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 
ABSTRACT 
 
A mathematical model and a computational algorithm have 
been developed for studying the stress-strain state (SSS) 
parameters of thin-layer rubber-metal elements (TRME) used 
as elastic elements in pipeline compensators. As a part of the 
computational experiment, estimates were obtained for the 
distribution of the safety factor minimum values of the 
rubber-metal package. Tests for the TRME cyclic strength 
under mechanical tension have been carried out. For 
verification purposes, a comparative analysis of test data and 
the results of mathematical modeling by the finite element 
method (FEM) has been carried out.  
 
Key words : mathematic simulation, stress-strain state, finite 
element method, thin-layer rubber - metal element, pipeline 
compensator, safety factor, thermal elastic behavior.  
 
1. INTRODUCTION 
 
Thin-layer rubber-metal elements (TRME) of various designs 
are used in the elastic flexible joints, e.g. , - in bridge 
bearings, helicopter industry (bearings), shipbuilding (elastic 
elements of compensator in high pressure pipelines and 
missile technology (elastic bearing joints). With the use of 
substantial anisotropy of the TRME  rigidity characteristics 
along and across the rubber layers, it is possible to create 
unique designs with new qualities, for example - extremely 
high load carrying capacity across the layers and extremely 
low rigidity along the rubber layers.  The pipeline 
compensators based on flat annular TRME  may serve as an 
example. They have a transient vibration rigidity two orders 
of magnitude less than conventional pipeline compensators 
based on bellows, rubber-fabric hoses, rubber-cord shells, in a 
wide frequency range from zero to hundreds and thousands of 
hertz ([1] and Figure 1). Accordingly, they provide a much 
higher vibration isolation through the pipelines construction.  
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Figure 1: Experimentally measured vibrational transient rigidity C of sleeve-type compensators DU 80 mm (curve 1) and a 

compensator with TRME (curve 2) in the frequency range 0 - 1600 Hz at the water pressure of 10 MPa 
 
When designing constructions based on TRME, it is 
necessary to ensure their strength in conditions 
of non-uniform temperature fields with varying loads, 
including the cyclic ones with significant amplitudes. The 
problem is solved by the finite element method (FEM) using 
the thermoelasticity theory. Thermoelasticity is an important 
branch of solid mechanics that generalizes the theory of 
elasticity for non-isothermal deformation. It has recently been 
developed in connection with the problems arising in the 
creation of gas turbines and rocket engines new designs. The 
stress condition problems during uneven heating are of great 
importance for the strength and reliability  analysis of 
functioning designs, operating under conditions of 
alternating temperatures and strains. 
The purpose of the current research is the development of a 
computational algorithm, which allows 
simulating thermoelastic behavior and the 
parameters stress-strain state (SSS) parameters of thin 
layer rubber -metal elements ( TRME ) under 
complex thermomechanical loading. At the first stage, the 
problem of the temperature field  distribution under given 
boundary conditions has been solved, at the second one, 
the problem of determining the SSS parameters 
 
2. DESIGN OF TRME 
 
The design of the flat annular TRME, the main geometrical 
parameters and the loading scheme as part of the 
compensator are shown in Fig. 2. TRME consists of 
supporting rings 1 and a rubber-metal package 2. The 
package 2 consists of a set of steel plates separated 
with rubber mixture layers,  plasticized  with low molecular 
raw rubber with ring functional groups. The rubber modulus 
of elasticity  during displacement, on which the 

vibration rigidity most depends, which determines the 
vibration-insulating properties of the compensator as a 
whole, is provided at the level of 0.22-0.26 MPa. The rubber 
mixture is attached by vulcanizing to the plates and the 
support rings with the system of adhesives: "Chemosil" of the 
German production or " Permlok " of the 
Russian  production, providing adhesive strength during the 
breaking-off and displacement at 5.5 and 7.5 MPa, 
respectively. 
 

 
Figure 2: Structural design and loading scheme of the 

TRME with a displacement of the support rings by the value e 
 
This design provides high axial bearing capacity and 
extremely low transverse rigidity along the rubber-metal 
layers. Considering the model of a flexible joint with the 
displaced axes of the support rings (Figure 2), it should 
be taken into account that the pressure P acts on the inner 
surface of the product.  
 

1 

2 
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3.  MATHEMATICAL MODELING FOR THE 
STRESS-STRAIN STATE OF ELASTIC SUPPORT 
ELEMENTS UNDER COMPLEX 
THERMOMECHANICAL LOADING 
 
A mathematical model for solving the problem using the 
finite element method (FEM) in the bulk formulation has 
been developed. When carrying out the thermal calculation, 
the equation of non-stationary thermal conductivity is used [2, 
3]: 
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In equation (1), the following designations are 

introduced: t - time,   - density of 
the thermal protection material , 
T  - temperature field , C - heat 

capacity, zrrr 
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- Laplace operator of 

a cylindrical coordinate system , эф
- effective 

thermal diffusivity. The initial condition of equation (1) is the 
uniform temperature distribution over the thickness of the 
multilayer wall:   
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The boundary condition is the energy balance due 
to heat transfer from the side of the inner wall : 
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In expression (3 ), the following designations are 

introduced:  - coefficient of convective heat transfer, pС - 
specific heat capacity, m - mass rate of chemical 

entrainment, we II ,  - enthalpy of the working medium , T - 

thermodynamic temperature of the medium ,  wT - 

temperature of the medium at the wall , wT  - effective 

coefficient of emissivity, SB - Stefan's exponent 

-Boltzmann, Q - thermal effect of heat supply  

At the junctions of the layers, the conjugation 
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The boundary condition on the outer surface of the last layer is 
the condition of heat exchange with the environment: 
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In operation water flows  at speeds up to 10 m/s inside TRME, 
water temperature ranges  from -2 0 C and 40 0 C. The outer 
surface of TRME is surrounded by air the temperature of 
which ranges from 0 0 C to 55 0 C. In an emergency (in case of 
an external fire), the outer surface of the TRME is exposed to 
combustion products with a temperature of 180 0 С (boundary 
condition of the 1st kind) .   
To solve the elastoplastic boundary value problem, the FEM 
was used based on the variational Lagrange 
approach [4]. Among the permissible displacement values, 
the actually existing ones are determined by the 
variational equation [5], which for the functional 
 is written in the following form:  
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In formula (6), the following designations are used: n - 

quantity, V - volume of a finite element, S - area of a finite 

element ru , zu - displacements in the radial and axial 

directions, zn PP , - surface forces in the radial and axial 
directions. 
Elastic deformations and stresses are calculated using the 
well-known relations of the elasticity theory [5, 6] : 
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In relations (6) and (7), the following designations are 

introduced: 
E - elasticity modulus  - Poisson's 

ratio, r ,  , z , rz - radial, circumferential, axial and 

deformations, r ,  , z , rz - radial, circumferential, 
axial and tangential stresses. The equilibrium equation for a 
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system of finite elements is: 

        RK ][                                   (8) 
 

In equation (8), the following designations are 

adopted: ][K - structure rigidity matrix,   - vector of the 

unknowns,  R - load vector. Finite element rigidity matrices 
are determined using the following relationship: 
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In relation (9), ][B  is a geometric matrix used to relate 
deformations and displacements in a finite element, 

depending on the type of a finite element, ][D  is an 
elasticity matrix, depending on the type of stress state. Taking 
into account the properties of anisotropy of materials [7] and 
the symmetry property of the matrix , we obtain: 
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In matrix (10): zrzr EEE   ,,,,, - elastic moduli and 
Poisson's ratios in the radial, annular and axial directions, 

respectively, rzG - displacement modulus, 
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The temperature stresses and the deformed shape of the 
structure under nonuniform heating were calculated using 
the FEM [5]. Rigidity matrices of elements 
in thermoelastic problems have the same form as in case of 
force action on the system . It is thus required to take into 
account the additional thermal deformations arising under the 
action of thermal stress [8, 9]. As part of the numerical 
modeling of the hyperelastic behavior of the rubber mixture, 
the two-parameter Mooney- Rivlin model was used, 
according to which the total specific energy of deformation 
is determined by the ratio: 
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In expression (11): 0110 ,,, CCJI i  - i -е invariants of 
the deformation deviator, determinant of the deformation 
gradient matrix, material constants of the model, 

respectively, 0110

21
CC

d

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


is the coefficient 

of rubber incompressibility, ),( tT  is Poisson's ratio. 

4. NUMERICAL SIMULATION RESULTS 
The numerical simulation results of the TRME thermal state 
are visualized in Fig. 3 for the case of maximum heating. The 
maximum heating temperature of the TRME structure is 
realized on the outer surface of the package of TRME 
rubber-metal plates and is 180 C, the minimum is on the 
inner surface of the TRME (40 C).   

 
Figure 3. Temperature field distribution, 0 С on the surface 

of the TRME 
 

The distribution map of the heat-stressed state of the element 
base, taking into account the orthotropic dependence of the 
elastic modulus on the heating temperature, is shown in 
Fig. 4. 

  

 
Figure 4. Distribution of the ring strain in TRME 

 
The results of the computational experiment on the 
distribution of the SSS parameters of 
the thermoelastic boundary value problem for the 
TRME showed that the maximum intensity 
of  Mises equivalent stresses is realized on the surfaces of 

metal plates and is 
МПатарелMeeqv 82.130max

.__ 
 

(Fig. 5). The maxima of thermal and mechanical 
deformation of the TRME rubber layers are determined in a 
ratio 

23.6:1.                   
The distribution of the minimum structural strength factor of 
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the TRME construction is determined according to the 
classical strength theory : 
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where  min  is the minimum safety factor;  )(TВ  

- ultimate strength of construction materials depending 
on heating temperature ; 

},,,max{max eqvzr  
 - maximum among the 

design stresses; eqvzr   ,,,
 - radial, annular, axial and 

equivalent stresses, respectively.   
 
 
 

 

 
A B 

Figure 5. Map of the SSS parameters distribution of the thermoelastic boundary problem : A. relative axial thermal deformation of 
the TRME; B. intensity of equivalent stresses, MPa 

 
The minimum safety margin for TRME metal plates is: 
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When the temperatures of the TRME mode of operation range 
from 40 C to 180 C  TRME and rubber package strength is 
fully ensured. 

5. CYCLIC STRENGTH OF TRME. NUMERICAL 
MODELING AND EXPERIMENT 
TRME should provide dynamic strength under the action of 
short-term shock loads at a pressure of 10 MPa with an 
amplitude of ± 40 mm in the transverse direction with a 
deformation rate of 3.5 m/s without loss of 
performance. Under low-cycle loading with a frequency of 
less than 1 Hz and an amplitude of 40 mm, the maximum 
cyclic displacement stresses in TPME rubber are up 
to 0.38 MPa. Under high-cycle loading with an amplitude of 
5 mm, they do not exceed 0.05 MPa. The distribution of 
displacement stresses is shown in Fig. 6A. Resource tests 
have shown that these values are in the range of permissible 
displacement stresses of 0.7 MPa - 0.14 MPa for each of the 
amplitudes, respectively (they provide the cyclic strength of 
the TRME for a given number of cycles). However, taking 
into consideration reliability requirements, the complexity of 
physical and mechanical transformations in the 
process of the rubber cyclic deformation, the effect of the 
dynamic component of the load, the scale factor, the 
frequency and rate of loading, the TRME cyclic strength 
requires experimental confirmation for the full-size 
models.       
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The tests revealed a loss of stability in the transverse direction 
of the rubber - metal mass during axial compression with 
buckling of the plates in their plane upon reaching a certain 
critical load. The calculated pattern of buckling under axial 
compression is shown in Fig. 6B. 

The experiment showed that at higher deformation 
frequencies it is necessary to take into account 
the elastic-wave behavior of the elements of the TRME 
rubber-metal package in the transverse direction. 

 

  
A B 

Figure 6.  Intensity of equivalent stresses, MPa . A cyclic loading with a transverse displacement of the upper support ring; B. 
static axial loading with loss of stability 

 
Calculating experiment showed that at low-amplitude  high 
frequency  harmonic  loading (A=0.25 mm, f=50 Hz) there 
occurs higher intensity of equivalent stress as compared with 
the static loading. An increase in 

the deformation frequency up to 70 Hz and its amplitude up 
to 3 mm leads to rubber extrusion from the metal plates of 
the TRME and the loss of stability of the package (see also 
Fig. 6B). 

 

 
Figure 7. Calculated (points) and experimental (curves) study of TRME plates displacements under cyclic tension 

 
The results of experimental  and calculated analysis of 
TRME movements under axial cyclic tension are shown 
in Fig. 7. The results of calculations (points) and tests 
(curves) for 4-cycle quasi-static stretching showed good 
agreement. The material constants of the rubber plates were 
proved empirically. The area bounded by the hysteresis loop 
slightly increases with increasing loading cycles, which 
indicates the presence of a low level of the TRME residual 
deformations. 

6. CONCLUSION 
Computational algorithm and a number of programs have 
been developed allowing investigating the stress-strain state 
of thin-layer rubber-metal elastic supporting elements under 
nonstationary thermomechanical and cyclic loading. It allows 
desingning optimum structure based on TRME under 
complex thermal, power, and cyclic loading.  
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