
Samah W.G. AbuSalim et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 1103 - 1110 

1103 
 

 
Comparative Analysis between Selective and Non-Selective  Mutation Techniques 

 
Samah W.G. AbuSalim1, Rosziati Ibrahim2, Jahari Abdul Wahab3 

1,2 Department of Software Engineering, University Tun Hussein Onn Malaysia,Parit Raja, Johor, 86400, Malaysia  
 samahwasalim@gmail.com, rosziati@uthm.edu.my 

3Engineering R&D Department, Sena Traffic Systems Sdn. Bhd., Kuala Lumpur, 57000, Malaysia  
 jahari@senatraffic.com.my 

 
 

ABSTRACT 
 

Software testing is the process to provide users with 
information about the quality of the product or software being 
tested. One of most effective testing techniques is Mutation 
testing. Mutation testing is a software testing technique that 
injects a syntactic alteration into the source code to construct 
mutants. This technique works by testing a test suite's ability 
to detect mutants that are used to determine a test suite's 
performance. The information from mutation testing can be 
used to improve the quality of a test suite by developing 
additional test cases. Despite its effectiveness, many factors 
make it costly and therefore difficult to use by software testers 
for example, execute large sets of mutants, and generate many 
numbers of test cases to kill the mutants and equivalent 
mutants. Several approaches have been proposed in order to 
reduce the mutation cost by reducing the number of mutants 
generated which will lead to a reduced execution time. Thus, 
this study aims to employ an appropriate mutant reduction 
technique by comparing and analyzing between two 
approaches namely selective and non-selective mutants. To 
achieve this, mutation operators were generated for each 
approach. Test cases were then generated by using JUnit 
testing framework. Performance measurements in terms of 
mutation coverage and execution time for each case study 
were evaluated by using PITest tool, which is mutation testing 
tool for Java. Finally, the mutation coverage and execution 
time were compared and analyzed among the four case studies 
used namely Cal, Airline Reservation, Chess and Elevator 
applications. The experimental results showed that selective 
mutant operators can drastically reduce the execution time and 
make mutation testing more e�ective since the execution time 
for selective mutant is 8.5 seconds while non-selective mutant 
takes 27.25 seconds in execution time. 
 
Key words: Mutation Cost Reduction Techniques; Mutant 
Operators; Mutant Reduction Techniques; Mutation Testing. 
 
1. INTRODUCTION 

 
Software testing is one of the important and primary parts 

of software quality assurance (SQA). Through software 
testing, software faults are shown to users, but bugs and errors 
often prevail, even after programmers frequently test the 
entire site and its functions [1]. The objective of testing is not 
only to capture bugs and system defects; it can be performed 
for other reasons such as software quality assurance, software 

verification and validation and software functionality 
checking [2]. Software testing can be performed automatically. 
Automation is used in various control systems for running 
machinery and other operations with the least human 
interference [3]. In the field of software testing, mutation 
testing which first proposed by DeMillo et al. [4]. Mutation 
testing is one of the most effective techniques for quality 
evaluations of input values and test cases. While mutation 
testing is effective, it is still considered as an expensive and 
time-consuming complicated technique that has prompted 
many researchers to find ways to reduce and minimize costs. 
The implicit running cost of performing the large number of 
mutants against the test set is one of the reasons why mutation 
testing is so expensive [5]. Therefore, a lot of research has 
discussed the problem of how to reduce the number of 
mutants produced without affecting the efficiency of the test. 
For this reason, four techniques are introduced to reduce the 
number of mutants, Mutant Sampling, Mutant Clustering, 
Selective Mutation and Higher Order Mutation [6]. In this 
paper, a comparative study between two mutant reduction 
techniques that are mutant selection technique and non-
selection technique (All-Operators) for Java apps using PITest 
mutation testing tool [7] are analyzed to conduct the best 
mutant reduction technique. This paper consists of 7 Sections. 
Section 2 looks into a different view of previous researchers 
and their conclusions through an overview of the literature 
relating to mutant reduction techniques and methods. Several 
mutant reduction techniques are discussed in Section 3. 
Section 4 presents the methodology of this study which 
include three phases. Section 5 shows the results of the 
empirical study. Section 6 proposes the comparative analysis 
between two mutant reduction techniques based on number of 
mutant generated, execution time and mutation score and the 
concluding remarks are in Section 7. 

 
2. RELATED WORK 

 
Falah et al. [8] present a strategy named Random Selective 

Mutation (RSM) that reduces the cost of testing during the 
mutation creation phase by reducing the number of mutation 
operators used at this phase. A hypothesis was relied on in 
their technique, that is the production of fewer mutants is 
sufficient to conduct highly efficient tests based on the 
production of fewer mutations. Their experiment showed that 
mutation testing can be achieved with a small subset of 
mutation operators. It has suggested that choosing the type of 
mutation operator can affect the efficacy of mutant detection 

             
        ISSN 2347 - 3983 

Volume 8. No. 4, April 2020 
International Journal of Emerging Trends in Engineering Research 
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter25842020.pdf 

https://doi.org/10.30534/ijeter/2020/25842020 

 

 



Samah W.G. AbuSalim et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 1103 - 1110 

1104 
 

and they confirmed that method operators are general used in 
smaller size applications. 

Hamimoune and Falah [9], introduce a comparative 
analysis between four mutation testing techniques (class-level 
operators, method-level operators, all operators, and random 
sampling) using MuClipse mutation too for Java language in 
order to find the most effective technique for mutation testing. 
They suggested that the mutant detection effectiveness is 
based on the selecting of the type of mutation operators. They 
also show that for small and medium-size application, the 
most efficient and prevalent operator is all sampling operator. 

Kurtz et al. [10] analyze selective mutations without the 
noise created by the inherent replication of traditional 
mutations. Then, evaluated comprehensively small groups of 
mutation operators for the Proteum mutation system, which is 
a C mutation tool and assess the dominator mutation scores 
and the work required for each. The results show that selective 
methods need to become more sophisticated in order to 
achieve high performance for mutation process. 

Delgado-Pérez & Bulo [11] use the Evolutionary Mutation 
Testing (EMT) technique which allows the number of mutants 
to be reduced while retaining the power to refine the test suite. 
Their experiments applied with six real-world C++ case 
studies using the tool GiGAn with MuCPP mutation tool for 
C++. The results indicate that EMT work well for most case 
studies and test suite improvement demand rates.  

Chekam et al., [12] implement approach known as FaRM to 
machine learning, which learns to select fault revealing 
mutants using collection of tools in C++. Their results show 
that FaRM performs well than all existing methods of mutant 
selection.  

Gopinath et al., [13] compared random sampling with 
multiple reduction techniques in order to find which technique 
is most effective in cost reduction. The experiment applied in 
real-world open source programs using PIT tool. They found 
that none of mutation reduction techniques that evaluated 
produced an efficacy advantage of more than 5% compared to 
random sampling. Their research shows that blind random 
sampling of mutants performs better and more effectiveness 
than current mutation reduction approaches. 

Rani and Chaudhary [14] define an improved clustering 
approach to improve the mutation testing. Their work is 
characterized in two main phases. In first stage, the code 
segment extraction in done. In second stage, the cost analysis 
and clustering approaches are applied to improve the mutation 
process. The experimentation is performed on multiple code 
blocks using MuJava tool. The results show that the mutation 
testing can be enhanced by reducing the killed mutants over 
the code. 

Abuljadayel and Wedyan [15] introduce approach using 
genetic algorithm to create difficult higher order mutants to 
kill and reduce the equivalent mutants produced. They 
developed a Java tool named HOMJava to perform their 
approach. Their study shows that the mutants that generated 
by their approach were difficult to kill and the remained 
equivalent mutants were about 4% from 100 sample of 
possible equivalent mutants and can killed them by simple test 
case. 

Table 1 summarize the literature review in mutant 
reduction techniques which are: Selective Mutant, Mutant 
Sampling, Clustering Mutant and Higher Order Mutant.   

Table 1: Summary of comparative studies in related works 

Author and year Techniques Framework/Method 
Falah et al., (2015) 

[8] 
Selective 

Mutant 

The results showed 
that mutation testing 
can be done with a 
small subset of 
mutation operators. 

Hamimoune & 
Falah (2016) [9] 

Selective 
Mutant 

They suggested that 
the mutant detection 
effectiveness is based 
on the selecting of 
the type of mutation 
operators.  

Kurtz et al., (2016) 
[10] 

Selective 
Mutant 

They suggest that 
selective methods 
will have to become 
more advanced in 
order to achieve high 
efficiency for 
complete mutation 
analysis. 

Chekam et al., 
(2018) [12] 

Selective 
Mutant 

Their results show 
that their approach 
outperforms all 
existing methods of 
mutant selection. 

Gopinath et al. 
(2017) [13] 

Mutant 

Sampling 

 

Their result shows 
that blind random 
sampling more 
efficacy than current 
strategies for 
mutation reduction. 

Rani and 
Chaudhary (2015) 

[14] 

Mutant 
Clustering 

The results show that 
their work in 
reducing the killed 
mutants over the 
code has 
significantly 
enhanced the 
mutation testing. 

Abuljadayel & 
Wedyan (2018) 

[15] 

High Order 
Mutant 

Their strategy can 
produce hard higher 
order mutants to kill 
and minimize the 
number of equivalent 
mutants. 

 
Based on Table 1, there are many researches proposed by 

several people on the field of mutation testing. Many 
researchers tried to reduce the cost of mutations by reducing 
the number of mutations produced in a phase of mutation 
analysis. However, there are a small number of researches 
done comparative analysis between selected mutant operators 
and all mutant operators using PIT mutation testing tool. 
Therefore, this circumstance has motivated this study to 
compare between two mutant reduction techniques selective 
mutant and non-selective (all-operator) mutant using PIT tool. 

 
 
 



Samah W.G. AbuSalim et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 1103 - 1110 

1105 
 

3. MUTANT REDUCTION TECHNIQUES 
 
Mutant reduction techniques have been classified as Mutant 

Sampling, Mutant Clustering, Selective Mutation and Higher 
Order Mutation. This section will show these mutant 
reduction techniques briefly. 

 
3.1 Mutant Sampling 

 
It is first suggested by Acree [16] and Budd [17]. It is a 

technique that randomly selects a small group of mutants. 
Similarly, to traditional process of mutation testing, first all 
potential mutants are generated. Then X% are selected 
randomly from these mutants for mutation analysis and 
discarded residual mutants. The main focus was on random 
selection rate choice (x) [18]. This method has been the topic 
of many empirical studies. In [19] the authors tested mutant 
sampling in Java programs at random. The results showed that 
random sampling of mutants by 60% or 50% can reduce the 
cost of testing in Java program with adequate score for 
mutations and code coverage. In [18] the authors claim that 
the best results can be achieved in a mutation testing when 
90% samples are taken from all mutants that the test is being 
performed. 

 
3.2 Selective Mutant 

 
This technique was proposed first, as “constrained 

mutation” by Mathur [20] and Offutt et al. [21], later this 
concept extended by naming it Selective Mutation. It is not 
random as mutation sampling, but instead aims to reduce the 
number of mutants by using a subset of the available mutation 
operators without gaining a significant loss of test 
e�ectiveness relative to non-selective mutant (all operators). 
Wong [22] researched the concept of using a uniform 
distribution to pick mutants randomly. He confirmed, that the 
findings were poor when use of mutants selected at random. 
The appearance of this negative result was the reason for the 
emergence of a selective mutation technique by Wong and 
Mathur [23].  

 
3.3 Mutant Clustering 

 
In Hussain's master thesis, the concept of Mutant 

Clustering was first suggested [24]. Instead of randomly 
picking mutants, clustering algorithm was used to select a 
group of mutants. The Mutation Clustering process begins 
with the generation of all mutants of first order. A clustering 
algorithm is then implemented on the basis of the killable test 
cases to identify the first order mutants into separate clusters. 
Same set of test cases are expected to destroy every mutant in 
the same cluster. Same test cases is expected to destroy every 
mutant in the same cluster. Only a small number of mutants 
are chosen for use in mutation testing from each cluster, the 
remaining mutants are discarded [6]. 
 
3.4 Higher Order Mutant 

 
This approach is performed by injecting two or more faults 

into the mutated program. The number of injected faults is 
representing the order of mutant. For example, the mutant of 

second order means that mutant has two faults while mutant of 
third order means that mutant has three faults [15]. To 
produce Higher Order Mutant (HOM), the mutation operators 
are performed several times, which typically varies from the 
original program being evaluated by simple changing [25]. 
Several studies indicated that HOMT can help identify 
equivalent mutants and improve effectiveness. 

 
4. RESEARCH METHODOLOGY 

 
This section discusses the methodology of this study which 

include three phases, as shown in Figure 1.  
 

 
Figure 1: Research Phases 

 
The explanation of these phases is discussed in the 

following sections. 
 

4.1 Phase 1 (Generating Mutants based on Mutant 
Reduction Technique) : The process of mutation normally 
consists of three steps: Generating mutants, executing the test 
suite, and analyze the outcome. After the final step, the tester 
can use the information given from the analysis to design 
additional test suits to strengthen the test suite and improve 
the mutation score. 
 
4.1.1 The Process of Mutation Testing 

 
As illustrated in Figure 2, the first step of mutation analysis 

is to generate mutants of the original program. This is done by 
inducing small syntactic changes according to well-formed 
rules called mutation operators. Mutants are created by 
applying an operator on the source code. PIT mutation testing 
tool [28] include two type of mutant operators. The first type 
of mutant operators is activated by default while the second 
type is deactivated by default as shown in [7]. For selective 
mutant, some operators like operators that activated by default 
was selected while non-selective means all operators activated 
and deactivated by default were applied; thus, every mutant 
will contain a single syntactic change that differs from the 
original program.  

After generated mutants, a test cases are carried out against 
the original program and the mutants to compare the output 



Samah W.G. AbuSalim et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 1103 - 1110 

1106 
 

from both original and mutants’ programs. If the output 
di�ers from the original program, then the mutant is said to be 
detected or killed, otherwise it is said to have survived [6]. If 
any mutants remained undetected, the surviving mutants can 
by killed through mutant analysis, which can help developing 
additional test cases. Mutation testing tools normally provide 
some sort of information about the mutants that can help the 
augmentation of the test suite. After test case execution the 
surviving mutants need to be analyzed. This is either done to 
mark equivalent mutants since they need to be omitted from 
the final mutation score, or to use the information to develop 
additional test cases. The end result will produce a mutation 
score. The mutation analysis aims to increase the mutation 
score close to 1, i.e. 100% [27]. Mutation Score is defined as 
the ratio of mutants that are killed by our test cases to total 
number of mutants. Mutation score can calculate by the 
following formula: 

Mutation Score = (Killed Mutants / Total number of 
Mutants) * 100                                                                    (1) 

Where  
0 <= M.S. <= 0.9 

 

 
Figure 2: The process of mutation analysis 

 
4.1.2 Mutant Classification 

 
The mutants can be classified into 3 different categories. 

The first one called Redundant mutants [10] which can be 
killed by every test case, thus not adding any useful test cases 
to the test suite, and omitting operators producing high 
numbers of redundant mutants would reduce the execution 
time. As compared to Redundant mutants, there are hard to 
kill mutants [28]. Such mutants are particularly interesting as 
they contribute to strong test cases as they are only killed by a 
small percentage of test cases. The idea is that redundant 
mutants subsume hard-to-kill mutants, so one can exclude 
operators that tend to produce redundant mutants without a 
significant loss in the test case. some mutants do not modify 
the meaning of the original program, means that mutant 
program equivalent to the original program, and thus are not a 
fault. These mutants are considered equivalent mutants. For 
example, a mutation operator might change the condition in a 
for-loop, as shown in Figure 3. 

 

 
Figure 3: Example of Equivalent Mutation [6] 

 
In the above example, the code has changed, but the for-

loop behavior is the same, which makes the mutant equivalent 
since no test case can detect it. A mutant might also be 
unkillable in a programming language because of constraints 
or limitations. Even for small programs, the effort to detect 
equivalent mutants can be strong, causing unnecessary device 
processing and the software engineer have to spend energy on 
anon-existent problem. 
 
4.2  Phase 2 (Generating and Executing Test Suites Using 
JUnit Testing Framework): The generated of test suites  for 
four case studies have created by hand in the JUnit testing 
framework, and additional test cases were generated by 
analyzing the surviving mutants. Only test cases that were 
responsible for killing at least one mutant were added into the 
final test suite. The process of test case generation continued 
until all non-equivalent mutants were killed and all equivalent 
mutants have been marked. When all the necessary test cases, 
for each mutant operator had been created, each test suite 
were executed against the original program and the mutants to 
compare the output from the test suite and a mutation score 
was calculated. The test suites have 4 columns: test suite id 
(TS_ID), test suite name (TS_Name), test case id (TC_ID) 
and test case description), as shown in Table 2. 

 

Table 2: Test Suite Table 

TS_ID TS_Name TC_ID 
Test Case 

Description 

TS_1 Flights TC_01 To verify flight 

details like 

flight name, 

code, from and 

to destination 

and timing. 

 
Table 3 describes the four case studies that used to do this 
research. The Java applications have been downloaded from 
GitHub website. 



Samah W.G. AbuSalim et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 1103 - 1110 

1107 
 

 Table 3: Programs used in the experiments 

Java 
programs 

Lines 
of 

Code 

Methods Description 

Cal 14 1 Calculate the 
number of days 
in the same year, 
between the two 
days. 

Airline 
Reservation 

154 41 Provide online 
ticket and seat 
booking for 
national and 
international 
flights as well as 
flight departure 
information. 

Chess 
game 

352 62 Game between 
two users. The 
users will enter 
their moves by 
putting in the 
column and row 
from which they 
want to move and 
then the location 
they want to 
move to. 

Elevator 434 82 A small Java 
project to 
simulate the 
evolution of an 
elevator. 

 
   

4.3  Phase 3 (Comparing  and Analysis between two 
Mutant Reduction Techniques): The last phase of our 
methodology is do comparative analysis between the 
selective and non-selective mutant. The results are compared 
and analyzed after they are obtained by execution of the test 
suite by using PIT mutation testing tool based on three 
measurements which are Number of mutants generated, 
Mutation Score and Execution Time of four case studies. 
 
5. RESEARCH RESULTS 

 
The results for both mutant reduction techniques are 

compared and analyzed for four case studies. after they are 
obtained by execution of the test suits. Three measurements 
are used: Number of mutants generated, Mutation Score and 
Execution Time  

 
5.1 Results of Number of Mutants Generated 

 
In this section, the generating of the mutants using PIT tool 

for two mutant reduction techniques: Selective Mutation and 
Non-Selective (All-Operators) Mutation for the four case 
studies is presented. The mutation operators are shown in 
Table 4. 

 

 Table 4: Results of Number of Mutants Generated 
 

Application Selective 
Mutant 

Non-Selective 
(All-

Operators) 
Mutant 

Cal 17 60 

Airline 

Reservation 

72 264 

Chess 68 64 

Elevator 291 805 

 
5.2 Results of Mutation Score 

 
The mutation score for the mutation testing is represents in 

per cent. Thus, the mutation score for Selective mutation and 
Non-Selective (All-Operator) mutation for four cases studies 
is represented in Table 5 and Table 6. 

 

Table 5:  Results of Mutation Score for Selective 

Mutants 

Applica

tions 

Class Unit Testing 

Name # of 

methods 

Kille

d 

muta

nts 

Total 

Muta

nts 

Sco

re 

(%) 

Me

an 

Sco

re 

Cal Cal 1 10 17 59 59 

Airline 

Reserv

ation 

Main 1 0 21 0 50 

Datab
ase 

11 18 33 55 

Flight 9 7 7 100 

Passen
ger 

5 3 3 100 

Seat 5 3 3 100 

Ticket 10 5 5 100 

Chess Bisho

p 

3 4 4 100 68 

Board 10 20 43 47 

Game 19 31 69 45 

King 3 13 14 93 

Knight 3 14 14 100 

Main 1 0 1 0 

Pawn 3 20 20 100 

Piece 14 56 72 78 

Queen 3 7 7 100 



Samah W.G. AbuSalim et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 1103 - 1110 

1108 
 

Rook 3 4 4 100 

Elevato

r 

Buildi
ng 

9 15 28 54 41 

Doors 5 3 13 23 

Elevat
or 

17 17 72 24 

FIFOE
lev 

8 21 22 95 

Floor 7 11 35 31 

Naive
Elev 

8 18 34 53 

Person 12 28 48 58 

Person
Except

ion 

2 0 2 0 

Simul
ation 

3 0 13 0 

Timer 5 5 8 63 

Main 5 0 16 0 

 

Table 6: Results of Mutation Score for Non-Selective 

(all-operators) Mutants 

Applica

tion 
Class Unit Testing 

Name # of 

meth

ods 

Kille

d 

muta

nts 

Total 

Muta

nts 

Score 

(%) 

Mea

n 

Scor

e 

Cal Cal 1 22 60 37 37 

Airline 

Reserv

ation 

Main 1 0 67 0 45 

Datab
ase 

11 44 119 37 

Flight 9 24 24 100 

Passen
ger 

5 9 9 100 

Seat 5 9 10 90 

Ticket 10 34 35 97 

Chess Bisho

p 

3 10 10 100 64 

Board 10 48 96 50 

Game 19 108 254 43 

King 3 34 38 89 

Knigh

t 

3 44 46 96 

Main 1 0 2 0 

Pawn 3 57 63 90 

Piece 14 141 193 73 

Queen 3 20 20 100 

Rook 3 10 10 100 

Elevato

r 

Buildi
ng 

9 41 70 59 45 

Doors 5 16 39 41 

Elevat
or 

17 48 150 32 

FIFO
Elev 

8 69 74 93 

Floor 7 33 91 36 

Naive
Elev 

8 58 128 45 

Person 12 88 153 58 

Person
Excep
tion 

2 0 3 0 

Simul
ation 

3 0 39 0 

Timer 5 10 17 59 

Main 5 0 40 0 

 
5.3 Results of Execution Time 

 
The execution time is very important element in any system. 

Table 7 shows that Selective and Non-Selective mutation 
execution time.  
 

Table 7:  Average of Execution Time in Seconds 

Program Selective 
Mutant (s) 

Non-Selective 
Mutant (s) 

Cal 2 7 

Airline 
Reservation 

5 8 

Chess 16 47 

Elevator 11 47 

 
 

For the four case studies, the formal specification can also 
be formed using Z specification for example. Some 
researchers used formal notation prior to implementation such 
as [29], [30] and [31]. 

 
6. COMPARATIVE ANALYSIS 

 
The experimental results that have been acquired from the 

implementation of each technique separately on mutation 
testing can be compared in terms of: 

 
6.1 Comparison of Number of Mutants Generated 

 
The number of mutants reflects upon the execution time, 

and therefore plays an important role when assessing the 



Samah W.G. AbuSalim et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 1103 - 1110 

1109 
 

e�ciency of operators. As shown in Figure 4, the Non-
Selective mutant, produces on average the highest number of 
mutants for all applications. Non-selective (all-operators) 
mutant is better than selective mutant in term of number of 
mutants generated. 

 
 

Figure 4: The number of mutants each set of operators 
produced for every program 

 
6.2 Comparaison of Mutation Score 

 
The mutation score that each test suite, adequate for a 

specific set of mutation operators, managed to produce 
selective mutation and non-selective mutation operators (all 
operators). As shown in Figure 5, the selective mutation, 
coverage the highest number of mutants. So, selective mutant 
is better than non-selective (all-operators) mutant in term of 
mutation score. 
 

 
 

Figure 5: The mutation score of techniques produced for every 
program 

 

6.3 Comparison of Execution Time 
 
The execution time is very important element in any system. 

Table 8 shows that Selective mutation obtained the shortest 
time. Selective mutant is better than non-selective (all-
operators) mutant in term of time execution. 

 Table 8: Average of Execution Time in Seconds 

Program Selective Mutant 
(s) 

Non-Selective 
Mutant (s) 

Cal 2 7 

Airline 
Reservation 

5 8 

Chess 16 47 

Elevator 11 47 

Average (s) 8.5 27.25 
 

 
7. CONCLUSION 

 
In this research, two mutant reduction techniques were 

compared and analyzed in terms of number of mutators 
generated, mutation coverage and execution time. To achieve 
this, mutation operators were generated for each approach. 
Test cases were then generated by using JUnit testing 
framework. Performance measurements in terms of mutation 
coverage and execution time for each case study were 
evaluated by using PIT tool. Finally, the mutation coverage 
and execution time were compared and analyzed among the 
four case studies namely Cal, Airline Reservation, Chess and 
Elevator applications. The experimental results showed that 
selective mutant operators can drastically reduce the execution 
time and make mutation testing more e�ective. As the 
execution time for selective mutant is 8.5 seconds while non-
selective mutant takes 27.25 seconds in execution time. For 
the future, there is a need to conduct more research in this 
particular field of study including more techniques of cost 
reduction of mutation testing like Mutant Sampling and 
Clustering mutation.  Furthermore, many studies can also be 
applied to compare between mutation testing techniques with 
other techniques like regression testing technique and white-
box testing technique. 

ACKNOWLEDGMENT 
This project is funded by the Ministry of Education Malaysia 
under the Malaysian Technical University Network (MTUN) 
grant scheme Vote K234 and SENA Traffic Systems Sdn. 
Bhd. 

REFERENCES 
[1] A. Thioac, E. J. Domingo, R. M. Reyes, N. Arago, R. Jr. 

Jorda, J. Velasco. Development of a Secure and 
Private Electronic Procurement System based on 
Blockchain Implementation, International Journal of 
Advanced Trends in Computer Science and Engineering, 
Volume 8, No. 5, September - October 2019, Available 
Online at 



Samah W.G. AbuSalim et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 1103 - 1110 

1110 
 

http://www.warse.org/IJATCSE/static/pdf/file/ijatcse115
852019.pdf 

[2] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L.Traon, & 
M. Harman.   Mutation Testing Advances: An 
Analysis and Survey, Advances in Computers, 2018. 
https://doi.org/10.1016/bs.adcom.2018.03.015 

[3] H. Kumar, S. Kamboj. Modelling of Automatic 
Material Handling System using PLC, International 
Journal of Advanced Trends in Computer Science and 
Engineering, Volume 8, No. 3, May - June 2019, 
Available Online at 
http://www.warse.org/IJATCSE/static/pdf/file/ijatcse908
32019.pdf 

[4] R. A. DeMillo, R. J. Lipton, & F. G. Sayward. Hints on 
Test Data Selection: Help for the Practicing 
Programmer, IEEE Computer, 11(4), 34–41, Apr.1978. 
https://doi.org/10.1109/C-M.1978.218136 

[5] P.K. Chaurasia. Mutation Testing: A Review, Journal 
of Global Research in Computer Science. Volume 5, No. 
2, February 2014. 

[6] Y. Jia and M. Harman. An Analysis and Survey of the 
Development of Mutation Testing, IEEE Transactions 
on Software Engineering, 2011. 

[7] H. Coles, T. Laurent, C. Henard, M. Papadakis, & A. 
Ventresque. PIT: a practical mutation testing tool for 
Java (demo). Proceedings of the 25th International 
Symposium on Software Testing and Analysis - ISSTA 
2016. doi:10.1145/2931037.2948707 

[8] B. Falah, M. Akour & S. Bouriat. RSM: Reducing 
Mutation Testing Cost Using Random Selective 
Mutation Technique, Malaysian Journal of Computer 
Science. 28. 338-347. 10.22452/mjcs. vol 28 no 4 (2015). 
https://doi.org/10.22452/mjcs.vol28no4.5 

[9] S. Hamimoune and B. Falah. Mutation testing 
techniques: A comparative study, 2016 International 
Conference on Engineering & MIS (ICEMIS). 

[10] B. Kurtz, P. Ammann, J. Offutt, M. E. Delamaro, M. 
Kurtz, & N. Gökçe. Analyzing the validity of selective 
mutation with dominator mutants, Proceedings of the 
2016 24th ACM SIGSOFT International Symposium on 
Foundations of Software Engineering - FSE 2016.  
https://doi.org/10.1145/2950290.2950322 

[11] P. Delgado-Pérez and I. Medina-Bulo. Search-Based 
Mutant Selection for Efficient Test Suite 
Improvement: Evaluation and Results, Information 
and Software Technology. (2018). 

[12] T.T. Chekam, M. Papadakis, T. Bissyandé, Y.L. Traon, 
& K. Sen. Selecting Fault Revealing Mutants, 
Empirical Software Engineering. (2018). 

[13] R. Gopinath, I. Ahmed, M. A. Alipour, C. Jensen, & A. 
Groce. Mutation Reduction Strategies Considered 
Harmful, 2017 IEEE Transactions on Reliability, 66(3), 
854 874. doi:10.1109/tr.2017.2705662  

[14] N. Rani, and J. Chaudhary. A Clustering Improved 
Cost Effective Approach for Mutation Testing, 
Procedia Computer Science. 58. 593-602. 
10.1016/j.procs.2015.08.078. (2015). 

[15]  A. Abuljadayel, & F. Wedyan. An Approach for the 
Generation of Higher Order Mutants Using Genetic 
Algorithms, I.J. Intelligent Systems and Applications, 1, 
34-45. (2018) 

https://doi.org/10.5815/ijisa.2018.01.05 
[16] A. T. Acree. On Mutation, PhD Thesis, Georgia 

Institute of Technology, Atlanta, Georgia, 1980. 
[17] T. A. Budd. Mutation Analysis of Program Test Data, 

PhD Thesis, Yale University, New Haven, Connecticut, 
1980. 

[18] A. Derezinska, and M. Rudnik. Evaluation of Mutant 
Sampling Criteria in Object-Oriented Mutation 
Testing, Proceedings of the 2017 Federated Conference 
on Computer Science and Information Systems.  

[19] I. Bluemke and K. Kulesza. Reductions of Operators in 
Java Mutation Testing, Advances in Intelligent 
Systems and Computing. 286. 2014. 

[20] A. P. Mathur. Performance, effectiveness, and 
reliability issues in software testing, 1991 Proceedings 
the Fifteenth Annual International Computer Software & 
Applications Conference. 
doi:10.1109/cmpsac.1991.170248  

[21] A. J. Offutt, G. Rothermel, & C. Zapf. An experimental 
evaluation of selective mutation, Proceedings of 1993 
15th International Conference on Software Engineering. 
doi:10.1109/icse.1993.346062  

[22] W. E. Wong. On mutation and data flow. Phd thesis 
Purdue University, West Lafayette (1993). 

[23] W. E. Wong and A. P. Mathur. Reducing the cost of 
mutation testing: An empirical study, Journal of 
Systems and Software, 31(3), 185–196. 1995.  
https://doi.org/10.1016/0164-1212(94)00098-0 

[24] S. Hussain. Mutation Clustering, Master’s Thesis, 
King’s College London, UK. (2008). 

[25] J. A. P. Lima, G. Guizzo, S. R. Vergilio, A. P. C. Silva, 
H. L. J. Filho, & H. V. Ehrenfried. Evaluating Different 
Strategies for Reduction of Mutation Testing Costs, 
Proceedings of the 1st Brazilian Symposium on 
Systematic and Automated Software Testing - 
SAST. doi:10.1145/2993288.2993292. (2016).  

[26] A. J. Offutt. Investigations of the software testing 
coupling effect, ACM Transactions on Software 
Engineering and Methodology, 1992. 

[27] T. Laurent, M. Papadakis, M. Kintis, C. Henard, Y. L. 
Traon, & A. Ventresque. Assessing and Improving the 
Mutation Testing Practice of PIT, 2017 IEEE 
International Conference on Software Testing, 
Verification and Validation (ICST). 

[28] M. Andersson. An Experimental Evaluation of PIT’s 
Mutation Operators. (2017). 

[29] H. Aman, R. Ibrahim. (2014). Formalization of 
Transformation Rules from XML Schema to UML 
Class Diagram, International Journal of Software 
Engineering and Its Application, 8(12), pp.75-90, 2014.  

[30] B. Mondal, B. Das, & P. Banerjee. (2014). Formal 
Specification of UML Use Case Diagram – A CASL 
based Approach, International Journal of Computer 
Science and Information Technologies, Vol. 5 (3), 2014, 
pp. 2713-2717. 

[31] N. Ibrahim, R. Ibrahim, M.Z.Saringat, D. Mansor, & T. 
Herawan. (2011). Consistency rules between UML use 
case and activity diagrams using logical approach. 
International Journal of Software Engineering and its 
Applications, 5 (3), pp. 119-134, 2011. 


