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ABSTRACT 

 

Identity disclosure and attribute disclosure have always been a 

major concern while publishing data. k-anonymity tries to 

solve identity disclosure but doesn’t prevent attribute 

disclosure which leads to homogeneity and background 

knowledge attack. Preserving privacy of an individual is 

becoming more challenging due to increasing number of 

homogeneity and background knowledge attacks. l-diversity 

model has been proposed to thwart these attacks but it doesn’t 

fulfil its obligations. Several authors found l-diversity model 

to be inadequate, hence they put forth another model called 

t-closeness. Over the years, many investigations and 

experimentations conducted by various researchers shows 

that t-closeness does not provide a clear relationship between 

the threshold value t and information gain and it also shows 

that Earth mover’s distance, a distance metric used by 

t-closeness model, becomes complex with multiple sensitive 

attributes. In view of this challenge, we propose a stronger 

notion of privacy called Clustering Dissimilar Tuples (CDT) 

to thwart homogeneity and background knowledge attack by 

formalizing the idea of processing the original dataset initially 

wherever these attacks possibly occur. These attacks are 

found to occur in the tuples of sensitive attributes. Hence CDT 

processes the tuples of sensitive attributes to form equivalence 

classes consisting of dissimilar tuples. Through experimental 

evaluations, we show that CDT is practical and can be 

implemented efficiently with minimum utility loss and 

maximum privacy gain. 

 

Key words: anonymization, k-anonymity, l-diversity, 

t-closeness. 

 

1. INTRODUCTION 

 

Potential privacy breaches are enabled by the publication of 

large volumes of government and business data containing 

quasi-identifiers. Quasi-identifiers (personally identifiable 

information), when considered individually are not unique 

identifiers, but when combined becomes a digital weapon for 

information disclosure. This process is called 

Re-identification. De-identification is a process of preventing  

 

Table 1: Original medical records 

S. no. Age Sex Place Disease 

1 12 Male Chennai HIV 

2 18 Female Salem HIV 

3 16 Male Coimbatore HIV 

4 23 Male Salem Lung cancer 

5 27 Male Chennai Lung cancer 

6 24 Female Coimbatore Heart disease 

7 42 Female Madurai Flu 

8 42 Male Madurai Heart disease 

9 44 Female Madurai Flu 

 

someone’s identity from being revealed. It is vitally important 

to ensure that data is de-identified to prevent information 

disclosure. There are two types of information disclosure as 

identified by D. Lambert [1]: identity disclosure and attribute 

disclosure. In an identity disclosure, a respondent is linked to 

an observation or a tuple in a published dataset. In an attribute 

disclosure, an intruder can get knowledge of a respondent 

with or without identification. To overcome these information 

disclosures, anonymization is used. In literature [2], [3] 

k-anonymity has been introduced.  

 

k-anonymity states that each equivalence class should have at 

least k records. Though k-anonymity reduced identity 

disclosure, it failed to protect anonymized dataset from 

attribute disclosure. According to Machanavajjhala et al. [4], 

attribute disclosure leads to two major attacks: homogeneity 

attack and background knowledge attack. 

 

For example, consider Table 1 containing original medical 

records and Table 2 containing anonymized medical records 

satisfying 3-anonymity. Attributes age, sex and place are 

quasi-identifiers and attribute disease is sensitive in nature. 

Suppose A knows B’s age is 12 and lives in Chennai and A 

also knows that B’s record is in the table. Then A can easily 

determine from Table 2 that A corresponds to the first 

equivalence class resulting in the identification of A’s disease 
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Table 2: Anonymized medical records satisfying 3-anonymity 

S. no. Age Sex Place Disease 

1 12-18 
Male, 

Female 

Chennai, Salem, 

Coimbatore 
HIV 

2 12-18 
Male, 

Female 

Chennai, Salem, 

Coimbatore 
HIV 

3 12-18 
Male, 

Female 

Chennai, Salem, 

Coimbatore 
HIV 

4 23-27 
Male, 

Female 

Chennai, Salem, 

Coimbatore 
Lung cancer 

5 23-27 
Male, 

Female 

Chennai, Salem, 

Coimbatore 
Lung cancer 

6 23-27 
Male, 

Female 

Chennai, Salem, 

Coimbatore 
Heart disease 

7 42-44 
Male, 

Female 
Madurai Flu 

8 42-44 
Male, 

Female 
Madurai Heart disease 

9 42-44 
Male, 

Female 
Madurai Flu 

 

to be HIV. This kind of attack is called homogeneity attack. 

Suppose A knows C’s age to be 43 and place of living to be 

Madurai, it corresponds to the last equivalence class in Table 

2. Additionally, A also knows C has a low risk of having Flu 

then A can conclude that C has heart disease. This kind of 

attack is called as background knowledge attack. To address 

these drawbacks of k-anonymity, Machanavajjhala et al. 

proposed l-diversity as a stronger notion of privacy.  

 

The l-diversity Principle states that if there are at least l 

“well-represented” values for the sensitive attribute in an 

equivalence class, then it is said to have l-diversity. If each 

and every equivalence class has l-diversity in a table, then the 

table is said to have l-diversity. Machanavajjhala et al. defined 

the term “well-represented” in the following ways: distinct 

l-diversity, entropy l-diversity, recursive (q,l)-diversity. 

Distinct l-Diversity defines each equivalence class should 

have at least l distinct values for the sensitive attribute. 

Entropy l-Diversity states that for every equivalence class c in 

a table T satisfying the following condition, the table T is said 

to have entropy l-diversity. 

 
( ) ( )( ) ( ), ,

log log
c c

S

p p l
 



  (1) 

where p(c,𝜃) represents the fraction of records in a c 

equivalence class with a sensitive attribute value θ in the 

domain of sensitive attribute S. Recursive (q,l)-Diversity: Let 

xi denote the number of times ith most frequent sensitive value 

appears in a given equivalence class c. Given a constant q the 

equivalence class c satisfies recursive (q,l)-diversity if x1 < 
q(x1 + x2 + x3 +….. + xm). If every equivalence class c 

satisfies recursive (q,l)-diversity in a table T, then T is said to 

be in recursive (q,l)-diversity. 

 

According to Ninghui Li et al. [5], l-diversity is prone to 

various limitations: It may be strenuous and dispensable to 

achieve, it is inadequate to prevent attribute disclosure as it 

still endorses skewness and similarity attacks, and it doesn’t 

take into account the semantical closeness of the values of the 

sensitive attribute. To address these issues Ninghui Li et al. 

proposed t-closeness. Let c be an equivalence class in a table T 

and D be the distance between the distribution of a sensitive 

attribute in c and the distribution of the attribute in T. If an 

equivalence class c satisfies the following condition, then it is 

said to have t-closeness. 

    D t  (2) 

where t represents a threshold value. If all equivalence classes 

have t-closeness, then table T is said to have t-closeness. 

t-closeness uses Earth Mover’s Distance (EMD) [6], for 

calculating the distance between the distributions. Though it 

produces desired results for a single sensitive attribute, the 

mathematical relation struggles to find the distance between 

distributions for multiple sensitive attributes. Ninghui Li et al. 

clearly states afore-mentioned drawback as one of the 

limitations of t-closeness principle. Ninghui Li et al. also 

mentions that EMD does not provide any clarity in the 

relationship between the value t and information gain. 

 

For example, let there be 4 distributions D1 (0.99, 0.01), D2 

(0.89, 0.11), D3 (0.6, 0.4), and D4 (0.5, 0.5). The EMD for 

changing both D1 to D2 and D3 to D4 is 0.1 respectively. 

Though one can logically argue that the distance between the 

distributions D1 and D2 should be greater than that of D3 and 

D4, the results produced using EMD does not agree with this 

logical conclusion. This shows that it provides no guarantee to 

prevent homogeneity and background knowledge attack from 

taking place.  

 

We propose a stronger notion of privacy called Clustering 

Dissimilar Tuples (CDT) that formalizes the idea of 

processing the original dataset initially where there are 

possible occurrences of a potential threat (homogeneity and 

background knowledge attack). Threats found to be occurring 

in the tuples of sensitive attributes. CDT processes the tuples 

of sensitive attributes to form equivalence classes consisting 

of dissimilar tuples. This effectively limits any chances for 

these attacks from taking place. Then for each equivalence 

class, the corresponding tuples of quasi-identifiers are 

processed and generalized before publishing the processed 

dataset. 

 

2. LITERATURE REVIEW 

 

In this digital age, it has become indispensable for 

Government, public and private institutions to have their data 

electronically available on the internet. According to D. 

Lambert [1], the availability of data publicly leads to two 

types of information disclosure: identity disclosure and 

attribute disclosure. To address identity disclosure 

k-anonymity has been introduced [2], [3]. It states that each 

equivalence class should have at least k records. In this way 

even if an intruder finds an equivalence class corresponding to 

https://ieeexplore.ieee.org/author/37279907500
https://ieeexplore.ieee.org/author/37279907500
https://ieeexplore.ieee.org/author/37279907500
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a respondent, the identity of the respondent would not be 

revealed as there would be k records, i.e., each respondent has 
1

k

 probability of getting disclosed. 

 

Many investigations and experimentations introduced new 

k-anonymity models. Kai-Cheng Liu et al. [7] introduced 

optimized data de-identification using multidimensional 

k-anonymity and proved that it provides more reliable 

anonymous data and reduce the information loss rate. Widodo 

et al. [8] proposed an approach for distributing sensitive 

values in k-anonymity which outperformed systematic 

clustering when a high-sensitive value is distributed. Ping 

Zhao et al. [9] proposed a non-asymptotic bound on the 

performance of k-anonymity against information disclosure, 

taking into consideration intruder’s background knowledge. 

Fan Fei et al. [10] applies k-anonymity to prevent 

Location-based Service (LBS) providers from stealing user 

location details. It uses a two-tier schema for the preservation 

of privacy based on k-anonymity. Jinbao Wang et al. [11] 

proposed a novel privacy notion called Client-based 

Personalized k-anonymity (CPkA). CPkA ensures that the 

query content of a user is protected from service providers in 

an autonomous vehicle. Yuanxiunan Gao et al. [12] proposed 

a novel algorithm, Principal Component Analysis-Grey 

Relational Analysis (PCA-GRA) K anonymous algorithm, 

which significantly improved data utility in three aspects – 

information loss, feature maintenance, and classification 

evaluation performance. 

 

Machanavajjhala et al. [4] agreed to the benefits of 

k-anonymity but sorted out that though it decreased the 

chances of identity disclosure, it paved a way to attribute 

disclosure. According to Machanavajjhala et al., attribute 

disclosure leads to two major attacks: homogeneity attack and 

background knowledge attack. To address these attacks 

Machanavajjhala et al. proposed l-diversity. It defines that 

there should be at least l “well-represented” values for the 

sensitive attribute in an equivalence class. Several algorithms 

have been proposed for improving l-diversity by various 

researchers. Odsuren Temuujin et al. [13] designed an 

efficient l-diversity algorithm that uses anatomy and 

suppression for preserving privacy of dynamically changing 

published datasets. Keiichiro Oishi et al. [14] proposed (l, 

d)-semantic diversity which considers the similarity of 

sensitive attribute values with the help of addition of distances 

defined using categorization. Mohammed Atik Enam et al. 

[15] designed an l-diversity algorithm to improve the 

clustering quality of a point-set. Adeel Shah et al. [16] 

designed a novel security framework for Healthcare industry 

to provide strong patient anonymity level, anonymized data 

searching and successful correlation of PHR for medical 

research. Lin Yao et al. [17] introduced a scheme called Data 

Privacy Preservation with Perturbation (DPPP) to protect 

sensitive information on individual’s location trajectory. It 

also ensures DPPP satisfy (l, α, β)-privacy. Hui Zhu et al. [18] 

developed τ-Safe (l, k)-diversity privacy model to preserve 

privacy of individuals in sequential publication. This model is 

developed based on generalization and segmentation by 

individual anonymity satisfying k-anonymity and record 

anonymity satisfying l-diversity. 

 

l-Diversity turns out to be strenuous and dispensable to 

achieve as it does not take into account the semantic closeness 

of the values of the sensitive attribute. To address these issues 

Ninghui Li et al. [5] proposed t-closeness which defines that 

the distance between the distribution of a sensitive attribute in 

an equivalence class and the distribution of the attribute in the 

whole table should be less than a threshold value t. t-closeness 

uses EMD [6] for calculating the distance between 

distributions. Many researchers came up with enhancing 

algorithms for t-closeness. Zakariae and Hanan [19] proposed 

variable t-closeness for sensitive numerical attributes, unlike 

fixed t value this algorithm uses variable t value. Guo Hao and 

Xu Ya-Bin [20] improved t-closeness model using parameter 

selection and adjustment method of the anonymous method. 

Yuchi Sei et al. [21] introduced two novel privacy models, 

namely, (l1, ………, lq)-diversity and (t1, ………, tq)- 

closeness by considering all the attributes to have both 

sensitive and quasi characteristics. Zhen Tu et al. [22] 

proposed a novel algorithm for protecting the trajectory of an 

individual against semantic and re-identification attack while 

reserving high data utility.  

 

3. METHODOLOGY 

 

3.1 Preliminary Definitions and its Algorithmic 

Implementations 

 

3.1.1 Entropy of an Attribute  

 

Let X be an attribute and i be an element present in X. Entropy 

is defined as a measurement of uncertainty or disorder and it is 

mathematically formulated as  

( )
( ) ( )( )

( )
* log

10  ; 0
log 2

10

p i p i
entropy X entropy X

−
=  (3) 

where p(i) represents the probability of occurrence of element 

i in attribute X. 
 

Table 3: Medical dataset 

Tuple 

no. 
Age Sex Place Race Disease Salary 

1 12 m Chennai OC HIV 100200 

2 45 f Salem BC cancer 13000 

3 36 m Coimbatore OC fever 56000 

4 23 m Salem BC cold 44500 

5 57 m Chennai MBC HIV 76000 

6 24 f Coimbatore OBC fever 10000 

7 64 f Madurai SC pneumonia 23000 

8 42 m Madurai ST cancer 43000 

9 64 f Madurai SC cold 100200 

10 34 f Chennai MBC pneumonia 13000 

https://ieeexplore.ieee.org/author/37279907500
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For example, Table 3 represents a medical dataset consisting 

of 10 records. It has age, sex, place, race, disease, and salary 

details of patients. Respective entropies of these attributes are 

3.121928, 1.000000, 1.970951, 2.521928, 2.321928, 

2.921928. These values represent the measurement of the 

uncertainty of attributes. 0 entropy represents that all elements 

of the corresponding attribute are similar. Higher the entropy 

higher the uncertainty of elements. 

 

3.1.2 Weight of an Attribute 

 

It is defined as the ratio of the entropy of an attribute to the 

sum of all the entropies of all the attributes. Let X = {A1, A2, 

A3, A4, ……} be a set of attributes where Ai represents ith 

attribute and weight is formulated as  

 ( )
( )

( )
( ); 0 1

entropy A
weight A weight Ax

entropy Aii

=  



 (4) 

Weights are used for improving clustering quality. Higher the 

weight of an attribute more the similarity of its elements. 

 

For example, consider Table 3 containing the details of age, 

sex, place, race, disease, and salary of patients. With the help 

of entropies, weights are calculated and the respective weights 

of the attributes are 0.7747309, 0.9278430, 0.8577821, 

0.8180252, 0.8324566, and 0.7891623. From these values, we 

can conclude that sex has most number of similar elements 

than any other attributes since its weight is the maximum and 

age has the least number of similar elements as its weight is 

the minimum. 

 

3.1.3 Gower’s Distance  

 

Let ti be ith tuple, tj be jth tuple, and Hij be the Gower’s distance 

between ti and tj in a dataset D. Gower’s distance defines how 

dissimilar ti is to tj or tj is to ti. It is formulated as  

 
*

1

1

N
w H

k ijkk
Hij N

w
kk

 =
=

 =

 (5) 

where w = {w1, w2, w3, ……, wN} represents a list of weights 

of N attributes, k value represents kth attribute and Hijk 

represents the distance between ti and tj in kth attribute. Since 

Hijk varies for categorical and numerical attributes, it is 

defined separately for each type of attribute. Let yab represents 

the element in ath tuple and bth attribute.  

For a categorical attribute, 

Hijk = 0 if yik  = yjk and Hijk = 1 if yik  ≠ yjk 

For a numerical attribute, 

 

y y
ik jk

H
ijk z

k

−

=  (6) 

 ( ) ( )z maximum y minimum y
k k k
= −  (7) 

Out of all the distances in the world we chose Gower’s 

distance because it incorporates both categorical and 

numerical attributes while calculating the distance between 

the tuples by taking into consideration the weights of the 

attributes  

 

3.1.4 Gower’s Dissimilarity Matrix  

 

Let ti be ith tuple and tj be jth tuple. It is a matrix gd ((1, 2, 3, …, 

i, …, n-1) ⋆ (2, 3, 4, …, j, …, n)) consisting of Gower’s 

distance Hij between ti and tj where i = 1, 2, 3, …, n-1 and j = 2, 

3, 4, …., n. 

Algorithm for entropy calculation  

Input: Dataset D 

Output: List of entropies, e, containing entropy of every 

attribute 

(1) e ← empty vector 

(2) for each attribute A in D do 

(a) s ← 0 

(b) for each unique element i in A do  

(i) n ← number of element i in A 

(ii) 
       

n
p

number of elements in A


 

(iii) 
1

* log
10

s s p
p

 +
  
  

  
 

end for 

(c) 
log 2

10

s
s   

(d) e ← append(s) 

 end for 

 

Algorithm for weight calculation  

Input: e, representing list of entropies containing entropy 

of every attribute 

Output: List of weights, w, containing weight of every 

attribute 

(1) ( )
.    

1

no of columns

s e i

i

 
=

 

(2) w ← empty vector 

(3) for each entropy i in e do 

(a) 1
i

f
s

 −  

(b) w ← append(f) 

  end for 
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Table 4: Gower’s dissimilarity matrix for Table 3 

 1 2 3 4 5 6 7 8 9 

2 0.94         

3 0.49 0.79        

4 0.63 0.47 0.56       

5 0.34 0.83 0.6 0.66      

6 0.88 0.57 0.47 0.75 0.9     

7 0.98 0.58 0.83 0.85 0.8 0.64    

8 0.69 0.58 0.54 0.56 0.6 0.8 0.62   

9 0.84 0.71 0.85 0.74 0.75 0.78 0.3 0.68  

10 0.73 0.53 0.77 0.78 0.53 0.54 0.44 0.76 0.74 

 

For example, Table 4 represents Gower’s dissimilarity matrix 

for Table 3. The green shaded value 0.47 represents the 

Gower’s distance between 2nd and 4th tuple. Hence Table 4 

contains Gower’s distance between every tuple to every other 

tuple.  

 

3.1.5 Gower’s Similarity Matrix  

 

Let ti be ith tuple and tj be jth tuple. It is a matrix gs ((1, 2, 3, …, 

i, …, n-1) ⋆ (2, 3,  4, …, j, …, n)) consisting of Gower’s 

closeness H’ij between ti and tj where i = 1, 2, 3, …, n-1 and j = 

2, 3, 4, …., n and H’ij = 1- Hij
2. 

 
Table 5: Gower’s similarity matrix for Table 3 

 1 2 3 4 5 6 7 8 9 

2 0.12         

3 0.76 0.38        

4 0.6 0.78 0.69       

5 0.88 0.31 0.64 0.57      

6 0.22 0.68 0.78 0.44 0.19     

7 0.04 0.67 0.31 0.28 0.36 0.59    

8 0.52 0.66 0.71 0.69 0.64 0.36 0.62   

9 0.29 0.49 0.28 0.45 0.44 0.39 0.91 0.54  

10 0.46 0.71 0.41 0.4 0.72 0.71 0.8 0.42 0.45 

 

For example, Table 5 represents Gower’s similarity matrix for 

Table 3. The green shaded value 0.64 represents the Gower’s 

closeness between 5th and 8th tuple. Hence Table 5 contains 

Gower’s closeness between every tuple to every other tuple. 

 

3.1.6 k-Medoids  

 

It is a partitioning technique which clusters n tuples into k 

clusters using k-medoids algorithm. A medoid m is a tuple in 

an equivalence class e with minimum dissimilarity among the 

dissimilarities with all other tuples in e.  

 

Its time complexity is О (k ⋆ (n - k)2). If the dataset has large 

number of records and small k value, it results in increasing 

the time complexity of this algorithm.  

 

Gower’s distance can be incorporated into two clustering 

algorithms and they are k-medoids algorithm and hierarchical 

clustering algorithm. The hierarchical clustering takes a huge 

amount of time in clustering large datasets. Hence, we chose 

k-medoids for clustering as we are dealing with huge data.  

Algorithm for Gower’s dissimilarity matrix 

Input: Dataset D, list of weights w containing weight of 

every attribute 

Output: Gower’s dissimilarity/distance matrix, gd, 

containing distances between all the rows in D 

(1) v ← empty vector 

(2) for each combination of rows taken two at a time 

do 

(a) let the two rows be ith and jth row 

(b) f ← 0 

(c) for each attribute x in D do 

(i) if x = numerical then 

(1) ( ) ( )s x i x j −  

(2) r ← maximum(x) – 

minimum(x) 

(3) 
s

s
r

  

(ii) else if x = categorical then 

(1) if x(i) = x(j) then 

(a) s ← 0 

(2) else 

(a) s ← 1 

end if  

end if 

(iii) a ← w(x) ⋆ s 

(iv) f ← f + a 

end for 

(d) a ← sum of all weights in w 

(e) 
f

f
a

  

(f) v ← append(f) 

end for 

(3) gd ← matrix data representation of v 

 

Algorithm for Gower’s similarity matrix 

Input: Gower’s dissimilarity matrix, gd 

Output: Gower’s similarity matrix, gs 

(1) i ← 1 

(2) gs ← empty matrix 

(3) while (i ≤ number of rows(gd)) do 

(a) j ← 1 

(b) while (j ≤ number of columns(gd)) do 

(i) gs(i, j) ← 1 – gd(i, j)2 

(ii) j ← j + 1 

end while 

(c) i ← i + 1 

  end while 
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3.1.7 Silhouette Width  

 

For every tuple f, the Silhouette width SWf is defined as the 

ratio of the difference between cohesion cf and separation sf 

(to the nearest neighbouring cluster) to the maximum of cf and 

sf. Cohesion cf is defined as the average distance between 

tuple f and all other tuples of the equivalence class to which f 

belongs. Let e be an equivalence class which does not contain 

f. For every e, separation sf is calculated as the average 

distance between f and all other tuples of e. Only a minimum 

of all the separations sf is considered. Hence, SWf is 

formulated as  

 

( )
;  1 1

max ,

s c
f f

SW SW
f f

s c
f f

−
= −    (8) 

There are many cluster-quality measures such as the 

Silhouette width, the Davies - Bouldin index, the Calinski - 

Harabasz index, the Dunn index and many more. Out of all the 

measures we found Silhouette width to be providing more 

optimum k value for clusters than any other measures when 

used in our algorithm. Hence, we chose the Silhouette width 

for measuring optimum k value for the given dataset D. 

 

3.1.8 Utility Loss  

 

Utility loss of a tuple in an anonymized dataset is defined as 

the root of the sum of the squared mean of utility loss of all the 

quasi attributes. Let UL(ti) represent utility loss of  ith tuple, n  

 

represent the total number of records, and m represent the 

total number of quasi attributes. UL(ti) is formulated as  

 ( )
( )

( )

2

1
; 0 1

m
UL Ajj

UL t UL ti i
m

 =
=    (9) 

Since quasi attributes can be represented as either categorical 

or numerical, UL(Aj) is defined separately for categorical and 

numerical attributes. 

For categorical attribute, 

 ( )
.          1

.         

no of elements in the cellij
UL Aj

no of unique elements in A j

−
=  (10) 

 ( )0 1UL Aj   

For numerical attribute, 

 ( )
( ) ( )

( ); 0 1
max min

r rmax minUL A UL Aj j
A Aj j

−
=  

−

 (11) 

where rmax and rmin represent the maximum and minimum 

Algorithm for average Silhouette width of k clusters 

Input: c, representing k clusters  

Output: Average Silhouette width SW for k clusters 

(1) sum_sw ← 0 

(2) for each cluster e in c do 

(a) sum ← 0 

(b) for each data point i in e do 

(i) a(i) ← average distance 

between i and all other data 

points of the cluster to which i 

belongs 

(ii) for each cluster x in c-e do 

(1) d(i, x) ← average 

distance of i to all 

data points of x 

end for 

(iii) b(i) ← minimum(d(i, c-e)) 

(iv) m(i) ← maximum(a(i), b(i)) 

(v) ( )
( ) ( )

( )

b i a i
s i

m i

−
  

(vi) sum ← sum + s(i) 

end for 

(c) ( )
         

sum
avg e

number of data points in e
  

(d) sum_sw ← sum_sw + avg(e) 

end for 

(3) 
_sum sw

SW
k

  

Algorithm for k-medoids 

Input: Dataset D, distance matrix g, k representing number 

of clusters to be formed 

Output: Clusters formed using k-medoids 

(1) Select k observations from dataset D as medoids. 

(2) Associate each observation to the closest medoid 

using g. 

(3) obj_function ← sum (all the distances of 

observations to their respective medoids) 

(4) while obj_function decreases do 

(a) for each medoid a and a non-medoid b 

do 

(i) Swap a and b. 

(ii) Associate each observation to 

the closest medoid. 

(iii) obj_function ← sum (all the 

distances of observations to 

their respective medoids) 

(iv) if newly computed obj_function 

is more than that in the 

previous step then  

(1) undo the swap 

end if 

end for 

  end while 
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values of the numerical range for an anonymized numerical 

data. max(Aj) and min(Aj) represent maximum and minimum 

values of the attribute Aj. Utility loss for an entire anonymized 

dataset, UL(D’), is defined as the weighted average of UL(ti) 

where i = 1, 2, 3,……, n. It is formulated as 

 ( ) ( )
*

1 ; 0 1

k
N ULi iiUL D UL D
n

 =  
 =   (12) 

where k represents the number of equivalence classes, Ni 

represents the number of records in ith equivalence class and 

ULi represents utility loss of any one of the tuples in ith 

equivalence class since the utility loss of every tuple in an 

equivalence class is the same. 

 

3.1.9 Privacy Provided by Generalized Quasi-Identifiers  

 

Privacy of quasi-identifiers is defined as the ratio of the 

difference between the entropy of ideal quasi attributes and 

anonymized quasi attributes to the entropy of ideal quasi 

attributes. Ideal quasi attributes represent the ideal state where 

all the tuples of the quasi attributes are unique. Let e denotes 

entropy, P denotes privacy and Q represents quasi- identifiers. 

Privacy provided by quasi-identifiers is formulated as  

 ( )
( ) ( )

( )
( ); 0 1

e Q e Qi
P Q P Q

e Qi

−
=  


 (13) 

where Qi represents tuples of ideal quasi-identifiers and Q’ 

represents tuples of anonymized quasi-identifiers. It ranges 

from 0 to 1. 

 

3.1.10 Privacy Provided by Sensitive Attributes 

(Prevention of Homogeneity Attack on Sensitive 

Attributes) 

 

Let there be l sensitive attributes and k equivalence classes. 

P(S) represents privacy provided by sensitive attributes which 

is defined and formulated as 

 ( ) ( )

2
1 1

;0 1
*

l k PHAiji j
P S P S

l k

 = =
=    (14) 

where PHAij represents prevention of homogeneity attack in 

ith sensitive attribute and jth equivalence class. It is formulated 

as  

( )
( )

           
th th

e i sensitive attribute and j equivalenceclass

PHAij
e Idealij

=  

 0 1PHAij   (15) 

where Idealij represents that all the elements/tuples, in ith 

sensitive attribute and jth equivalence class, are unique.  

 

3.1.11 Privacy Provided by Anonymized Dataset D’  

 

It is defined as the root of the mean of the sum of squared 

values of privacy provided by quasi-identifiers and privacy 

provided by sensitive attributes. It is represented as P(D’) and 

formulated as 

 ( )
( )( ) ( )( )

( )

2 2

;0 1
2

P Q P
P D P D

S+
  =   (16) 

3.2 CDT algorithm 

 

Outline of Algorithm 

 

Input: Dataset D, containing n records, consisting of both 

numerical and categorical attributes. 

Output: Generalized dataset D’ with minimum possibility of 

utility loss and homogeneity and background knowledge 

attack. 

(1) Split dataset D into two sets of attributes D1 and D2 where 

D1 contains tuples of m sensitive attributes and D2 contains 

tuples of l quasi attributes. 

(2) Form equivalence classes of dissimilar tuples from D1. 

(3) Cluster similar tuples from D2 corresponding to each 

equivalence class formed. 

(4) Form D’ by merging D1 and D2. 

(5) Generalize quasi-identifiers in the merged dataset D’. 

 

3.2.1 Clustering of Dissimilar Tuples of Sensitive 

Attributes 

 

(1) Read input dataset D1 = {A1, A2, A3, A4, ………, Am} 

containing m sensitive attributes and n records where A 

can be either categorical or numerical. 

(2) Calculate entropy e = {e(A1), e(A2), e(A3), e(A4), ………, 

e(Am)} for all the sensitive attributes.  

(3) Using entropy calculate weight w = {w(A1), w(A2), w(A3), 

w(A4), ………, w(Am)}. 

(4) With the help of calculated weights from the previous 

step, compute Gower’s dissimilarity/distance matrix gd 

((1, 2, 3, …, i, …, n-1) ⋆ (2, 3, 4, …, j, …, n)) where i and 

j represent ith and jth tuples in D1 respectively. 

(5) Calculate Gower’s similarity matrix, gs ((1, 2, 3, …, i, …, 

n-1) ⋆ (2, 3, 4, …, j, …, n)) where i and j represent ith and 

jth tuples in D1 respectively, using Gower’s dissimilarity 

matrix gd. 

(6) Compute average Silhouette width SW for clusters from 2 

to n-1 where n is the number of records in D1. 

(7) Assign k ← no. of clusters corresponding to minimum 

average Silhouette width, i.e., number of clusters 

corresponding to min (SW). We choose minimum average 

silhouette width because we try to form clusters of 

dissimilar tuples. 

(8) Perform k-medoids algorithm on the dataset D1, using 

Gower’s similarity matrix gs. 

(9) It forms equivalence classes S each containing dissimilar 

sensitive tuples. 
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3.2.2 Clustering of Similar Tuples of Quasi Attributes 

Corresponding to Each Cluster in S 

 

(1) D2 = {A1, A2, A3, A4, ………, Al} containing l quasi 

attributes and n records where A can be either categorical 

or numerical. 

(2) for each equivalence class in S do 

(a) Corresponding tuples of D2, be T, are considered 

(b) Calculate entropy e = {e(A1), e(A2), e(A3), e(A4), 

………, e(Al)} for all the attributes of T. 

(c) Using entropy calculate weight w = {w(A1), w(A2), 

w(A3), w(A4), ………, w(Al)}. 

(d) With the help of calculated weights from the 

previous step, compute Gower’s 

dissimilarity/distance matrix gd ((1, 2, 3, …, i, …, 

n-1) ⋆ (2, 3, 4, …, j, …, n)) where i and j represent ith 

and jth tuples in T respectively. 

(e) Compute average Silhouette width SW for clusters 

from 2 to n-1 where n is the number of records in T. 

(f) Assign k ← no. of clusters corresponding to 

maximum average Silhouette width, i.e., number of 

clusters corresponding to max (SW). 

(g) Perform k-medoids algorithm on the dataset T, 

using Gower’s dissimilarity matrix gd. 

(h) It forms clusters Q of similar quasi tuples. 

end for 

 

3.2.3 Merging of Sensitive and Quasi Attributes 

 

(1) D’ = S + Q (i.e.) S and Q have merged in the order of tuples 

present in the clusters of Q accordingly. 

 

3.2.4 Generalization of Merged Dataset 

 

(1) For every cluster in D’ generalize tuples of quasi attributes 

according to the data present within that cluster, i.e., 

make all the data of quasi attributes in a cluster same as 

each other. 

(2) This dataset could be published to anyone as it would 

protect privacy of an individual as the dataset is 

anonymized. 
 

Table 6: Tuples of sensitive attributes of Table 3 

S. no. Tuple no. Race Disease Salary 

1 1 OC HIV 100200 

2 2 BC cancer 13000 

3 3 OC fever 56000 

4 4 BC cold 44500 

5 5 MBC HIV 76000 

6 6 OBC fever 10000 

7 7 SC pneumonia 23000 

8 8 ST cancer 43000 

9 9 SC cold 100200 

10 10 MBC pneumonia 13000 

 
Figure 1: Evaluation of optimum k value for Table 6 

 

 
Figure 2: Silhouette plot of clusters (dissimilar tuples) of Table 6 

 

For example, let the dataset represented by Table 3 be D. D 

has been split into two datasets each containing sensitive and 

quasi attributes respectively. Let the dataset containing 

sensitive attributes be represented as D1 and the dataset 

containing quasi attributes be represented as D2. D1 contains 

race, disease, and salary as these are considered to be sensitive 

attributes and D2 contains age, sex, and place as these are 

considered to be quasi attributes. CDT algorithm begins by 

clustering dissimilar tuples of D1. Table 6 represents D1. 

k-medoid algorithm is used for clustering of dissimilar tuples 

of D1 using Gower’s similarity matrix. Minimum average 

Silhouette width for D1 is found to be 8, as shown in Figure 1, 

but we found 2 to be providing desired results compared to the 

results formed when k was 8. Hence, two Clusters are formed 

as shown in Figure 2. 

 
Table 7: Tuples of corresponding quasi attributes of C1 

S. no. Tuple no. Age Sex Place 

1 1 12 m Chennai 

2 4 23 m Salem 

3 6 24 f Coimbatore 

4 7 64 f Madurai 

5 8 42 m Madurai 

6 10 34 f Chennai 



Srijayanthi Subramanian et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020,  6470 – 6481 

 

6478 

 

 

 
Figure 3: Evaluation of optimum k value for Table 7 

 

 
Figure 4: Silhouette plot of clusters (similar tuples) of Table 7 

 

Let 1st cluster be C1 and it consists of tuples 1, 4, 6, 7, 8, 10 

and 2nd cluster be C2 and it consists of tuples 2, 3, 5, 9. Table 7 

consists of tuples of quasi attributes corresponding to C1 and it 

is represented as D21 and Table 8 consists of tuples of quasi 

attributes corresponding to C2 and it is represented as D22. 

Similar tuples of D21 are clustered using k- medoid algorithm 

with the help of Gower’s dissimilarity matrix of D21. Figure 3 

shows the evaluation of the optimum k value for clustering 

dataset D21. The optimum k value is found to be 2 as it 

corresponds to maximum average Silhouette width. Tuples of 

D21 have been clustered into two sets C11 and C12. C11 consists 

of tuples 1, 4, 8 and C12 consists of tuples 6, 7, 10. Figure 4 

clearly shows the clustering of the tuples along with their 

Silhouette width. 

 

Similar tuples of D22 are clustered using k-medoid algorithm 

with the help of Gower’s dissimilarity matrix of D22. Figure 5  
 

Table 8: Tuples of corresponding quasi attributes of C2 

S. no. Tuple no. Age Sex Place 

1 2 45 f Salem 

2 3 36 m Coimbatore 

3 5 57 m Chennai 

4 9 64 f Madurai 

 
Figure 5: Evaluation of optimum k value for Table 8 

 

 
Figure 6: Silhouette plot of clusters (similar tuples) of Table 8 

 

shows the evaluation of the optimum k value for clustering it 

dataset D22. The optimum k value is found to be 2 as 

corresponds to the maximum average Silhouette width for 

D22. It has been clustered into 2 sets C21 and C22. C21 consists 

of tuples 2, 9 and C22 consists of tuples 3, 5. Figure 6 clearly 

shows the clustering of the tuples along with their Silhouette 

width. 

 

Tuples of C1 are merged with tuples of C11 and C12 in the order 

of the tuples present in C11 and C12 respectively and tuples of 

C2 are merged with tuples of C21 and C22 in the order of the 

tuples present in C21 and C22 respectively. At last the tuples of 

quasi attributes of the merged dataset D’ are generalized 

according to the clusters C11, C12, C21 and C22 respectively. 

Table 9 clearly shows the anonymized dataset of D with each 

equivalence class represented with a unique cluster number. 

 

Every equivalence class of Table 9 has different sensitive 

values because every cluster has been formed using 

equivalence classes consisting of dissimilar tuples of sensitive 

attributes. Thereby reducing the homogeneity attack and 

background knowledge attack maximum possible. Also, quasi 

attributes are generalized with minimum utility loss possible. 

Generalized anonymization helps to prevent an intruder from 

accessing data from the published dataset. Hence, increasing 

the privacy of an individual. 
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Table 9: Anonymized Dataset of Table 3 

Cluster no. Tuple no. Age Sex Place Race Disease Salary 

1 

1 12-42 m Chennai, Madurai, Salem OC HIV 100200 

4 12-42 m Chennai, Madurai, Salem BC cold 44500 

8 12-42 m Chennai, Madurai, Salem ST cancer 43000 

2 

6 24-64 f Chennai, Coimbatore, Madurai OBC fever 10000 

7 24-64 f Chennai, Coimbatore, Madurai SC pneumonia 23000 

10 24-64 f Chennai, Coimbatore, Madurai MBC pneumonia 13000 

3 
2 45-64 f Madurai, Salem BC cancer 13000 

9 45-64 f Madurai, Salem SC cold 100200 

4 
3 36-57 m Chennai, Coimbatore OC fever 56000 

5 36-57 m Chennai, Coimbatore MBC HIV 76000 

 

4. RESULT AND DISCUSSION 

 

The main goal is to investigate the performance implications 

of the CDT approach in terms of utility loss, privacy gain and 

prevention of homogeneity and background knowledge 

attack. Since background knowledge attack is unpredictable 

as it depends on the intruder, only homogeneity attack has 

been evaluated. 

 
Table 10: Technical specifications of the system used 

Properties Specifications 

Operating system Windows 10 

Processor Intel Core i7-8700k 

Processor base frequency 3.70 GHz 

Installed memory (RAM) 16 GB 

System type x64 based processor 

 

Adult dataset, taken from UCI machine learning repository, 

has been used. Randomly 1000 records are chosen and 

processed. Age (numerical), Sex (categorical) and Place 

(categorical) are used as quasi attributes and Occupation 

(categorical), Education (Categorical) and FNLWGT 

(Categorical) are used as sensitive attributes. Algorithms are  

 
Figure 7: Utility loss vs No. of tuples 

 

implemented in R language version 3.6.2 using RStudio 

version 1.2.5033. Table 10 denotes the configuration of the 

system used for the implementation of algorithms. 

 

We split the dataset D into five groups G1, G2, G3, G4, and G5 

each containing 100, 200, 300, 400, and 500 tuples 

respectively for which utility loss is evaluated as depicted in 

Figure 7. Figure 7 represents utility loss, in percentage, in the 

Y-axis and number of tuples in the X-axis. G1, after 

processing, gives 42.51% utility loss and similarly, G2, G3, G4, 

and G5 shows 46.05%, 44.80%, 50.20% and 51.89% utility 

loss respectively. From Figure 7, it can be derived that utility 

loss of any dataset is approximately 47%. 

 

Figure 8 depicts a plot representing privacy provided by 

generalized quasi attributes, prevention of homogeneity attack 

in sensitive attributes and privacy gain of the anonymized 

dataset against no. of tuples. Privacy gain is calculated by 

measuring the difference between the privacy provided by the 

dataset before and after processing it. The contribution of 

generalized quasi attributes to overall privacy for G1, G2, G3, 

G4, and G5 are 58.60%, 62.04%, 67.29%, 73.87%, and 

75.27% respectively. The contribution of prevention of 

homogeneity attack to overall privacy for G1, G2, G3, G4, and 

 

 
Figure 8: Privacy provided by generalized quasi attributes, 

Prevention of homogeneity attack in sensitive attributes and Privacy 

gain of anonymized dataset against No. of tuples 
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Figure 9: Utility loss, Privacy provided by generalized quasi 

attributes and Prevention of homogeneity attack in sensitive 

attributes after processing 1000 records 

 

G5 are 71.28%, 63.73%, 64.30%, 76.65%, and 58.81% 

respectively. Similarly, the privacy gain of the anonymized 

dataset for G1, G2, G3, G4, and G5 are 52.27%, 46.27%, 

46.37%, 52.89%, and 42.50% respectively. When noticed 

carefully even upon increasing the number of tuples there 

aren't any significant changes shown in the privacy gain of the 

datasets and it is between 40-60% range as depicted in the 

Figure 8. 

 

We processed the entire dataset D containing 1000 records 

and evaluated utility loss, privacy provided by generalized 

quasi attributes and prevention of homogeneity attack in 

sensitive attributes as depicted in Figure 9. Utility loss is 

found to be 62.28% and similarly, privacy provided by 

processed quasi and sensitive attributes are found to be 

79.84% and 69.41% respectively.  

 

Figure10 depicts No. of tuples vs Elapsed time, in seconds for 

G1, G2, G3, G4, and G5. Y-axis represents elapsed time and 

X-axis represents number of tuples as depicted in Figure 10. 

The elapsed time for G1, G2, G3, G4, and G5 are found to be 

3.61 sec, 6.68 sec, 28.33 sec, 67.51 sec, and 157.69 sec 

respectively. The plot shows an increasing trend in elapsed 

time as the number of tuples increases. 

 

 
Figure 10: No. of tuples vs Elapsed time (seconds) 

This project’s main objective is to minimize utility loss and 

maximize the privacy gain by preventing homogeneity attack 

from happening in sensitive attributes. Based on the results 

obtained we can conclude that the utility loss has been 

minimized and prevention of homogeneity attack has been 

maximized. 

 

5. CONCLUSION AND FUTURE WORK 

 

In this study, we have shown the incompetencies of l-diversity 

and t-closeness in thwarting homogeneity and background 

knowledge attack and proposed a stronger privacy notion to 

thwart afore-mentioned attacks. From the results, our 

algorithm has proven to be providing maximum privacy gain, 

minimum privacy loss, and maximum thwart to homogeneity 

and background knowledge attacks. 

 

When all the records are similar there is a chance that our 

algorithm, forming clusters of dissimilar tuples, forms as 

many clusters as close to the number of records which makes 

anonymization a difficult task. Considering this as an avenue 

for future work, we are trying to form a clustering algorithm 

incorporating similarity of all the records in a dataset in such a 

way that it does not form as many clusters as close to the total 

number of records. Basically, we are preparing a dynamic 

clustering algorithm which adapts itself to the input data in 

order to provide better results with the optimum number of 

clusters no matter how similar or dissimilar the records are. 
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