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ABSTRACT 
 
This paper discusses the generator optimization method for 
non-smooth economic dispatch (ED) in power systems using 
the Flower Pollination Algorithm (FPA). The generating 
value of each unit is determined without compromising the 
power limits of each generator and the amount of energy 
demand. The objective of this study is to provide the 
minimumgenerating costs based on the seamless cost function 
of the ED. The feasibility of the FPA method is compared 
with particle swarm optimization (PSO) and moth flame 
optimizer (MFO). Two types of power system networks, 10- 
and 40-generators, are tested using MATLAB. Simulation 
results show that compared with PSO and MFO,FPA provides 
better results in optimizing energy generation with minimum 
generation cost and power loss. 
 
Key words: non-smooth economic dispatch, flower 
pollination algorithm, moth flame optimizer, particle swarm 
optimization 
 
 
1. INTRODUCTION 
 
Today, fuel savings are a priority in the world power 
generation sector. The scarcity of new oil sources, coupled 
with populationincrease, has led to rising fuel prices. Without 
sacrificing energy demand, power generation strategies with 
minimal oil costs are highlyessential. Suchscheduling 
strategiescan be based on economic dispatch (ED) 
calculations.  
 
ED schedules the power unit operations to meet a specific 
power demand while also imposing a minimum fuel cost. 
Categorized as atype of optimization problem, ED solutions 
using optimization can be divided into mathematical and 
heuristic techniques. Mathematical techniques include linear 
[1-2], quadratic [3], and mixed integer [4]programming. 
These traditional ED solutionsare time consuming, cannot 
solve non-linear cost functions, and provide 

 
 

suboptimalsolutions. The above disadvantages have 
ledscientists to introduce heuristic approaches. ED problems 
can be categorized assmooth and non-smooth. In non-smooth 
problems, the impact of the valve system is considered in the 
power generation cost function. Both smooth and non-smooth 
problems aresuccessfully solved using heuristic techniques as 
reported, respectively, in [5-6] and [7-10]. 
 
Artificial intelligence (AI) is widely used in the field of power 
systems. Among the techniques used are evolutionary 
programming (EP) [11-14], particle swarm optimization 
(PSO) [15-18], moth flame optimization (MFO) [19-22], and 
whale optimization algorithm (WOA) [23-25]. EP is 
developed on the basis of biological evolution. A key feature 
of the EP is the mutation, in which each parent produces a new 
breed with different characteristics. Selection is based on the 
fittest generation. By comparison, the PSO technique mimics 
the behavior of a herd of animals or insects. During the search, 
two types of exploration,global and local, are carried out. 
Balance between these two explorations is the key to obtain 
the optimal solution. Meanwhile, MFO was developed on the 
basis of flying moths, called transverse orientation. At night, 
flying moths are guided by moonlight and maintain a constant 
angle to find their way. In the presentstudy, a new 
metaheuristic-based method called Flower Pollination 
Algorithm (FPA) is introduced. FPAisdeveloped based on 
pollen transfer from one flower to another using honeybees, 
birds, water, or wind. Among the advantages of FPA over 
other techniques is the simplicity and speed of the search. Its 
optimization capabilities are proven and used in various 
optimization problems such as economics delivery, 
engineering design, and medical applications [26-30]. 
 
This study proposes efficient techniques for calculating 
optimal non-smooth power generation capacity based on 
power demand and the constraints of each generator unit 
using FPA optimization technique. Test systems using 10- 
and 40-unit power generatorsaresimulated using MATLAB. 
The objective function of this optimization is to minimize the 
total cost of power generation. To determine the performance 
of the proposed technique, the FPAtechniqueisalso compared 
withthe PSO and MFO.  
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The rest of the paper is organized as follows.Section 2 
presents the ED problem formulation. Section 3 explainsthe 
MFO algorithm. Section 4 discussesthe implementation of 
optimal power-scheduling algorithm. Section 5 providesthe 
simulation results and discussions. Lastly, Section 6 presents 
the conclusions. 

2.  ED PROBLEM FORMULATION 
 
ED is an issue for determining the power capacity that each 
unitin the power system must generate to minimize the cost. 
At the same time, the amount of generated power should meet 
specific power demand and within the specified rangefor each 
generator.ED has two categories of problem formulations: 
smooth and non-smooth cost functions. 
 
2.1 ED Problem with Smooth Cost Functions 
 
For ED problems with smooth cost function, the cost function 
of each generator is represented by the quadratic function as 
follows, 
 
퐶(푃 ) = 푎 + 	푏 푃 + 	 푐 푃 	.																																																						(1) 
 
Here, Pi is the real power output of the ithgenerator, in MW. 
C(Pi) is the production cost of Pi, in RM per hour. While, ai, 
bi, and ci are threegeneration cost coefficients ofPi. The total 
production cost CT of one power system network can be 
expressed as 
 

퐶 = 퐶(푃 ) + 퐶(푃 ) +⋯⋯+ 퐶(푃 ) = 	 퐶(푃 )	.										(2) 

Here, n is number of the generating units in the system. 
 
2.2 ED Problem with Non-Smooth Cost Functions 
 
In reality, using quadratic functions alone to estimate the cost 
of production per generator unit is inappropriate. The reason 
is the multiple valve system per generator unit, which 
considerablyaffects the cost function of each generator 
unit.To consider the effect of this valve system, the generation 
cost function is restructured by integrating with sinusoidal 
functions, as follows 
 
퐶(푃 ) = 푎 + 	푏 푃 + 	 푐 푃 + 푒 푠푖푛 푓 푃 − 푃 .					(3) 

 
Figure 1: Cost function with and without valve system effect 

Here, same asai, bi, and ci, ei and fi are also generation cost 
coefficients of Pi.Figure 1 illustrates the valve system effect 
on cost function. The pattern with the valve system effect is 
ascending and decreasing along the quadratic line. 
 
2.3 Constraints 
 
Basically, constraints that need to be considered in ED are 
operating limits for each generator unit and power demand. 
The operating limits of one generator unit is unique compared 
withthe others and can be written as 
 
푃 	≤ 	푃 	≤ 	푃 .																																																																	(4) 
 
Here, Pi

min and Pi
max are the minimum and maximum 

operating limits of Pi, respectively.In addition, the total 
amount of power generated by all units must be the same or 
largerthan the total power demand. In this study, the total 
amount of power generated orPG can be expressed as 

 

푃 = 	 푃 	= 	 푃 + 	푃 	.																																																									(5) 

 
Here, PD is the total power demand andPL is the total power 
loss. One of the criteria of a good generation system is 
theproduction of a low amount of PL. 

3.  FLOWER POLLINATION ALGORITHM 
 
3.1 Concept of Flower Pollination Algorithm 
 
Basically, flower pollination is the process of transferring 
pollen from one flower to another, using pollinators (biotic) 
such as honeybees and birds or no pollinator (abiotic), where 
pollen is dispersed by water or wind.In addition to biotic and 
abiotic, pollination can be divided into two, 
namely,self-pollination or cross-pollination. The former is a 
pollination of the same type of crop, whilethe latter 
(allogamy) is the pollination of two different crop types.  
 
3.2 Flower Pollination Algorithm Optimization Technique 
 
Xin-She Yang introduced flower pollination algorithm (FPA) 
optimization technique in 2012. Yang has developed FP 
techniques based on the goals for achieving optimum 
pollination in terms of the quantity and quality of flowers 
produced. Based on the natural flower pollination, abiotic and 
self-pollination is considered as local pollination. Meanwhile, 
biotic and cross-pollination are produced by pollinators 
capable of flying long distances such asbees, birds, and flies. 
This processcan be considered as a global pollination. To 
produce the bee and bird flight patterns, Lévy Flight can be 
adopted, given thatthe flight steps of these animals comply 
with the Lévy distribution values. The natural selection of 
global or local pollination is a random process. However, due 
to the close proximity of pollination and other factors such as 
wind and water, the majority of pollination islocal. 
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In summary, the FPA technique complies with four 
conditions, as illustrated in Table 1. 
 

Table 1: Four conditions in FPA 
Conditions Details 

Condition 1 
Cross and biotic pollination are considered 
as global pollination. Pollinators carrying 
pollen are moving on Lévy flights. 

Condition 2 Self and abiotic pollination are considered 
as local pollination. 

Condition 3 
Reproduction probability of flowers is 
considered as proportional to the similarity 
of two involved flowers. 

Condition 4 

Local and global pollination are 
determined by probability (range from 0 
until 1). Due to the close proximity of 
pollination and other factors such as wind 
and water, most pollination activities are 
local. 

 
 
Global pollination as Condition 1 can be represented 
mathematically as: 
 
푥 = 푥 + 퐿(푥 − 푥 ).																																																						(6) 

 
Here, xi

t is the ithpollen at iteration t,xbest is the best current 
pollen (solution) among all pollens until iteration t, andL is a 
step size of pollination. Insects and birds can travel long 
distances and at various distance steps. Lévy Flight 
caneffectively replicate this feature well. Based on Levy 
distribution, approximation of L is as follows, 
 
퐿~ 휆훤(휆)푠푖푛(0.5휋휆) 휋푠⁄ > 0						(푠 ≫ 푠 > 0).								(7) 
 
Here, Γ(λ) is the standard gamma function. This distribution is 
valid for large steps, s > 0. The value of λ is 1.5. 
 
As Condition 2, local pollination can be represented 
mathematically as 
 
푥 = 푥 + 훽 푥 − 푥 	.																																																										(8) 
 
Here, xj

t and xk
t are both pollens from different flowers of the 

same plant species andβ is a uniform distributionwith value 
from 0 until 1.  
 
According to Condition 4, pollination occurs globally or 
locally. With pas a boundary value, global pollination is 
carried outif the random value exceeds p. Otherwise, local 
pollination is carried out. In this study, the p is defined as 0.8. 
 
The stopping criteria for all three techniques are: 
(i.) The difference between the maximum and minimum Fall 

is less than 0.1% of minimum Fall 
(ii.) The current iteration is equal to the maximum number of 

iterations NImax 

Figure 2 shows the FPA optimization technique summarized 
in the form of a flow chart. 
 

 
 

Figure 2: Flow chart of FPA optimization technique 
 

4. OPTIMAL POWER-SCHEDULING ALGORITHM 
 
In this study, simulations are carried outin MATLAB 
environment. Two test systems are involved: 10generators 
and 40generators systems, with non-smooth fuel cost function 
[9]. Events 1-A and 1-B areconducted using 10generators test 
system, while Events 2-A and 2-B arecarried outusing a 
40-generator test system. Figure 3 shows the flowchart for Pall 
and Fall calculations. The criteria for termination of this 
computation are the same as those mentioned in Subsection 
3.2. 
 
At each event, a total of 100 cases are simulated to obtain the 
optimum results for each technique. The maximum number of 
iterations for each case is 500. The objective function of these 
simulations is to minimize power generation cost Fall. On the 
basis of 100 cases, an analysis of the consistency of the results 
obtained can be made. Table 2 illustrates all the events with 
specific power demand. 

Initialize pollen xi
(i = 1, 2, 3,…, N; N is no. of populations)

Find the best pollen xbest and best solution ybest
from the initialization group

Random > p ?
NY

Global pollination

Evaluate new best solution ybest,new

N

Y

For each iteration

Local pollination

Stop?

ybest,new < ybest?

Update xbest and ybest

END

START

N

Y
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Figure 3: Flow chart for Pall and Fall calculations 
 

Table 2: List of test systems, events, and power demand 

No. Test System Event Power 
Demand 

1 Ten generators 
system 

Event 1-A 1500 MW 
Event 1-B 2100 MW 

2 Forty generators 
system 

Event 2-A 8100 MW 
Event 2-B 10100 MW 

 
The characteristics of ten and forty generators system, which 
consists of fuel cost coefficients (ai, bi, ci, di, and ei) with 
minimum and maximum power limits (Pmin and Pmax) for each 
generator unit can be found in Appendix.  
 
For each event, three optimization techniques: PSO, MFO, 
and FPA are used to tune all unit generators in the test 
systems. Each technique has specific parameters to control the 
accuracy and speed of the optimization. Table 3 lists the 
parameter values for PSO, MFO, and FPA. 
 

Table 3: List of PSO, MFO, and FPA parameters 
Method Parameters 

PSO [16] 푐 = 푐 = 0.5,휔 = 0.05 
MFO [21] 푡 ∈ (−1,1),푏 = 0.05 

FPA 휆 = 1.5,푝 = 0.8,훽 ∈ (0,1) 
 

5. RESULTS AND DISCUSSION 
 
The result of best generation values for all 10 generators 
(PG1–PG10) with minimum total power generation costs Fall 
using PSO, MFO, and FPA for Event 1-A are summarized in 
Table 4. From the results, FPA produces the least value of Fall, 
followed by PSO and MFO. This shows that FPA can provide 
the best cost savings compared with the other two techniques. 
Table 4shows that the total generated power Pall for FPA and 
MFO are larger than the power demand, PD. Despite the loss 
of power, these values are considered small, not more than 
0.1% of PD. 

Table 4: Best Power Scheduling with Minimum Cost 
Generation for Event 1-A (PD = 1500 MW) 

P and F Optimization Techniques 
PSO MFO FPA 

PG1 (MW) 31.375 39.640 38.201 
PG2 (MW) 51.463 35.155 44.964 
PG3 (MW) 64.884 90.642 74.552 
PG4 (MW) 48.730 83.019 45.617 
PG5 (MW) 63.786 65.359 53.395 
PG6(MW) 70.558 70.000 72.277 
PG7 (MW) 195.219 205.310 200.617 
PG8 (MW) 197.897 270.996 237.529 
PG9 (MW) 338.907 350.701 371.307 
PG10(MW) 437.180 290.095 362.162 
Pall (MW) 1500.000 1500.917 1500.674 
Fall(RM) 78848.40 79353.89 78778.52 

 
Table 5 shows the best, worst, and average values for Pall, Fall 
and number of iterations, NI calculated using PSO, MFO, and 
FPA techniques for Event 1-A. These best, worst, and average 
results are obtained from 100 simulated cases in Event 1-A. 
This result only looks at the value of one criterion, be it Pall, 
Fall, or NI. On this basis, the best, worst, and average values 
for Fall obtained by all three techniques are nearly identical. 
Similarly, in the Pall results, the PSO, MFO, and FPA methods 
provide average values of power loss PL less than 0.2% PD. 
This result shows that all three methods can effectively 
schedule low-cost energy generation while providing 
sufficient energy for the required power demand.  
 

Table 5: Best, Worst,& Average Values of Power Scheduling, 
Generation Cost, and No. of Iterations for Event 1-A 

Fall, Pall, and NI Optimization Techniques 
PSO MFO FPA 

Fall 
(RM) 

Best 78848.40 79353.89 78778.52 
Worst 79870.79 80297.21 79916.76 
Average 79360.54 79735.98 79431.26 

Pall 
(MW) 

Best 1500.000 1500.000 1500.000 
Worst 1500.887 1508.559 1514.844 
Average 1500.028 1500.985 1502.655 

NI 
Best 64 68 17 
Worst 500 252 60 
Average 168.51 119.3 33.11 

 
In terms of NI, FPA calculates the smallest number of 
iterations compared with the PSO and MFO techniques. FPA 
has a total range of 17–60 iterations while the average NI is 
33.11 iterations. By contrast, calculations using the PSO 
method require at least 64 iterations to produce results. 
Simulations using PSO do not converge until the calculation 
reaches a maximum of 500 iterations. On the basis of these NI 
results for Event 1-A, the FPA is capable of producing 
computations in a shorter time than the other two techniques. 
PSO, on the other hand, is the most time-consuming,taking 
longer than the specified number of iterations to complete. 
With Fall and Pall results similar to PSO and MFO, the lowest 
NI values show that FPA is the most efficient technique. 

Initialize value of all power generators:
· P1 – P10 for Test System 1 
· P1 – P40 for Test System 2

Stop?

END

START

N

Y

Tune value of all generators using PSO, 
MFO or FPA optimization techniques

Evaluate Pall and Fall

For each iteration
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Table 6 summarizes the results of the best generation values 
for PG1–PG10 with minimum Fall using all three techniques for 
Event 1-B. Pall calculated using all three techniques results in 
a very small power loss of 0.001% PD. In terms of Fall, the 
FPA remains ahead of PSO and MFO in producing the lowest 
power generation cost.  
 

Table 6: Best Power Scheduling with Minimum Generation 
Cost for Event 1-B (PD = 2100 MW) 

P and F Optimization Techniques 
PSO MFO FPA 

PG1 (MW) 36.222 33.324 43.111 
PG2 (MW) 76.519 79.984 78.244 
PG3 (MW) 96.230 95.290 103.715 
PG4 (MW) 95.449 129.994 128.735 
PG5 (MW) 99.687 115.397 83.809 
PG6(MW) 184.154 152.277 117.504 
PG7 (MW) 265.855 247.218 275.535 
PG8 (MW) 339.365 337.618 330.133 
PG9 (MW) 467.141 468.911 469.317 
PG10(MW) 439.378 439.986 469.919 
Pall (MW) 2100.000 2100.000 2100.023 
Fall(RM) 114188.58 113991.34 112857.42 

 
Table 7 tabulates the best, worst, and average values for Pall, 
Fall, and NI calculated using all three optimization techniques 
for Event 1-B. FPA provides less Fall for best, worst, and 
average values, compared with PSO and MFO. In terms of 
Pall, the results produced by all three optimization methods 
providePL less than 0.2% PD. In terms ofNI, FPA can solve 
computational simulations faster compared with PSO and 
MFO. Moreover, the average NI for PSO can reach 105 
iterations. Thus, FPA remains at the forefront of producing 
the lowest power generation cost at minimum power loss and 
minimum number of iterations compared with PSO and MFO 
techniques. 
 

Table 7: Best, Worst,& Average Value of Power Scheduling, 
Generation Cost, and No. of Iterations for Event 1-B 

Pall, Pall, and NI Optimization Techniques 
PSO MFO FPA 

Fall 
(RM) 

Best 114188.58 113991.34 112857.42 
Worst 114603.76 114597.51 114590.12 
Average 114536.59 114428.28 114298.85 

Pall 
(MW) 

Best 2100.000 2100.000 2100.000 
Worst 2100.089 2100.880 2104.205 
Average 2100.001 2100.053 2100.307 

NI 
Best 57 15 4 
Worst 278 54 43 
Average 105.98 27.96 12.98 

 
In Events 2-A and 2-B, the test system consists of 40 
generators simulated to calculate the result of best generation 
values (PG1–PG40) with minimum Fall. Table 8 shows the best, 
worst, and average values for Pall, Fall, and NI calculated using 
PSO, MFO, and FPA techniques for Event 2-A.  
 

Table 8: Best, Worst,& Average Value of Power Scheduling, 
Generation Cost, and No. of Iterations for Event 2-A 

Pall, Pall, and NI Optimization Techniques 
PSO MFO FPA 

Fall 
(RM) 

Best 100982.99 101309.67 9983.08 
Worst 103333.27 105096.06 103857.28 
Average 102411.44 103170.20 102179.09 

Pall 
(MW) 

Best 8100.012 8100.032 8100.323 
Worst 8105.705 8102.939 8103.387 
Average 8100.698 8100.505 8100.586 

NI 
Best 24 50 11 
Worst 500 500 133 
Average 186.64 236.41 31.43 

 
Fall values calculated using the FPA method are the cheapest 
compared with MFO and PSO. The best, worst, and average 
Fall optimized by FPA are RM9983.08, RM103857.28, and 
RM102179.09, respectively. On the other hand, Pall calculated 
by all optimization techniques are almost the same value with 
PD. PSO records the highest average of PL, which is 0.009% of 
PD and can be considered within the acceptable range. In 
terms of NI, FPA still provides the smallest iterations 
compared with the other two techniques, with an average NIof 
31.43 iterations. From the results, at least one case for both 
PSO and MFO does not converge until 500 iterations are 
reached. 
 

Table 9: Best, Worst,& Average Value of Power Scheduling, 
Generation Cost, and No. of Iterations for Event 2-B 

Pall, Pall, and NI Optimization Techniques 
PSO MFO FPA 

Fall 
(RM) 

Best 127915.25 129225.41 124904.96 
Worst 129085.35 131398.47 128937.78 
Average 128410.55 130409.15 127946.19 

Pall 
(MW) 

Best 10100.019 10100.001 10100.072 
Worst 10104.916 10103.063 10101.264 
Average 10100.405 10100.330 10100.670 

NI 
Best 44 30 16 
Worst 500 500 125 
Average 166.28 201.14 31.62 

 
Table 9shows the best, worst, and average values for Pall, Fall, 
and NI calculated using PSO, MFO, and FPA optimization 
techniques for Event 2-B. The results in Event 2-B show a 
pattern similar to that of Event 2-A. In this event, FPA still 
produces the smallest Fall compared with MFO and PSO 
techniques. MFO is recorded as the most expensive, 
calculating RM131398.47 for worst-case generation cost. 
PSO, MFO, and FPA have slight losses in generated power 
but the worst cases of PL for all three optimization techniques 
do not exceed 0.05% of PD. FPA method remainsthe winner in 
terms of NI, with five- and six-times faster generation 
compared with PSO and MFO, respectively. From the results 
of Events 2-A and 2-B, FPA is the most suitable optimization 
technique to calculate the cheapest Fall without compromising 
PD and the smallest NI compared with PSO and MFO. 
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6. CONCLUSION 
This study proposes a power scheduling strategy using FPA to 
achieve optimum power output by generator units at 
minimum power generation costs for non-smooth ED 
problems. Testsare carried out in MATLAB environment 
using two test systems with two different power demands 
each. The results show that PSO, MFO, and FPA successfully 
generate Pall that is almost the same amount as PD, with 
acceptable PL. In terms of cost, FPA outperforms PSO and 

MFO in providing lower Fall for the same PD. In terms of NI, 
FPA can solve computational simulations faster compared 
with PSO and MFO. In conclusion, FPA is the most 
appropriate technique in power scheduling for ED problems 
in power systems.  
 

APPENDIX 
 
See Table A1 and A2.  

 
Table A1:  Characteristics of Forty Generators System [9] 

Unit Pmin(MW) Pmax(MW) ai (RM/h) bi(RM/MWh) ci(RM/(MW)2h) di(RM/h) ei(rad/MW) 

1 36 114 94.705 6.73 0.00690 100 0.084 
2 36 114 94.705 6.73 0.00690 100 0.084 
3 60 120 309.540 7.07 0.02028 100 0.084 
4 80 190 369.030 8.18 0.00942 150 0.063 
5 47 97 148.890 5.35 0.01140 120 0.077 
6 68 140 222.330 8.05 0.01142 100 0.084 
7 110 300 287.710 8.03 0.00357 200 0.042 
8 135 300 391.980 6.99 0.00492 200 0.042 
9 135 300 455.760 6.60 0.00573 200 0.042 
10 130 300 722.820 12.9 0.00605 200 0.042 
11 94 375 635.200 12.9 0.00515 200 0.042 
12 94 375 654.690 12.8 0.00569 200 0.042 
13 125 500 913.400 12.5 0.00421 300 0.035 
14 125 500 1760.400 8.84 0.00752 300 0.035 
15 125 500 1760.400 8.84 0.00752 300 0.035 
16 125 500 1760.400 8.84 0.00752 300 0.035 
17 220 500 647.850 7.97 0.00313 300 0.035 
18 220 500 649.690 7.95 0.00313 300 0.035 
19 242 550 647.830 7.97 0.00313 300 0.035 
20 242 550 647.810 7.97 0.00313 300 0.035 
21 254 550 785.960 6.63 0.00298 300 0.035 
22 254 550 785.960 6.63 0.00298 300 0.035 
23 254 550 794.530 6.66 0.00284 300 0.035 
24 254 550 794.530 6.66 0.00284 300 0.035 
25 254 550 801.320 7.10 0.00277 300 0.035 
26 254 550 801.320 7.10 0.00277 300 0.035 
27 10 150 1055.100 3.33 0.52124 120 0.077 
28 10 150 1055.100 3.33 0.52124 120 0.077 
29 10 150 1055.100 3.33 0.52124 120 0.077 
30 47 97 148.890 5.35 0.01140 120 0.077 
31 60 190 222.920 6.43 0.00160 150 0.063 
32 60 190 222.920 6.43 0.00160 150 0.063 
33 60 190 222.920 6.43 0.00160 150 0.063 
34 90 200 107.870 8.95 0.00010 200 0.042 
35 90 200 116.580 8.62 0.00010 200 0.042 
36 90 200 116.580 8.62 0.00010 200 0.042 
37 25 110 307.450 5.88 0.01610 80 0.098 
38 25 110 307.450 5.88 0.01610 80 0.098 
39 25 110 307.450 5.88 0.01610 80 0.098 
40 242 550 647.830 7.97 0.00313 300 0.035 
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Table A2:  Characteristics of Ten Generators System [9] 

Unit Pmin (MW) Pmax (MW) ai (RM/h) bi (RM/MWh) ci (RM/(MW)2h) di (RM/h) ei (rad/MW) 

1 10 55 1000.403 40.5407 0.12951 33 0.0174 
2 20 80 950.606 39.5804 0.10908 25 0.0178 
3 47 120 900.705 36.5104 0.12511 32 0.0162 
4 20 130 800.705 39.5104 0.12111 30 0.0168 
5 50 160 756.799 38.5390 0.15247 30 0.0148 
6 70 240 451.325 46.1592 0.10587 20 0.0163 
7 60 300 1243.531 38.3055 0.03546 20 0.0152 
8 70 340 1049.998 40.3965 0.02803 30 0.0128 
9 135 470 1658.569 36.3278 0.02111 60 0.0136 
10 150 470 1356.659 38.2704 0.01799 40 0.0141 

 
 

ACKNOWLEDGEMENT 
 
This study is funded by the Ministry of Education Malaysia 
(FRGS/1/2018/TK04/UKM/02/7).  
 

REFERENCES 
1. A. Farag, S. Al-Baiyat and T. C. Cheng. Economic load 

dispatch multiobjective optimization procedures 
using linear programming techniques, IEEE 
Transactions on Power Systems, vol. 10, no. 2, pp. 
731–738, May 1995. 

2. R. A. Jabr, A. H. Coonick and B. J. Cory, A 
homogeneous linear programming algorithm for the 
security constrained economic dispatch problem, 
IEEE Transactions on Power Systems, vol. 15, no. 3, pp. 
930–936, August 2000. 

3. J. H. Park, Y. S. Kim, I. K. Eom and K. Y. Lee. 
Economic load dispatch for piecewise quadratic cost 
function using Hopfield neural network, IEEE 
Transactions on Power Systems, vol. 8, no. 3, pp. 
1030-1038, August 1993. 

4. Z. Wu, J. Ding, Q. H. Wu, Z. Jing and J. Zheng. Reserve 
constrained dynamic economic dispatch with 
valve-point effect: A two-stage mixed integer linear 
programming approach, CSEE Journal of Power and 
Energy Systems, vol. 3, no. 2, pp. 203-211, June 2017. 

5. N. A. M. Kamari, N. A. Rahmat and I. Musirin. Optimal 
power scheduling strategy in power systems using 
swarm optimization technique, International Journal 
of Advanced Trends in Computer Science and 
Engineering, vol. 8, no 1.6, pp. 246-251, December 2019. 

6. C. Shao, Y. Ding and J. Wang. A low-carbon economic 
dispatch model incorporated with consumption-side 
emission penalty scheme, Applied Energy, vol. 23815, 
pp. 1084-1092, March 2019. 

7. N. L. Ismail, I. Musirin, N. Y. Dahalan and M. K. M. 
Zamani.Computational intelligence-based technique 
for fuel cost minimization in small and bulk power, 
International Journal of Advanced Trends in Computer 

Science and Engineering, vol. 9, no. 1.2, pp. 45-50, April 
2020. 

8. R. B. N. M. Pinheiro, A. R. Balbo and L. Nepomuceno. 
Solving network-constrained non-smooth economic 
dispatch problems through a gradient-based 
approach, International Journal of Electrical Power & 
Energy Systems, vol. 113, pp. 264-280, December 2019. 

9. M. Basu. Economic environmental dispatch using 
multi-objective differential evolution, Applied Soft 
Computing, vol. 11, pp. 2845–2853, December 2010. 

10. K. O. Alawode, A. M. Jubril, L. O. Kehinde and P. O. 
Ogunbona. Semidefinite programming solution of 
economic dispatch problem with non-smooth, 
non-convex cost functions, Electric Power Systems 
Research, vol. 164, pp. 178-187, November 2018. 

11. A. F. A. Kadir, A. Mohamed, H. Shareef and M. Z. C. 
Wanik. Optimal placement and sizing of distributed 
generations in distribution systems for minimizing 
losses and THDv using evolutionary programming, 
Turkish Journal of Electrical Engineering & Computer 
Sciences, vol. 21, pp. 2269 – 2282, October 2013. 

12. N. A. M. Kamari, I. Musirin and M. M. Othman, EP 
based optimization for estimating synchronizing and 
damping torque coefficients, Australian Journal of 
Basic and Applied Sciences, vol. 4, no. 8, pp. 3741-3754, 
August 2010. 

13. M. Zemzami, N. Elhami, M. Itmi and N. Hmina. An 
evolutionary hybrid algorithm for complex 
optimization problems, International Journal of 
Advanced Trends in Computer Science and Engineering, 
vol. 8, no. 2, pp. 126-133, April 2019. 

14. N. A. M.Kamari, I. Musirin, and A. A. Ibrahim. Swarm 
intelligence approach for angle stability improvement 
of PSS and SVC-based SMIB, Journal of Electrical 
Engineering & Technology, vol. 15, pp. 1001–1014, May 
2020.  

15. M. A. Hannan, M. G. M. Abdolrasol, M. Faisal, P. J. Ker, 
R. A. Begum, and A. Hussain. Binary particle swarm 
optimization for scheduling MG integrated virtual 
power plant toward energy saving, IEEE Access, vol. 
7, pp. 107937-107951, August 2019. 

16. N. A. M. Kamari, I. Musirin, A. N. Dagang and M. H. M. 
Zaman. PSO-based oscillatory stability assessment by 



N. F. Ramli  et al., International Journal of Emerging Trends in Engineering Research, 8(1.1), 2020,  158- 165 

165 
 

 

using the torque coefficients for SMIB, Energies, vol. 
13, no. 5, pp. 1231, March 2020. 

17. L. S. Yang, Y. W. Chen and Y. Y. Hsu. Small-signal 
stability analysis and particle swarm optimization 
self-tuning frequency control for an islanding system 
with DFIG wind farm, IET Generation, Transmission & 
Distribution, vol. 13, no. 4, pp. 563-574, February 2019. 

18. N. A. M. Kamari, I. Musirin, Z. A. Hamid and M. H. M. 
Zaman. Oscillatory stability prediction using PSO 
based synchronizing and damping torque coefficients, 
Bulletin of Electrical Engineering and Informatics, vol. 
7, no. 3, pp. 331-344, September 2018. 

19. S. Mirjalili. Moth-flame optimization algorithm: a 
novel nature-inspired heuristic paradigm, 
Knowledge-Based Systems, vol. 89, pp. 228-249, 
November 2015. 

20. A. H. Gandomi and A. R. Kashani. Construction cost 
minimization of shallow foundation using recent 
swarm intelligence techniques, IEEE Transactions on 
Industrial Informatics, vol. 14, no. 3, pp. 1099-1106, 
March 2018. 

21. S. A. Halim, H. M. Rosli and H. F. Hasri.Moth-flame 
optimization algorithm with different course for 
optimal photovoltaic location and sizing, International 
Journal of Advanced Trends in Computer Science and 
Engineering, vol. 8, no. 1.6, pp. 145-152, December 
2019. 

22. M. A. Ebrahim, M. Becherif and A. Y. Abdelaziz. 
Dynamic performance enhancement for wind energy 
conversion system using moth-flame 
optimization-based blade pitch controller, Sustainable 
Energy Technologies and Assessments, vol. 27, pp. 
206-212, June 2018. 

23. Q. Zhang and L. Liu. Whale optimization algorithm 
based on Lamarckian learning for global 
optimization problems, IEEE Access, vol. 7, pp. 
36642-36666, March 2019. 

24. N. A. M. Kamari, I. Musirin, Z. Othman and S. A. Halim. 
PSS based angle stability improvement using whale 
optimization approach, Indonesian Journal of 
Electrical Engineering and Computer Science, vol. 8, no. 
2, pp. 382-390, November 2017.  

25. G. Kiruthiga and S. M. Vennila.An enriched chaotic 
quantum whale optimization algorithm-based job 
scheduling in cloud computing environment, 
International Journal of Advanced Trends in Computer 
Science and Engineering, vol. 8, no. 4, pp. 1753-1760, 
August 2019. 

26. X.S. Yang, M. Karamanoglu and X. He. Multi-objective 
flower algorithm for optimization, Procedia Computer 
Science, vol. 18, pp. 861-868, April 2013. 

27. J. P. Ram and N. Rajasekar. A novel flower pollination 
based global maximum power point method for solar 
maximum power point tracking, Knowledge-Based 
Systems, vol. 89, pp. 228-249, November 2015. 

28. N. N. Mansor, S. A. Shaaya, I. Musirin, N. S. Hannoon, 
Z. Mohamed and M. K. M. Zamani.Embedded flower 
pollination evolutionary programming-based 
technique for voltage stability enhancement with 
distributed generation installation, International 

Journal of Advanced Trends in Computer Science and 
Engineering, vol. 8, no. 1.3, pp. 387-393, June 2019. 

29. D. Potnuru, K. A. Mary and C. S. Babu. Experimental 
implementation of flower pollination algorithm for 
speed controller of a BLDC motor, Ain Shams 
Engineering Journal, vol. 10, no. 2, pp. 287-295, June 
2019. 

30. R. Peesapati, V. K. Yadav and N. Kumar. Flower 
pollination algorithm based multi-objective 
congestion management considering optimal 
capacities of distributed generations, Energy, vol. 147, 
pp. 980-994, March 2018. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


