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 
ABSTRACT 
 
Simulation of pedestrian flows is an urgent subject for 
investigations since it has been applied in various fields 
during recent decades. Development of mathematical model 
is important in order to determine parameters of high density 
pedestrian traffic to control it in real time. This work presents 
pedestrian flow as a random Palm flow. Distribution of time 
intervals in the flow is approximated by the Erlang law of the 
sixth order. Using the renewal theory for random processes, 
analytical tools were developed to predict the number of 
pedestrians arriving at fixed point during preset time interval. 
Using the methods of queue theory and theory of random 
processes, analytical tools were developed to determine 
average number of pedestrians in front of emergency exits and 
properties of queue length. Herewith, both the cases of single 
pedestrian flow and of convergence of several flows into one 
were considered. Probability functions were derived 
characterizing cumulative pedestrian flow. Determination of 
flow parameters by experimental data is described. The 
developed analytical tools, using minimum amount of initial 
data, allow to predict online the intensity and to select 
optimum redirection of pedestrian flows during evacuation.  
 
Key words: pedestrian flow, mathematical model, random 
process, emergency scenario, traffic management.  
 
1. INTRODUCTION 
 
Simulation of pedestrian flows is an urgent subject for 
investigations since it has been applied in various fields 
during recent decades. The regularities of traffic of large 
human groups are especially important for simulation of 
emergency scenarios as well as for management of traffic 
along street and road network. 
Mathematical models can describe flow dynamics at various 
levels: microscopic, mesoscopic, and macroscopic [1]. 
Microscopic models take into account behavior of each 
individual in the flow [2]. It is possible to highlight the Social 
force model [3] and the model of cellular automata [3, 4]. At 
macroscopic level, it was proposed to describe the flows using 
gas dynamic and kinetic model [5]. Software and algorithms 

 
 

are available based on both types of the models allowing to 
solve local and global tasks by exchange of results and data 
inside software [4, 6, 7]. The difficulty is that initial data for 
models of various levels are absolutely different. This results 
in significant difficulties, since acquisition of large arrays of 
initial data is a complicated task itself. 
For a separate class of tasks, it is required to simulate flow at 
certain average level, when all traffic participants are taken 
into account aiming at formation of parameters of total flow. 
Such models are known as mesoscopic.  
An urgent task is the development of mathematical model to 
determine parameters of high density pedestrian traffic to 
control it in real time. 
This work is aimed at development of mesoscopic model of 
high density pedestrian flow, allowing to predict online the 
parameters of such flow during evacuation using minimum 
amount of initial data.  
 
2. METHODS 
 
While simulating pedestrian flows, researchers are often 
based on similar models of  transport flows. It is acceptable 
not for all types of solved problems since human flow is less 
organized and exposed to numerous random factors [1, 8, 9]. 
According to established opinions, there exists the effect of 
crowd self-organization occurring without external impact 
over certain time [2]. In this work we attempt to describe high 
density flow formed during evacuation, moving in certain 
direction to exit. In this case, we can be based on the methods 
and approaches used during development of TIMeR_Mod 
transport flows [10].  
 
3.  RESULTS AND DISCUSSION 
 
The hypothesis of normal distribution of pedestrian flow 
moving in certain direction was experimentally proved by 
numerous researchers. However, while describing pedestrian 
flow as a random flow of events, the normal law of 

distribution can hardly be applied. The Erlang law at 5k   
is close to normal and corresponds to high density flows of 
events [11]. Therefore, in the case of evacuation of people 
from places of mass gathering along narrow passages, we will 
approximate the pedestrian flow (as well as transport one) 

 
Determination of Parameters of High Density Pedestrian 

Flow upon Formed Traffic in Certain Direction 
Natalya Alexandrovna Naumova 

Kuban State Technological University, Krasnodar, Russia 
 

        ISSN  2347 - 3983 
Volume 8. No. 9, September 2020 

International Journal of Emerging Trends in Engineering Research 
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter262892020.pdf 

https://doi.org/10.30534/ijeter/2020/262892020 

 

 



Natalya Alexandrovna Naumova, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020,  6560 – 6567 

6561 
 

 

using the Erlang law.  
The distribution density of the special Erlang law (or just 
Erlang law) is as follows [11]: 

 
         1 1 , 0k k tf t t e k t     

 (1) 
The Erlang distribution function of the k-th order is as 
follows: 
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Mathematical expectation  M T
 and dispersion  D T

 in 
this case are, respectively: 

  kM T



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  2
kD T



            (3) 

 
3.1. Presentation of Pedestrian Flow as Palm Flow 
 
Let us apply the renewal theory [12] for simulation of 
pedestrian flow as a random flow of events: the Palm flow. We 
assume that the flow is already organized and moves to 
certain direction. A random event is arrival of pedestrian to 
space point with fixed coordinates along the direction axis. 
The interval between random events is the time interval 
between two consecutive arrivals to the fixed space point of 
two consecutive pedestrians in the flow. Let us consider the 

renewal function    tH t M N
: the mathematical 

expectance of the number of events in the time t in the case of 
(special) Erlang distribution. The image of distribution 
function of time intervals in the case of the Erlang distribution 
is as follows [12]: 
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The Laplace transform for this function is:  

 

 
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*
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k k
H s
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 *H s
 can be expanded into simple fractions containing 

the following terms: 
1) from the pole s = 0; 
2) from the nonzero poles in the roots of the equation 

 * 1f s 
. 

Let us determine the roots of this equation: 
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The nonzero roots are as follows (i is the imaginary unit): 
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Each simple nonzero root ps
 in the expansion  *H s

 
corresponds to the fraction:  
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That is:  

  

 
      

1 1
*

/2 2*1 1

1 1 1 1 1
2 2

k k
p

p p p pp p p

sk kH s
ks s k ks s k k s s ss f s s s

  

 

 
       

  
 

  (9) 
 

From this, using the tables, we determine the original, that is, 

the renewal function  H t
: the number of events occurring 

during the time interval (0; t). From the theory of operator 

calculus, it is known that each fraction 

1

ps s  corresponds 

to the original 
ps te . 

In the case of heavy density pedestrian flows, the distribution 
law is close to normal and it can be approximated by the 
(special) Erlang law of at least the fifth order. 
In order to obtain the accurate analytical assignment of the 

renewal function, let us consider 6k  . 

The roots of  6 6s  
 in this case are as follows: 
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The image of renewal function at 6k   is as follows: 
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Let us express 
*( )R s : 
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(12) 

 
After simplifying and rewriting it in more convenient form for determination of the original, we obtain the following: 
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Let us determine the original by its image: 
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After simplification and reduction of similar terms, ( )R t  is as follows: 
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Then, the renewal function at 6k   is as follows: 
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Equation (16) presets ( )H t  equaling to the number of 
pedestrians arriving at fixed point in t  s. In the case of 

emergency scenarios, ( )H t  equals numerically to the 
number of people arriving at closed emergency exit in t  s. In 

the case of simulation of street and road traffic, ( )H t  
determines the number of pedestrians arriving at crosswalk 
during active red traffic light [13, 14]. 
 
3.2. Convergence of Several Pedestrian Flows in Front of 
Closed Exit 
 
Let us consider the case when in front of the emergency exit 

s pedestrian flows are converged. According to the renewal 
theory [12], for average number of renewals in the interval 

 0; t
 in the converged process the following is valid: 

1
( ) ( )

s

i
i

H t H t



                         (17) 

where s  is the number of converged processes, ( )iH t  is 
the renewal function of each of them.  
That is, if in a certain point of plain s  pedestrian flows are 
converged, then the number of pedestrians crossing this point 

in the interval  0; t
 is calculated as follows: 
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   (18) 

where i   is the Erlang parameter for the i th  
converged flow. 
 
3.3. Simulation of Pedestrian Flow as a Mass Service 
System 
 
In order to determine the evacuation efficiency of pedestrian 
flows, let us apply the methods of mass service theory and the 
theory of random processes [11, 15]. Let the service time is 
distributed according to the exponential law with the 

parameter μ. The arrivals are distributed according to the 
generalized Erlang law with the parameters λ0, λ1,…, λк of the 
(k + 1) order. Not more than n requests can be serviced 

simultaneously. As is known, the Erlang flow of the ( 1)k   

order is obtained from the simplest if each ( 1)k   event is 

considered and the intermediate k  are rejected. Thus, in 
order to determine the probability that m (n > m) requests are 
serviced, let us apply the method of pseudostates (Fig. 1): 

  

 
Figure 1: Pseudostates of Erlang distribution of the k + 1 order. 

 
While considering transport flows in [10], the equations of 
probability of system existence in this pseudostate were 
obtained. Therefore, let us apply the ready result. 
Let us introduce the following notations: 

 pn(t), pn+1(t), …, pn+i(t) are the existence of system in the 
states s0, s1, …, si, respectively; 

 Un+i is the system state, when all n  service channels are 
busy in the queue of i  requests; 

   j
n ip t  is the probability of system existence in 

transitive state 
     1, 2, 3,....,j
n is t j k 

; 

 n ip t  is the probability of existing in queue of i  
requests at the time t .  
Differential equations of probability of system existence in 
transitive states  Un+i are as follows: 
 

           
/ 1( )

1( ) 1, 2, 3,....,j jj
n i j n i j n it

p t p t p t j k  
          (19) 

 
The set of differential equations of probabilities of i  requests 
in queue is as follows: 

       /
0 1 1

k
n i n i n i k n ip t p t n p t n p             

   1;2;3;...i
          (20) 

The differential equation for the interval without queue, and 
when m (m  n) service channels are busy (state Um), is as 
follows:  

          / ( )
0 1 11 k

m m m k mt
p t m p t m p p t            

 1, 2, ..., .m n  (21) 
For the time when the system is completely free, the 
differential equation is as follows: 

 
      /

0 0 0 1t
p t p t p t   

  (22) 

Let us denote    m mr t P U
, that is, rm(t) is the 

probability of system existence in the state Um. According to 
the laws of probability theory: 

 
     

1

k
j

m m m
j

r t p t p


 
(23) 

Then, the average length of queue at the time t is as follows: 

 
    

1
n i

i
M l t i r t






 
                (24) 

Solution to this set of differential equations for stationary 
process is given in [13], hence, we use the ready results: 

0

0

1

1

j nn

j

p

nb
j n

n

  



 
 

 
 
 

 /
! !

  (25) 

0 1

m

m
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j

p

nm b
j n

n



 



 
 

  
 
 

!
! !

 , 
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 0, 1, 2, ..., 1m n 
              (26) 

0 1

n i

n i

j nn
i

j

p

nn n b
j n

n



  









 
 

   
 
 

 /!
! !

,  0, 1, 2, ...i     (27) 
The efficiency performances of the system at (/n) < 1 are as 

follows: 
1) probability of not more than s requests in queue is: 

















 







s

1j

jnn

0m

m

0
s

1j
jn

n

0m
msn n!n!m

pbrrP 

   (28) 
 

2) mathematical expectance of requests in queue is:  

 

 
 

1

0 2
1

.
1

n

n j
j

M l jr bp
n n n









 
  


!

                       
(29) 
During predictions of efficiency the method of pseudostates 

was applied, when the time axis was expanded in ( 1)k   
times. Thus, to match the results, let us assume: 

0

0
1

k

i i

b 


 
,  

0 ( 1),
z

k
m


 


 

              (30) 
 
3.4. Determination of Parameters of Pedestrian Flows in 
Front of Emergency Exit 

In Eq. (30), Zm  is the average service time of one customer. 
While considering a pedestrian flow as Palm flow, where the 
time intervals have (special) Erlang distribution law with the 

parameters 6k   and  ,  we obtain the following values: 

 

1

0
6

k

i
b k







  
,  

6,
zm


 


 

                 (31) 
In order to determine average number of pedestrians in queue 
in front of emergency exit and probability of not more than s  
pedestrians in queue, it is necessary to substitute into Eqs. 
(28) and (29) the values determined by Eq. (31). 
Cumulative flow obtained upon convergence of s  high 
density pedestrian flows can be also approximated by the 

(special) Erlang law of the 6k  order. The second 
parameter of distribution is determined as the sum of initial 
terms: 

1

s

i
i

 



.            (32) 

If in this case the average time of evacuation via each n  exit 

is Zm , then the average number of people in front of an exit is 

predicted by the same equation: 

 
 

1

0 2
1

n

M l bp
n n n







  !

,                           (33) 

where 

1

0
6

k

i
b k







  
, 

 
0 6,

zm


 


 
. 

 
3.5. Determination of Distribution Function of Cumulative 
Flow Obtained upon Convergence of s  High Density 
Pedestrian Flows 
 
In Section 4, in order to determine the number of pedestrians 
in queue, we assumed that the cumulative flow also had the 
Erlang distribution. If it is required to determine the 

probability that in the time 0T  the space point with fixed 
coordinate in cumulative flow will not be arrived by any 
pedestrian, then it is required to determine more accurately 
the distribution function of cumulative flow. 
In order to derive the distribution function of time intervals in 
cumulative flow, let us apply the method described in [11]. 

Let 
*  is an arbitrary point in the cumulative flow 

( )s , not 
corresponding to any event in independent flows 

1 2, , ..., s   . Then the time before next event in 

cumulative flow is  ( )
1 2min , ,...,s

sR R R R
. 

If the hypothesis about distribution of intervals in flow by the 
Erlang law is valid, then, according to the theory of random 
processes, the probabilities that the time Q after the last 
arrival of vehicle and the time R before the next arrival are 
lower than certain preset Т0  are expressed as follows: 
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   
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1 1

0
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
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 
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
      

   

 

 
         (34) 

 
The following notations are used: 

 
   

0
, ,

n n
x

Ka

xR n a e dx P k a
n






 
;   

   , !

k ae
P k k







  (35) 

Hence, the distribution function of time before next event in 

the Erlang flow of the ik  order is as follows: 

 
1

0

1( ) 1 ,
i

i

k

r i
ni

F t R n t
k






  
                             (36) 

The distribution function of the minimum of s  random 
values is determined as follows: 

   ( )

1

01 1

1( ) 1 1 ( ) 1 ,
i

s i

ks s

r ir
ni i i

F t F t R n t
k




 

 
      

 
 

          (37) 

The distribution function of time intervals 
( )sT  in 

cumulative flow 
( )s  is determined as follows: 

 
 

( ) ( ) 1 ( ) ( )s
ss

r
F t m t f t  

                          (38) 
Mathematical expectance of the interval between events in the 

flow i  is 

i
i

i

km



. Then:  
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1 1s
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i

ii

m

k




 


                             (39) 

Let us determine the distribution density ( ) ( )srf t
: 
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       (40) 
 

In particular, if two Palm flows are converged, where the  
time intervals are distributed according to the (special) Erlang law of the 6k   order with the parameters 1  and 2 , 

then:   
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

   
     (23)(41) 

 
Let us determine the derivative, substitute it into Eq. (23), and 
simplify: 
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        (42) 

 
Therefore, the distribution function of time intervals in flow 
obtained by convergence of two pedestrian flows distributed by the Erlang law of the 6k   order with the parameters 1  
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and 2 , is as follows:    
 

 2
2(2) ( ) 1 ( ) ( )

r
F t m t f t  

        (25)(43) 

where the function  2 ( )
r

f t
 is determined by Eq. (42), and 

the mathematical expectance of interval between events is: 

 
 

2
2

1 2

1 6m
 

 
                (44) 

The probability that in the time 0T  the space point with fixed 
coordinates is not arrived by any pedestrian is:  

(2)( ) 1 ( )oP T T F t              (45) 
and the probability of reverse event, that is, that at least one 

pedestrian is arrived, is: 
(2)( ) ( )oP T T F t            (46) 

 
3.6. Determination of Parameters of the Erlang 
Distribution by Experimental Data 
 

Using video detectors, we determine the time intervals iT  (in 
seconds) between two consecutive passages of pedestrians 
across the point with fixed coordinates. We calculate selective 
average of random value Т : 

 

__
1

m

i
i

T
T

m



          (47) 

The parameter is 6k  , then, the parameter   of the 
Erlang distribution is as follows: 

 
__
k

T
 

         (48) 

4. CONCLUSION 
While planning emergency scenarios or controlling 
pedestrian flows in emergency situations in online mode, it is 
required to determine workload of emergency exits. 
Simulation using macromodels in this case cannot be applied 
since it is time consuming and requires for large amount of 
initial data. The proposed in this work analytical approach 
allows to predict online the workload using minimum amount 
of initial data, thus, to select optimum variant of redirection of 
pedestrian flows during evacuation. In addition, it can be 
applied for management of street and road traffic aiming at 
determination of crosswalk holdups of vehicles and 
pedestrians. The advantage of this model in comparison with 
micromodels is in the rate of computations due to analytical 
tools.  
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