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ABSTRACT 

The spectral conjugate gradient method is an efficient 
method for solving unconstrained optimization problems. In 
this paper, based on MMAR conjugate gradient method, a 
new spectral conjugate gradient method SMMAR is 
proposed with strong Wolfe-Powell line search. This method 
possesses sufficient descent and global convergence 
properties. Numerical results show that SMMAR method 
outperforms MMAR conjugate gradient method in terms of 
the number of iterations almost in all tested functions. But 
MMAR method outperforms SMMAR conjugate gradient 
method in terms of CPU time almost in all tested functions.  

Key words: Conjugate gradient (CG) method; global 
convergence; spectral conjugate gradient method; strong 
Wolfe-Powell (SWP) line search; sufficient descent property.  

1 INTRODUCTION 

The conjugate gradient (CG) method are among the efficient 
methods for solving problems with large dimension 
unconstrained optimization problems of the form:  
 

                                                                       
	min	{		݂	(ݔ):	ݔ ∈	R୬	}.               (1) 

 
where	݂ ∶ R୬ → R is continuously differentiable. The CG 
method are iterative methods that computes it iterates and 
search direction ݀	as follows: 
 

	ାଵݔ	   = 	ݔ + ,										݀	ߙ ݇ = 0,1,2,3, ….            (2) 
                                                     

     ݀	 = ൜		−																																					, ܽ݊݀	݇ = 0		
		−	 	+ ߚ	 	݀ିଵ			, ܽ݊݀		݇ ≥ 1.         (3) 

 
where ߙ	 > 0 is the step size obtained through the line 
search approach,  = 	(ݔ	) is known as gradient and ߚ  is 
the CG coefficient such that ߚ  defines the different CG 
methods. Also, different spectral CG methods are generated 

according to different search directions [1]. The ߚ  for 
original MMAR conjugate gradient method [2] is defined by: 
 

ெெோߚ   = ቐ	
‖ೖ‖మି

ฮೖฮ
ฮೖషభฮ

หೖ
ೖషభห

‖ೖ‖ା‖ೖషభ‖మ
, ‖‖ଶ ≥

‖ೖ‖
‖ೖషభ‖

|்ିଵ|	

	0																																										, and		otherwise	
.				(4) 

Some CG methods are computed such that the step size 
satisfy the exact line search defined by: 
 
	ݔ)	݂   + (	݀	ߙ = min݂(ݔ	 + ,		(	݀	ߙ 	ߙ ≥ 	0	.             (5) 
 
while other CG methods are said to satisfy the Strong Wolfe-
Powell (SWP) defined by 
 

	ݔ)	݂	 + −(	݀	ߙ 	(	ݔ	)݂ ≤   ்݀           (6)		ߙ	ߜ	
 

	|	(ݔ	 + ்(	݀	ߙ 	݀	| ≤  ்|.       (7)	|ߪ
 

where	0 < ߜ < ߪ < 1. The SWP line search is a 
modification of weak Wolfe-Powell (WWP) line search 
defined by (6) and 
 

  		(ݔ	 + ்(	݀	ߙ 	݀	 ≥ ்	ߪ	   .    (8) 
 

The CG method are applicable to real-life situation [3]. Some 
of the well-known formulas for ߚk are: Fletcher-Reeves (FR) 
[4], Hestenes-Stiefel (HS) [5], Powell (PRP+) [6], Polak-
Ribi`re-Polyak (PRP) [7], Liu-e Storey (LS) [8], Conjugate 
Descent (CD) [9], Wei et al. (WYL) [10], Dai-Yuan (DY) 
[11], which are given by: 
 

ிோߚ = ‖ೖ‖మ

‖ೖషభ‖మ
,   (9) 

 

ுௌߚ =
்yିଵ
݀ିଵ் yିଵ

, 
  (10) 

 
ோାߚ 	= 	ோߚ}	ݔܽ݉ , 0}	,   (11) 

 

ோߚ = ೖ
୷ೖషభ

‖ೖషభ‖మ
 ,   (12) 
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ௌߚ = ೖ
୷ೖషభ

ௗೖషభ
 ೖషభ

,    (13) 

 
ߚ = ‖ೖ‖మ

ௗೖషభ
 ೖషభ

	,   (14) 

 

ௐߚ =
‖‖ଶ −

‖ೖ‖
‖ೖషభ‖

		்ିଵ
‖ିଵ‖ଶ

, 
  (15) 

 
ߚ = ‖ೖ‖మ

ௗೖషభ
 (	ೖ 	ିೖషభ)

 ,   (16) 

 
where  ݕିଵ = 	 − ିଵ. Polak and Ribiere in [7] proved 
the global convergence of PRP method. In 2006, Wei et al. 
[10] presented a new CG method that is similar to the PRP 
method. Other modifications of the CG method are given in 
[12], [13], and defined as follows: 
 

ோߚ    =
‖ೖ‖మି

ฮೖฮ
ฮೖషభฮ

หೖ
ೖషభห

௪หೖ
ௗೖషభหା‖ೖషభ‖మ

                            (17) 

 
‖ೖ‖మି

ฮೖฮ
ฮೖషభฮ

ೖ
ೖషభ

ௗೖషభ
 ୷ೖషభ

  .                  (18) 

where	ݓ ≥ 1.  Zhang [14] presented a simple modification 
of	ߚௐas follows: 

ேோߚ         =
‖ೖ‖మି

ฮೖฮ
ฮೖషభฮ

หೖ
ೖషభห

‖ೖషభ‖మ
                       (19) 

 
For more reference on the CG method, please refer to [15–
16, 41-43]. The global convergence of MMAR conjugate 
gradient method is proved under the strong Wolfe-Powell 
(SWP): 
 

	ݔ)	݂	   + (	݀	ߙ − f(	ݔ	)	 ≤   ்݀       (20)		ߙ	ߜ	
 

     	|	(ݔ	 + ்(	݀	ߙ 	݀	| ≤  ்|.               (21)	|ߪ
 

where	0 < ߜ < ߪ < 1, with ≤ 3/4, for all ݇ ≥ 0, and the 
relation 
 

ିଵ
ଵିఙ

	< 	 ೖ
ௗೖ	

‖ೖ‖మ
	< 	 ଶఙିଵ

ଵିఙ	
 . 

 
Recently, a scaled CG algorithm was introduced by Birgin 
and Martinez [17] as follows: 

ெଵߚ = 	
		ାଵ் y	ߠ	)	 	− 	s 	)

s	்ݕ
	, 

 

ெଶߚ = 	
்ݕ	ߠ 	ାଵ

ߙ ்	ିଵߠ	 	
	, 

 

ெଷߚ = 	
ାଵ்	ߠ 	ାଵ
ߙ ்	ିଵߠ	 	

	, 

 

ߠ = 	
s ்		ݏ	

y ்ݏ	
	. 

where ݀	is the direction and given by: 

݀	 = 	ߠ−	 	+ ߚ	 	݀ିଵ 
 
and ߠ	is a parameter and called the spectral gradient. The 
results got from experiments using Wolfe line search on the 
three CG coefficients above show that ߚெଵ has the best 
numerical performance. Under some reasonable 
assumptions, Birgin and Martinez [17] concluded that their 
spectral CG method is globally convergent. However, the 
spectral CG methods actually are not guaranteed to generate 
descent directions [18]. Hence, Andrei [19] proposed a 
descent scaled CG algorithm under Wolfe line search. Jiang 
et al. [20] designed a spectral CG method with sufficient 
descent feature based on the modified CG algorithm 
proposed by Zhang et al. [21]. The authors used 	ߚோ  for the 
CG coefficient, where 

ߠ = 	
yିଵ	݀ିଵ		்

‖ିଵ‖ଶ
−	
் 	 	݀ିଵ		் ିଵ
‖‖ଶ	‖ିଵ‖ଶ

	, 

 

ோߚ 	= 	
் 	yିଵ
‖	ିଵ	‖ଶ

	, 

 
where ݕିଵ = 	 − ିଵ. The algorithm was implemented 
under modified Armijo-type line search and subsequently 
proven to globally convergent under some mild conditions. 
Liu and Jiang [22] proposed a spectral CG method, denoted 
SCD, using the CD method as the basis. The SCD algorithm 
possesses sufficient descent property under any line search 
used and is proven to be globally convergent under strong 
Wolfe line search. It is formulated by 

ߠ = 	1−	
் 	݀ିଵ
ିଵ் 	݀ିଵ

	, 

 

ߚ = 	
‖	 	‖ଶ

݀ିଵ் 	ିଵ
	. 

 
Liu et al. [23] proposed another spectral CG method. This 
method combined the CD method and DY method, where 
 

ߚ 	= ߚ 	+ min{	0,߰,ߚ 	}, 
 

ߠ = 	1−	
ିଵ் 	݀ିଵ
் 	݀ିଵ

	, 

 

߰ = 	−	
ିଵ் 	݀ିଵ

	݀ିଵ(		ିଵ − 	)	, 

 
Zull et al. [24] extended the SCD method by using RMIL as 
the CG coefficient instead of CD, where the new method is 
called SRMIL. While its global convergence property is not 
truly established, the SRMIL method performed well 
numerically when compared to some of the classical CG 
methods. It is formulated by 
 

݀	 = 		ߠ	−	 	+ ோெூߚ	 	݀ିଵ, 
 

ߠ = 	1−	
் 	݀ିଵ
ିଵ் 	݀ିଵ

	, 
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ோெூߚ 	= 	
	் 	(		 	−	 	ିଵ	)

‖	݀ିଵ	‖ଶ
 

 
Khadijah et al. [25] proposed a spectral CG method. It is 
formulated by 
 

݀	 = 		ߠ	−	 	+ ோெூߚ	 	݀ିଵ, 
 

ߠ = 	1	+ 	ቆ
	் 	(		 	− 	 	ିଵ	)

‖	݀ିଵ	‖ଶ
ቇ	ቆ

் 	݀ିଵ
‖	 	‖ଶ

ቇ	, 

 
Several scaled CG methods proposed by many authors can 
be referred to [26–35], and an application problem can be 
referred to [44]. In this paper, the spectral conjugate gradient 
method SMMAR with strong Wolfe-Powell line search is 
presented as follows: In the next section, the new spectral 
conjugate gradient formula and the algorithm. In section 3, 
the convergence analysis is presented. After that, the 
numerical results are presented in section 4. And finally, the 
conclusion is given in section 5. 

2 THE NEW SPECTRAL CONJUGATE GRADIENT 
FORMULA AND ALGORITHM 

In this study ݀	is defined by:  
 

      ݀	 = ൜
		−																																																						, ܽ݊݀	݇ = 0		

ெெோߠ−		 	+ ெெோߚ	 	݀ିଵ			, ܽ݊݀		݇ ≥ 1	.	(23) 

 
where ߚெெோ and ߠெெோ are presented by: 
 

  
ெெோߚ =

ቐ	
‖ೖ‖మି

ฮೖฮ
ฮೖషభฮ

หೖ
ೖషభห

‖ೖ‖ା‖ೖషభ‖మ
, ܽ݊݀‖‖ଶ ≥

‖ೖ‖
‖ೖషభ‖

|்ିଵ|		
	0																																										, and		otherwise	

.    (24) 

 

ெெோߠ    = 		1 +
(ೖ
	ௗೖషభ	)ି

ቚೖ
	ೖషభቚ	(ೖ

	ೖషభ	)
ฮೖషభฮฮೖฮ

‖ೖ‖ା‖ೖషభ‖మ
  .       (25)                      

 
 ‖	. ‖ represents the Euclidean norm. Note that 

 

      0  ≤ 
‖ೖ‖మି

ฮೖฮ
ฮೖషభฮ

หೖ
ೖషభห

‖ೖ‖ା‖ೖషభ‖మ
 < ‖ೖ‖మ

‖ೖ‖ା‖ೖషభ‖మ
 < 	 ‖ೖ‖మ

‖ೖషభ‖మ
  .   (26)  

  
Algorithm 1 
Step 1: Given constants	0 < ߜ < ߪ < 1. Take a starting 
point ݔ. Set ݀	 = −. Let ݇ = 0, if  = 0,	then stop. 
Step 2: Compute ݀ based on (23), using (24) and (25). 
Step 3: Find  α	 > 0 satisfying (6) and (7). 
Step 4: Update  ݔାଵ	based on (2). 
Step 5: If ‖৯୩‖ ≤ 10ି then stop; otherwise let k = k +
1and go to Step 2. 

3 THE CONVERGENCE ANALYSIS 

       The descent condition plays an important role in the 

convergence analysis of various CG methods. A CG method 
is said to be a descent method if the method possesses  
 

  ்݀	 ≤ 		0,                       (27) 
 
such that f(ݔାଵ	) < f(ݔ	).The algorithm is said to satisfy 
the following condition: 
 

   ்݀	 
ܥ	,0≤ ݇	ݎܨ ‖ଶ‖ܥ− ≥  > 0,          (28)  

 
then (28) is known as sufficient descent condition. 
Before presenting the proof of the sufficient descent 
direction property (28) of spectral conjugate gradient method 
SMMAR, note that the coefficient ߚெெோ satisfies 

	0 ≤ ெெோߚ	 	≤
‖‖ଶ

‖ିଵ‖ଶ
	 

 
     	0 ≤ ାଵெெோߚ	 	≤ ‖ೖశభ‖మ

‖ೖ‖మ
  .              (29) 

 
Theorem 1. If  ≠ 0, suppose the direction	݀	is generated 
by Algorithm 1, then 
 

்݀	  
 = −‖‖ଶ                 (30) 

 
holds for any ݇ ≥ 0. 
 
Proof. Clearly, the result is true for	݇ = 0, ݀	 = − . Now 
for 	݇ ≥ 1, from (3), (24) and (25), we have 
 

     ݀	 = ெெோߠ−	 	+ ெெோߚ	 	݀ିଵ	.		          (31) 
 

Multiplying both sides by ் , then we get 
 
       ்݀	 = ெெோ‖‖ଶߠ−	 	+ ெெோߚ	 	்݀ିଵ	.		 

 

																	= 	−൮	1 +
(் 	݀ିଵ	)−

หೖ
	ೖషభห	൫ೖ

	ௗೖషభ	൯
‖ೖషభ‖‖ೖ‖

‖‖+ ‖ିଵ‖ଶ
	൲‖‖ଶ	 

+ 	ቌ
‖‖ଶ −

‖ೖ‖
‖ೖషభ‖

|்ିଵ|

‖‖+ ‖ିଵ‖ଶ
	ቍ	்݀ିଵ	 .		 

 

                ்݀	 = 	−൮	1 +
൭	ଵି

ቚೖ
	ೖషభቚ	

ฮೖషభฮฮೖฮ
	൱൫ೖ

	ௗೖషభ	൯

‖ೖ‖ା‖ೖషభ‖మ
	൲‖‖ଶ	 

																																		+ 	ቌ
‖ೖ‖మି

ฮೖฮ
ฮೖషభฮ

หೖ
ೖషభห

‖ೖ‖ା‖ೖషభ‖మ
	ቍ	்݀ିଵ	.		  

 

                 = 	−	‖‖ଶ −൮	
൭	ଵି

ቚೖ
	ೖషభቚ	

ฮೖషభฮฮೖฮ
	൱൫ೖ

	ௗೖషభ	൯

‖ೖ‖ା‖ೖషభ‖మ
	൲‖‖ଶ	 



Mahmoud Dawahdeh et al.,  International Journal of Emerging Trends in Engineering Research, 8(2), February  2020, 391 - 397 

394 
 

														+ 	ቌ
‖‖ଶ −

‖ೖ‖
‖ೖషభ‖

|்ିଵ|

‖‖+ ‖ିଵ‖ଶ
	ቍ	்݀ିଵ	 .		 

 

                 = 	−	‖‖ଶ −൮	
൭	‖ೖ‖మି

ฮೖฮቚೖ
	ೖషభቚ	

ฮೖషభฮ
	൱൫ೖ

	ௗೖషభ	൯

‖ೖ‖ା‖ೖషభ‖మ
	൲ 

																+ 	ቌ
‖‖ଶ−

‖ೖ‖
‖ೖషభ‖

|்ିଵ|

‖‖+ ‖ିଵ‖ଶ
	ቍ	்݀ିଵ	.		 

 
                 = 	−	‖‖ଶ.		 
 
So, we have  ்݀	 = −	‖‖ଶ. This completes the proof. 
  
Assumption 1. (i) The level set ܮ = ݔ	}	 ∈ܴ:		݂	(ݔ) ≤
 .is bounded  0ݔ ݂
(ii) In some neighborhood ܰ ofܮ, ݂  is continuously 
differentiable and its gradient is Lipschitz                       
continuous, namely, there exists a constant  	ܭ > 0 such that  
   
                        	‖	(	ݔ) − 		(	ݕ)‖ ≤ ݔ‖ܭ − ,ݔ	∀	,‖ݕ ݕ ∈ ܰ	. 
 
Lemma 1. Let Assumption 1 hold 	ݔ	 is given by Algorithm 
1, then we have 
                                                                           

	
ஶ

ୀଵ

		
‖‖ସ

‖݀	‖ଶ
	< 	∞. 

                                                  
See Zoutendijk [36] for the proof of Lemma 1. 
 
We present the following Theorem which proves the global 
convergence of the spectral conjugate gradient method 
SMMAR, depending on the above Assumption and Lemma. 
 
Theorem 1. Consider the sequence ݔ	 is generated by 
Algorithm 1, and suppose that Assumption 1 holds. Then we 
obtain  
 

lim→ஶinf	‖‖ = 0.  
 

Proof. This prove is by contradiction.  Suppose there exists a 
positive constant ߝ > 0 such that  

 
‖‖ ≥ ݇ for all ,ߝ ≥ 0,           (32) 

 
which means 
 

    
ଵ

‖ೖ‖మ
≤ ଵ

ఌమ
  for all ݇ ≥ 0		and  ‖‖ ≠ 0.   

(33) 
Rewriting (31) as  ݀	 + ெெோߠ 	 

   ߚெெோ ݀ିଵ	, and 
squaring both sides we obtain  
 

‖݀	‖ଶ + ଶ‖‖ଶ(ெெோߠ) +  	ெெோ்݀ߠ2
 

= 	  ,‖ଶ	‖݀ିଵ	ଶ(ெெோߚ)

 
 then 
 

  ‖݀	‖ଶ = ଶ‖‖ଶ(ெெோߠ)− −  	ெெோ்݀ߠ2
 

 ‖ଶ.                              (34)	‖݀ିଵ	ଶ(ெெோߚ)+																													
 
Dividing both sides of (34) by (்݀	)ଶ, and from (24), (25), 
(26), and (30), we have 
 

‖݀	‖ଶ

(்݀	)ଶ
= 	
‖݀	‖ଶ

‖‖ସ
 

= 	−
ଶ(ெெோߠ)

‖‖ଶ
−

ெெோߠ2

‖‖ଶ
+ ଶ(ெெோߚ) 	

‖݀ିଵ	‖ଶ

‖‖ସ
 

 

												= 	−
1

‖‖ଶ
ଶ(ெெோߠ)	) + (ெெோߠ2

+ ଶ(ெெோߚ) 	
‖݀ିଵ	‖ଶ

‖‖ସ
 

 

																											= 	−
1

‖‖ଶ
ଶ(ெெோߠ)	) + ெெோߠ2 + 1 − 1)

+ ଶ(ெெோߚ) 	
‖݀ିଵ	‖ଶ

‖‖ସ
 

 

							= 	−
1

‖‖ଶ
ெெோߠ)	) + 1)ଶ − 1) + ଶ(ெெோߚ) 	

‖݀ିଵ	‖ଶ

‖‖ସ
 

 

= 	−
ெெோߠ) + 1)ଶ

‖‖ଶ
+

1
‖‖ଶ

+ ଶ(ெெோߚ) 	
‖݀ିଵ	‖ଶ

‖‖ସ
	 

 
																																																											

≤
1

‖‖ଶ
+ ଶ(ெெோߚ) 	

‖݀ିଵ	‖ଶ

‖‖ସ
 

 
																																																											

≤
1

‖‖ଶ
+ (

‖‖ଶ

‖ିଵ‖ଶ
)ଶ 	
‖݀ିଵ	‖ଶ

‖‖ସ

= 	
1

‖‖ଶ

+
‖݀ିଵ	‖ଶ

‖ିଵ‖ସ
																																														(35) 

Using (35) recursively, we get 
 

                      ‖ௗೖ	‖
మ

‖ೖ‖ర
 ≤ ∑ 	ିଵ

ୀ
ଵ

‖‖మ
	.																						(36) 

Then from (33) and (36), we have 
 

‖ௗೖ	‖మ

‖ೖ‖ర
 ≤ 

ఌమ
 , 

which indicates 
 

	
ஶ

ୀଵ

		
‖‖ସ

‖݀	‖ଶ
≥ ଶߝ 	

ஶ

ୀଵ

		
1
݇ = 	+∞. 

This contradicts Lemma 1. Therefore, the proof is 
completed.  
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4. NUMERICAL RESULTS  
This section presents the numerial performance of the CG 
methods. Some test functions are selected for the efficiency 
analysis of the new method. These functions are considered 
from CUTEr [37], Andrei [38], and Adorio and Diliman 
[39]. A comparison is done between the new spectral 
conjugate gradient method SMMAR and MMAR CG 
method based on time of CPU and the number of iterations, 
using Strong (SWP) Wolfe-Powell line search. Let	ߜ =
ߪ	,0.01 =  to check the speed of	is chosen to be 10ି ߝ .0.1
iteration methods towards the optimal. And here	‖‖ 	≤
	10ି	is taken to be the stopping criteria. The method is 
considered as failed if the number of iterations getting more 
than 1000 times. MATLAB R2017a subroutine program is 

used for all methods, on a computer with CPU processor 
Intel R Core TM, i5-2410M CPU and 3 GB RAM under 
strong (SWP) Wolfe line search. Figs. 1-2, respectively, 
show the performance results using a performance profile 
introduced by Dolan and More´ [40]. Generally, the best 
method is which with high values of Ps (t) and appear in the 
upper right and left corners of the figure. The Ps (t) axis of 
the figures shows the percentage of the test problems which 
were successfully solved by each method. The t axis of the 
figures shows which of the methods is the fastest. From 
Figure 1, it is clear that SMMAR method strongly 
outperforms the other tested method MMAR in terms of the 
number of iterations almost in all tested functions. In Figure 
2, which presents CPU time, MMAR method 

strongly outperforms SMMAR method almost in all tested 
functions

Table 1: List of Test Functions 
N     Function Dimension/s Initial points 
 
1 FLETCHCR 
2 QUARTC  
 
3 Extended Block Diagonal  
4 SINCOS B81  
5 Generalized quartic GQ1  
6 Three hump 
7 Generalized Quartic  
8 DENSCHNB  
9 Raydan 1   
10 Extended DENSCHNB  
11 Shallow 
12 Perturbed Quadratic 
13 Raydan 2  
14 HIMMELBC  
15 DIXMAANA  
16 DIXMAANB  
17 Extended Himmelblau 
18 EG2  
 
19 DENSCHNF  
20 HIMMELBH  
21 LIARWHD  
22 Extended quadratic 
penalty QP1   
23 Six hump  
24 EG3  
25 A Quadratic QF2  
26 Quadratic QF1  
27 Diagonal 1  
28 Hager  
29 DIXON3DQ  
30 Generalized quartic GQ2 
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Figure 1: Performance profile based on number of Iteration. Figure 2: Performance profile based on CPU time. 
 

 

5. CONCLUSION 

In this study, we proved the global convergence and the 
sufficient descent property of the new spectral conjugate 
gradient method SMMAR with strong Wolfe line search. 
Numerical results show that SMMAR method outperforms 
MMAR conjugate gradient method in terms of the number 
of iterations almost in all tested functions. But MMAR 
method outperforms SMMAR conjugate gradient method in 
terms of CPU time almost in all tested functions. 
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