need to protect its
information and functional resources.
Thus, from a system-wide point of view, the paradigm of

proactive security comes down to such a conceptual
scheme for formulating a problem that would allow us to
ensure stable target functioning of a computer system in
the presence of a large number of disturbing factors when
solving it.
Algorithmic approach
From the above paradigm for creating proactively secure
computer systems, the following qualitative statement of
the problem of creating algorithmically proactively secure
computer systems can be formulated.
Let be complex consisting of programs
having a purpose determined by a specific computer
system. At the same time, the issues of program
interaction, their correlation, etc. are not considered. Let
also and program size and the size of the
resources allocated by the computing system to protect the
program respectively, and total size of the
software package defined as

The values and are expressed in either spatial,
temporal, or spatial-temporal measure. Value determines
the total cost of protecting a complex of programs and is
calculated as

It is defined as a security parameter for the program ,
and as an aggregate safety parameter for
the complex , where . In general, determines
the likelihood that the program will not violate certain
security conditions, for example, the probability of the
presence (absence) of software defects, the likelihood of
successful (unsuccessful) actions of the intruder in the
selected protection scenario, etc.
The values and can be directly or indirectly related to
each other. For example, the program size can run
faster on a 32-bit processor than on an 8-bit processor, and
the security parameter in a number of cases, it directly
depends on the size of the computer word of the
computing system.
Let be and direct and indirect
effect of the implementation of the proposed methods
(schemes and protocols) of program protection . In this
case, the direct effect is understood as an increase in the
level of software security for specific computer systems,
and the indirect effect is understood as obtaining accurate
quantitative characteristics that do not violate security
functions by programs and the ability to confirm the
correctness of the target function. Then the problem
statement is as follows.
Informal setting 7. Under the assumptions and restrictions
imposed by the conditions of functioning of a particular
computer system, it is necessary to develop a set of
programs , which are correct with the
probability of the presence of the program not higher

Arzieva Jamila Tileubaevna, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6576 – 6586

6581

calculate the result on a complete system of tests with
cumulative costs , which constitute a polylogarithmic or
constant multiplicative factor of size complex of
programs .
The exclusion of the possibility of manifestation of
destructive software in protected programs is possible due
to the introduction of space-time redundancy into
protection schemes. К the varieties of redundancy given in
this work include:
 processor redundancy;
 temporary redundancy;
 communication redundancy;
 hardware redundancy due to the introduction of

specialized protection means.
Thus, the task is to effectively implement the developed
protection methods by reducing the space-time redundancy
to the minimum possible value. In turn, redundancy is
expressed in a certain number of additional processed,
stored and transmitted information bits and in a certain
additional amount of time for executing algorithms for the
operation of programs.

5. DEVELOPMENT OF A METHOD FOR PROACTIVE
PROTECTION OF INFORMATION FROM MALICIOUS CODE

Interception of potentially dangerous actions. To
implement the mechanism for intercepting potentially
dangerous actions, it is proposed to use the technology of
intercepting the SSDT system services table using an
additional driver that works at the kernel level. This
technology has a number of significant advantages.
Working at the kernel level, the interception module
allows intercepting all calls to the file subsystem and
registry even at the early stages of the operating system
boot. At the same time, all intercepted actions can be
blocked in a timely manner [6]. The work of the
interception module at the lowest level allows you to track
the actions of stealth viruses that implement their
camouflage at higher levels. Also, the implementation of
the module as an OS driver significantly complicates the
task of removing and bypassing the interception module
for malware.
Scheme of a proactive defense system. Implementation of a
proactive defense system based on a two-tier architecture,
when a kernel-level driver is responsible for intercepting
actions, and a user process for displaying information
about events that occur, is not applicable in real
conditions. If you transfer the functions of intercepting
actions and the functions of making decisions about
blocking to the driver, this will either lead to a large
number of false positives, or significantly increase the
total time of the function call and, as a result, slow down
the operation of the entire system. In addition, direct
interaction of the driver with the user process can lead to a
violation of the stable operation of the operating system.
This approach does not allow building a more reliable and
correspondingly complex decision-making system and

reduces it to the simplest version.
The scheme of a proactive protection system against
malicious software is shown in Fig.2.

Figure 2: General scheme of a proactive protection system
against malicious software

The proposed scheme is based on a three-tier architecture.
At the lowest level, the module for intercepting potentially
dangerous actions, implemented in the form of an
operating system driver, works. He is responsible for
intercepting calls to the file subsystem and the registry,
and also monitors network communication. The module
for intercepting potentially dangerous actions can also
provide real-time blocking of unambiguously dangerous
actions, the preliminary complex analysis of which is not
required. Such actions may include, for example, an
attempt to replace or modify the main system files.
The second level of the system is represented by a system
service running with operating system rights. At this level,
the accumulation and analysis of all potentially dangerous
actions is carried out and a decision is made to block the
operation of one or another process. The analysis module
can be easily modified, can use any required amount of
system resources, has the ability to access the local and
network knowledge base, as well as the ability to verify
the digital signature of all processes running in the system.
The work of the analysis module separately from the

Accessing
the file

subsystem

Accessing
the registry

Networking

Interception
module

Driver level
operation

Registration of
interceptions,

initial processing
of events

Information
collection module

EDS
verification

module

System level
operation

 Analysis
module
Verdict

Process
table

Knowle
dge base

User interface

User-level
operation

Arzieva Jamila Tileubaevna, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6576 – 6586

6582

mechanism for intercepting potentially dangerous actions
makes it possible to implement analysis algorithms based
on the accumulation of information about the operation of
programs over a certain period of time.
For direct interaction with the user, the user interface is
responsible, which works at the highest level of the
system. Its main purpose is to notify the user about the
occurrence of dangerous events that were detected by the
analysis algorithms and/or blocked automatically by the
interception module. Note that the user does not take direct
part in the decision to block programs within the proposed
system. Moving the user out of the protection system can
significantly increase the speed of the system's response
and reduce the influence of the human factor.
Classification of actions according to the degree of danger.
Any proactive malware protection system is based on
intercepting potentially dangerous actions and their
subsequent analysis. The efficiency of the entire system
depends on how well the analysis of potentially dangerous
actions is carried out. Obviously, not all potentially
dangerous actions are created equal. Some of them are
more dangerous, some less. All software actions can be
divided into classes according to the degree of danger:
safe, low level of danger, medium level of danger, high
level of danger and especially dangerous. If the protection
system responds in the same way to all unsafe actions, this
will lead to a large number of false positives. In order to
reduce their number in most modern proactive defense
systems, actions belonging to the first three classes are
simply ignored. In this case, actions that belong to the last
two classes are processed in the same way, which also
increases the likelihood of an error of the second kind and
increases the load on the module for intercepting
potentially dangerous actions.
Lack of control over actions related to safe, low and
medium severity levels will not allow tracing the evolution
of malware attacks aimed at infecting computer systems
over time. Often times, safe actions can be the harbingers
of more dangerous actions by malware. So, having entered
the system, the virus first of all begins to analyze its new
habitat. These actions are not considered dangerous and
are ignored.
At the same time, if one of the useful work programs
performs an action related to the group of medium or high
severity level, it will be blocked by the antivirus. For
example, writing data to an executable file can be
classified as the action with the highest severity. Most
viruses try to write themselves into executable files or
create them on disk. But it can be just copying a file from
one directory to another.
Thus, one division of software actions by hazard classes is
not enough. It will be more effective to use the analysis
method that takes into account the entire history of
software actions. In this case, not only dangerous and
especially dangerous actions should be taken into account,
but even such safe actions as reading a directory and
checking file attributes.
A large amount of information about the operation of a

particular program makes it possible to increase the
reliability of the decision-making subsystem and to realize
the possibility of creating over time behavioral profiles for
each of the programs.
Accumulation of information about software operation.
For processing, the data analysis module can receive a
huge stream of disparate information about the work of all
processes running in the system. In this case, one of the
key requirements for the analysis module is the
requirement to minimize the use of system resources. This
requirement can be met only by reducing the amount of
stored operational information and the number of required
computing operations. For this reason, the analysis module
cannot store information about all actions of all running in
computer systems. Instead, it is proposed to use several
numerical indicators that could characterize all the
previous actions of a particular program.
Under using numerical indicators, the amount of stored
information for each program is reduced to only ten bytes,
and the analysis of each new action requires only a
recalculation of indicators taking into account this action.
As a result, it becomes possible to reduce the amount of
stored information and the number of calculations.
Application of the method of expert assessments. As noted
above, in modern systems of proactive protection against
malicious programs, when a potentially dangerous action
is intercepted, a message is displayed to the user of the
application with a request to allow or block this action.
Making a competent decision requires a fairly high
qualification and level of knowledge from the user,
sometimes at the level of a system programmer or
administrator. Obviously, this approach is unacceptable
when it comes to the massive use of antivirus.
In the proactive defense system, a decision-making
module should be used, which will allow shifting the
decision-making onto the software product itself. At the
same time, the initial data for its operation should be not
only events coming from the module for intercepting the
actions of potentially dangerous software, but also a
previously prepared knowledge base based on the opinion
of experts.
For the formation of the knowledge base, it is proposed to
use the method of expert assessments, which will make it
possible to streamline the knowledge and opinions of
individual specialists. It is assumed that several highly
qualified specialists will take part in the formation of the
knowledge base, who will be able to give an objective
assessment of certain actions taking place in the system.
At the same time, instead of classifying potentially
dangerous actions according to the degree of danger, it is
proposed to use the classification according to how certain
actions are characteristic of malicious programs.
To simplify the work of experts in assessing potentially
dangerous actions, it is proposed to divide all actions into
groups in accordance with the stages of the life cycle of a
malicious program [7]. In total, six main stages can be
distinguished: first launch, exploration, ensuring a restart,
concealment of presence, reproduction and destructive

Arzieva Jamila Tileubaevna, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6576 – 6586

6583

impact.
Each of the experts fills out the table, independently
putting down points for each action on a ten-point scale.
First, an independent assessment is put down for each of
the actions, as if all the previous and subsequent actions
are not important. After filling the first column, the expert
proceeds to filling in the remaining columns. They contain
an assessment of how unambiguously the considered
action can be classified as an action of a malicious
program, provided that actions from other groups were
performed earlier.
Since the assessment was carried out in points, the final
results of the work of the group of experts are averaged
and reflected on an expanded scale (for example, by 100
points). The resulting tables are entered into the
knowledge base of the program and are the initial data on
which the program will rely when making decisions.

6. CONSTRUCTING AN ARCHITECTURE FOR PROACTIVE
INFORMATION PROTECTION BASED ON SCENARIOS OF
MALICIOUS CODE BEHAVIOR

An expert system based on scenarios of malicious code
behavior is proposed for use in proactive protection,
namely, in antivirus heuristics and/or behavioral blocker.
To simplify the presentation, we will consider it as part of
a heuristic.
Why should there be an expert system? Why should it be
an expert system, and not an ordinary program, for
example, a data processing system? Because the
description of behavior is not data, but knowledge. In
computer science, there are definitions for both data and
knowledge.
Definition 1. Data are separate facts that characterize
objects, processes and phenomena of the subject area, as
well as their properties.
Definition 2. Knowledge is the patterns of a subject area
(laws, connections, rules) that allow experts to pose and
solve problems in this area.
Knowledge is transformed during computer processing as
follows:
1. Knowledge in human memory as a result of thinking.
2. Material carriers of knowledge - books, manuals, etc.
3. The field of knowledge is a generally accepted
description of the basic objects of the domain, their
attributes and rules, as well as the relationships between
them.
4. A machine-based knowledge base that is close to
natural language - understandable to the layman in the
field of computer science.
Obviously, descriptions of malware behavior are
knowledge, not data, since in our case we have not only
facts, but also rules about how malware works.
And since we are dealing with knowledge, their processing
requires an expert system that can make decisions about
various computer objects based on the knowledge base
about the behavior of malware.
As it knows, an expert system consists of three main parts:

a knowledge base, a knowledge base management system
that implements knowledge input, storage, editing,
addition and translation into the internal representation,
and a solver for processing knowledge when making
decisions.
There are various models of knowledge representation,
such as rules (if <conditions> then <action>), semantic
networks, frames, scenarios (hierarchies of scenarios), as a
special case of frames, and others. Thus, there can be
different knowledge base management systems for
different types of presentation. There are also various
ways of processing knowledge, in particular, direct
inference, reverse and combined.
Choosing a way to represent knowledge. You need to
choose an appropriate knowledge representation to
describe the behavior of malware. A behavior description
contains actions, but actions can be represented by
algorithms, rules, or scripts.
Usually algorithms are used to describe the behavior of
programs. But in our case, it is necessary to describe the
behavior of not every program, but entire classes of
malware. The first scenario hierarchy is shown in Fig.3. In
addition, it should be possible to describe behaviors at
different levels of the hierarchy, so that the user can be
given explanations not at the level of elementary actions,
but using common available concepts.
Thus, we need some generalized hierarchical
representation of the algorithms. For this, it is proposed to
use scripts. And scripts are preferable to rules because they
are closer to the algorithm than rules.
Representing knowledge using scripts. Scripts are
designed to describe behavior, and each behavior usually
has a purpose. So, in our case, the goal is what the
malware is trying to do in order to destroy the system or its
components. And thus, the target is explicitly or implicitly
displayed in the script name.
How a malicious program could behave in order to
achieve its goal, in order to then compare this behavior
with the progress of the program under study during
detection [8]. For example, if the goal is to infect
executable files, the virus first searches for files, opens
them, writes to the code section, and modifies the header.
These steps will be referred to as sub goals.
Sub goals are intermediate stages in achieving a goal.
Thus, they can be viewed as part of a script. Each sub goal
can have different conditions. For example, "open file" is
always executed after "find file". Some sub goals may be
required, some are not. But such conditions can be
described in various ways. For example, for the sub goal
“write to the code section” we must “go to the code
section”, “use the WriteFile API function”, and so on.
Thus, as a result of constructions, a hierarchy of scenarios
is obtained. The purpose of the top-level script is to infect
an executable file, that is, to inject a virus in such a way
that the infected program, on the one hand, remains
functional, and on the other hand, serves as a source for
the propagation of the virus.

Arzieva Jamila Tileubaevna, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6576 – 6586

6584

Figure 3: Hierarchy of scripts for describing the behavior of a parasitic virus

There are two types of sub goals: baseline and sub goals
based on baseline. Basic sub goals correspond to the
actions that we intercept in the system, for example,
calling an API function. Thus, moving from the goal, we
define its sub goals, then these sub goals through others,
and so on until all sub goals are directly or indirectly
defined through the base ones.
For the first script hierarchy, shown in Figure 3, the basic
sub goals are: the FindFirstFile API, the FindNextFile
API, the WriteFile API, the CreateFile API, and the
OpenFile API. Some types of basic sub goals and their
formal descriptions are listed below.
Thus, each script from the hierarchy consists of a name
that indicates the purpose of the script and a list of sub
goals.
Now you need to determine how to formally write scripts,
and what types of sub goals will be basic. For writing
scripts, we suggest using a language similar to the regular
expression language. Let's consider three basic operations
and two derivatives from them. Basic operations:
1. Concatenation. Denoted by a hyphen
means sequential execution of sub goals, first , then
(e.g. Find File followed by Open File).
2. Disjunction (OR). Indicated by the sign
means that or .
3. Iteration. Indicated by the sign means that
scenario a can be repeated any number of times (including

zero).
Architecture heuristic. Detection of malicious code using a
heuristic goes through three phases: a decoding phase, an
investigation phase, and an assessment phase. The first
two phases refer to the technical component, the last one
to the analytical one.
The purpose of the decoding phase is to emulate the
required number of instructions required for a virus to
decode its body.
The purpose of the research phase is to emulate, at least
once, all code sections available in the program, which can
presumably contain viruses.
The purpose of the evaluation phase is to analyze any
suspicious actions that were found during decoding and
research to determine if the program is infected. This
phase is divided into two.
The first is compiling a list of all observable program
behaviors using static and dynamic approaches.
The second is the analysis of the identified behaviors. This
is where it is determined whether the set of detected
behaviors is malware-specific or not. The knowledge base
is used for this. The decoding phase, research and the first
part of the evaluation phase are outside the research. It is
the second
part of the assessment phase that will be an expert system
based on scenarios, that is, it will be an ES solver, which,
based on inferences, will be able to analyze and compare
scanned files with scenarios for each type of malware or

 «Parasitic virus scenario»

1
Find executable file

2
Open file

2
Write to code section

2
Change title

Mandatory after 1 Mandatory after 2 Mandatory after 2 Optional

 Child script for “Find Executable”

1
API function
FindFirstFile

2
API function
FindFirstFile

ObligatoryAPI
function Optional API function

 Child script for "Write to Code Section"

1
Go to code section

2
API function

WriteFile

Obligatory API
function

After 1
API function

 Child script for "Open File"

1
API function

2
API function

OR
API function FindFirstFile

Arzieva Jamila Tileubaevna, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6576 – 6586

6585

with scenarios of different types of malicious behavior.
The complete architecture of the heuristic is shown in
Fig.4. It consists of two subsystems:

Figure 4: The architecture of a heuristic using an expert system

1. A knowledge base management system with a
knowledge base based on hierarchies of malicious
behavior scenarios. The knowledge base management
system is designed to organize the input of knowledge,
store it, edit it, add it and translate it into the internal
representation.
2. A heuristic scanner, including an expert system solver,
is necessary to determine the infection of the object under
study.

7. SCHEME OF THE DECISION-MAKING MODULE FOR
PROACTIVE INFORMATION PROTECTION FROM
MALICIOUS CODE

A scheme of the decision-making module is shown in
Fig.5.

Figure 5: Decision module scheme

Only three tables of limited size are used as stored data.
Each of the tables contains no more than a hundred bytes
per process. Lists of all accumulated actions are not used.
As a result, it is possible to minimize the use of RAM
resources. All data operations are performed by two
adders, which also significantly reduces the amount of
required computing resources. The first adder is used to
recalculate the cumulative score table data. The second
one is for calculating the current assessment of the
harmfulness of the process that performed the action that
came to the input of the decision-making module.
Accumulated scores s, recalculated for each action
according to the formula:

where

 function of changing the estimate over time ;
 process correction factor;
 process index in the correction factor table;

 assessment of the action according to the
corresponding column of the table of expert assessments.
The adjustment factor table reflects the degree of initial
trust in a particular process. For example, a lower
coefficient can be set for processes whose executable
module is equipped with an EDS of a well-known
software manufacturer.
The second amount is calculated as the sum of the
accumulated scores multiplied by the corresponding
coefficients:

where previous value.
Calculation result used to make a verdict on whether the
program is appropriate for the process to malicious. The
decision is made when a certain predetermined decision
threshold is exceeded , simple comparison with a given
quantity. The quantity , at which a program can be
recognized as malicious is selected experimentally and
strongly depends on the original table of expert
assessments.

8. CONCLUSION

It should be noted that the proposed approaches to
information protection from the point of view of the
paradigm of their proactive security make it possible to
ensure stable target functioning of a computer system in
the presence of a large number of disturbing factors, and
the developed method and a three-level scheme of
proactive information protection from malicious code
based on expert assessments makes it possible to
significantly reduce the likelihood of false alarms and the
level of requirements for the qualifications of service
personnel. Also, the constructed architecture of proactive
information protection based on scripts and regular
expressions made it possible to represent the behavior of

Sc
an

ne
d

fil
es

 Heuristic

 Knowledge
base with
script
hierarchies

K
no

w
le

dg
e

D
B

M
S

Scanner
heuristic
Decoding phase

Research phase

Evaluation
phase

First part;
second part;

(solver)

List of malicious
files

Expert
assessment

table

Correction Factor
Table

Verdict Action

Accumulated
grades table

Arzieva Jamila Tileubaevna, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6576 – 6586

6586

malicious code in a hierarchical form, and the developed
scheme of the decision-making module against malicious
code allowed making the right decisions independently
without contacting the user.

REFERENCES

1. Bojanova, I., Vaulx, F., Zettsu, K., Simmon, E., Sowe,
S. (2016, January 21). Cyber-Physical-Human
Systems Putting People in the Loop. IT
Professional.

2. Burning Glass Technologies. (2015). Job Market
Intelligence: Cybersecurity Jobs, 2015.

3. Gulomov Sherzod, Xoshimova Charos Saidaminovna,
Ganiyeva Toxira Irkinovna, Djurayeva Shoxista
Tagirovna. Analysis of Methods for Measuring
Available Bandwidth and Classification of
Network Traffic. International Journal of Emerging
Trends in Engineering Research. Volume 8. No. 6,
June 2020. Indexed in Scopus. – P. 2753-2759

4. Costanzo, J. (2017). Hampton Roads Cybersecurity
Education, Workforce, and Economic Development

Alliance (HRCyber) Mid-Project Report “Bridging
the cybersecurity talent gap in Hampton Roads”.

5. Karimov Madjid, Gulomov Sherzod, Yusupov
Bokhodir. Method of constructing packet filtering
rules. International conference on information science
and communications technologies applications, trends
and opportunities (ICISCT). 4-6 November, 2019,
Tashkent Uzbekistan

6. Herrmann, A., Rehm, K., Carlini, J., Schkeeper, P.,
Loken, L., Swanson, J., Maltby, J. (2009, October).
The CIP Report Center for Infrastructure
Protection, Volume 8 number 4.

7. Shark, A., Metzanbaum, S., Barquin, R., Wennergren,
D. (2015, August). Increasing the Effectiveness of
the Federal Role in Cybersecurity Education.
National Academy of Public Administration.

8. Gulomov Sherzod, Karimova Dilbar, Akbarova
Shokhida Azatovna, Qosimova Gulnora Ismoilovna.
Comparative Analysis of Methods Content
Filtering Network Traffic. International Journal of
Emerging Trends in Engineering Research. Volume 8.
No. 5, May 2020. Indexed in Scopus. – P. 1561-1569

