
David Aregovich Petrosov et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 177 - 181

177

ABSTRACT

In contemporary intelligent decision support systems, there is
still a problem associated with increasing the performance
speed of the structural-parametric synthesis of large discrete
systems with a given behavior based on genetic algorithms.
Currently, there are two main research areas that are
designed for mathematical or hardware performance speed
improvement. One way to improve hardware performance
speed is the use of parallel computing, which includes
general-purpose computing on graphics processing units
(GPGPU). This article deals with the possibility of
improving the performance speed of intelligent systems
using the mathematical tool of artificial neural networks by
introducing a control module of the genetic algorithm
directly when performing the synthesis of solutions. Control
of the structural-parametric synthesis process is achieved by
predicting and evaluating the state of the genetic algorithm
(convergence, attenuation, finding the population in local
extremes) using artificial neural networks. This allows
changing the operating parameters directly in the course of
decision synthesis, changing their destructive ability relative
to the binary string, which leads to a change in the trajectory
of the population in the decision space, and as a result,
should help to improve the performance speed of intelligent
decision support systems.

Key words: genetic algorithm, intelligent information
systems, artificial neural networks, system analysis.

1. INTRODUCTION
Contemporary intelligent decision support systems based on
evolutionary procedures in the synthesis of the structural and
parametric problem of large discrete systems with a given
behavior need to improve performance speed.

In the structural-parametric synthesis of a large discrete
system with a given behavior, the number of elements and
parameters of their functioning is so large that the solution of
this problem by iteration is impossible even with the use of
contemporary computing systems. Therefore, it is advisable
to use directional search methods. The range of such
methods is quite wide and includes the following algorithms:

 genetic algorithms;
 simulated annealing method;
 set of algorithms based on the ant colony method;
 rough random search (Monte Carlo method);
 binary search algorithm;
 algorithm with a return at a failed step;
 algorithm with recalculation at a failed step;
 search with bans.

Genetic algorithms have proven themselves well in the field
of structural-parametric synthesis, but when solving
synthesis problems with a large number of elements and
connections between them, it is often necessary to adjust the
functioning parameters of operators.
This is associated with the following:

 getting the population into the local extremum;
 attenuation of the genetic algorithm;
 slow convergence.

Therefore, it is advisable to develop methods that can predict
and evaluate the state of the genetic algorithm directly in the
course of operation.

2. MATERIALS AND METHODS
The use of artificial neural networks that have well proved
themselves in solving problems of forecasting, management,
and analysis is proposed in this work as the main tool.

3. RESULTS
Let consider in more detail the use and application of the
genetic algorithm [1].

The genetic algorithm can be represented as a tuple of
operators:

GA = <SEL, CROSS, MUT, RED>,

where SEL is the selective operator; CROSS is the crossover
operator; MUT is the mutation operator, and RED is the
reduction operator.

Application of Artificial Neural Networks in Genetic Algorithm
Control Problems

David Aregovich Petrosov1, Roman Alexandrovich Vashchenko2, Alexey Alexandrovich Stepovoi3, Natalya

Vladimirovna Petrosova4

1Financial University under the Government of the Russian Federation, Russia
2Belgorod State Technological University named after V.G. Shukhov, Russia
3Belgorod State Technological University named after V.G. Shukhov, Russia

4Belgorod state agricultural university named after V. Gorin, Russia

 ISSN 2347 - 3983

Volume 8, No. 1 January 2020
International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter24812020.pdf

https://doi.org/10.30534/ijeter/2020/24812020

David Aregovich Petrosov et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 177 - 181

178

Each tuple element is represented as a set of possible
functioning parameters:

SEL={Pseli}i =1M,

where Psel is the i-th parameter of the selective operator
functioning (roulette, tournament, etc.). For example, Psel1 is
the tournament selection; Psel2 is the roulette selection.

CROSS = {Pcrossj)j = 1

L,

where Pcrossj is the j-th functioning parameter of the
crossover operator (single-point, two-point, etc.). For
example, Pcross1 is the single-point crossing; Pcross2 is the
two-point crossing; Pcross3 is the multipoint crossing.

MUT= {Pmutf}f= 1

K,

where Pmutf is the f-th functioning parameter of the mutation
operator (different probabilities of the operator triggering).
For example, Pmut1 is the probability of mutation 0.1; Pmut2
is the probability of mutation 0.3; Pmut3 is the probability of
mutation 0.5.

RED={Predo}o = 1r,

where Predo is the o-th functioning parameter of the
reduction operator (depends on the approach to the number
and quality of individuals left in the generation by the
objective function value). For example, Pred1 is the number
of individuals in the generation of 50% according to the best
value of the objective function; Pred2 is the number of
individuals in the generation of 40% according to the best
value of the objective function; Pred3 is the number of

individuals in the generation of 60% according to the best
value of the objective function.

Thus, when solving the problem of structurally parametric
synthesis of large discrete systems, the genetic algorithm
with the functioning parameters of operators can be
presented in the following form:

GA = Pseli, Pcrossj, Pmutf Predo .

In problems of structural and parametric synthesis of large
discrete system models it is possible to modify the element
base or elements’ operating parameters, while, as practice
shows, the parameters of the genetic algorithm operators will
require adjustment because the decay quickens. The problem
arises to control the genetic algorithm directly in the course
of finding solutions, i.e. changing the parameters of its
operators that will increase the performance speed of the
intelligent decision support system and improve the quality
of decision synthesis.

In this case, it is proposed to consider the parameters of the
operators in terms of their destructiveness, since each
operator performs a change in the binary string, destroying it
relative to the original state. When showing signs of
attenuation, it is advisable to increase the destructive ability
of operators, thereby obtaining greater number of individuals
with new qualities.
Figure 1 shows an example of the attenuation of the genetic
algorithm when solving the problem of structural-parametric
synthesis of a large discrete system with the dimension of
18x18 (based on the memory element base: RS, D and T
triggers [2]) with the following parameters:

GA = <Psel1 Pcross1, Pmut1 Pred2>.

Figure 1: Example of attenuation of the genetic algorithm of discrete systems

David Aregovich Petrosov et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 177 - 181

179

When processing 140 generations, damping was formed, at
which the minimum value of the objective function did not
change for several generations, and the number of
individuals with this function value increased. Without using
a neural network, the algorithm processed 300 generations
and found no solutions.

In this regard, it is proposed to use artificial neural networks
to solve the problem of the genetic algorithm control.

The technology of the joint use of genetic algorithms and
neural networks is very popular in various scientific studies.
Genetic algorithms are used to search for the structure and
training of neural networks, as well as to search for neural
networks to work inside the genetic algorithm. The first
approach is more common. The present article considers just
the application of the second approach – the use of neural
networks to configure the genetic algorithm [3].

The first step is to choose the neural network structure. There
are two classes of the most frequently used neural network
structures [4]. These are neural networks without feedback,
so-called networks with unidirectional signal propagation,
and neural networks that have feedback (recurrent neural
networks). For the problem to be solved, it was found
experimentally that the use of recurrent neural networks in
comparison with direct propagation networks did not lead to
a significant increase in its accuracy. To analyze the change
in the fitness function, fifty of its last values were selected.
Accordingly, the number of inputs to the neural network was
also equal to fifty. Therefore, a multilayer direct distribution
network with one hidden layer and an output layer was
chosen (Fig. 2). The number of neurons in the output layer
was the same as the number of output parameters.

The training was performed using the Levenberg–Marquardt
algorithm. Each neural network output corresponds to the
number of operators of the genetic algorithm [5].

Figure 2: Neural network structure

After determining the overall structure of the network, it is
necessary to select the number of neurons in the hidden
layer. On the one hand, too few hidden neurons lead to
insufficient accuracy of the model. On the other hand, too
many neurons can lead to low generalization ability, when
the model produces good results on the examples included in
the training sample, but almost does not work on other
examples. To select a rational number of neurons in the
hidden layer, several neural networks with the number of
neurons in the hidden layer from 2 to 200 were tested.

Due to the fact that the training results are greatly influenced
by the selection of the initial values of the network weights,
and random selection of the initial values of the weights is
used (due to the lack of a universal method to select
weights), each of the neural networks was trained and tested
25 times. The best one was selected among all tested
networks, providing the least error. At that, the fitness
function value was chosen as an accuracy indicator.

Figure 3 shows the neural network accuracy depending on
the number of neurons in the hidden layer obtained using the
training data and the supporting set.

As is seen from the graph below (Fig. 3), the error on the
sample used for training decreases as the number of neurons
in the hidden layer increases, while error on the data not
involved in training increases.

The network showing the minimum error calculated as the
average between the error on the new and training data was
chosen as the best one. This fact indicates the high
generalizing ability of the chosen network. Such a result was
shown by a neural network with 19 neurons in the hidden
layer.

To assess the feasibility of using artificial neural networks, a
computational experiment was conducted using genetic
algorithm models based on nested Petri nets [6; 7].

Figure 3: Dependence of neural network accuracy on the

number of neurons in the hidden layer.

David Aregovich Petrosov et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 177 - 181

180

In the course of the experiment, the neural network
recognized the attenuation of the genetic algorithm on the
180th generation, and performed changes in the operation
parameters:

GA = <Psel1 Pcross2, Pmut2, Pred3>.

This change led to the finding of a solution in the 270th
generation and the convergence of the genetic algorithm
(Fig. 4).

Figure 4: Convergence of the genetic algorithm after controlling the artificial neural network

4. DISCUSSION
Thus, it can be concluded that changing the operating
parameters of the genetic algorithm in the course of
searching for solutions can lead to an exit from the state of
decay, and contributes to its convergence. In general, this
approach cannot only recognize the attenuation of the genetic
algorithm but also helps to reduce the time of finding
solutions. To do this, it is necessary to study all possible
conditions of the genetic algorithm in which changing the
operating parameters can have a positive effect, as well as
determine these parameters, perform their visualization, and
train an artificial neural network.

5. CONCLUSION
The neural network approach in the genetic algorithm control
problems is a promising research line in the field of artificial
intelligence. In the framework of the present research, it is
advisable to perform simulation of an artificial neural
network using the mathematical apparatus of Petri nets that
will allow combining the genetic algorithm model based on
nested Petri nets and the artificial neural network model. Due
to the property of parallelism, which is peculiar to
evolutionary methods and Petri net theory, it is possible to
use the GPGPU technology when conducting software
implementation of an intelligent information system.

ACKNOWLEDGMENTS
The work was supported by the grant of the Russian
Foundation for Basic Research No. 18-07-00634-A.

REFERENCES
1. A.N. Orlov, V.V. Kureychik, A.E. Glushchenko.

Kombinirovannyj geneticheskij algoritm resheniya
zadachi raskroya [A combined genetic algorithm for
solving the cutting problem]. Bulletin of the South
Federal University. Technical sciences, 6(179), pp. 5-13,
2016.

2. D.A. Petrosov, V.A. Lomazov, A.I. Dobrunova, S.L.
Matorin, V.I. Lomazova. Evolutionary synthesis of large
discrete systems with dynamic structure. Biosciences
Biotechnology Research Asia, 12(3), pp. 2971-2981,
2015.
https://doi.org/10.13005/bbra/1981

3. V.G. Manzhula, D.S. Fedyashov. Nejronnye seti
Kohonena i nechetkie nejronnye seti v intellektual'nom
analize dannyh [Kohonen neural networks and fuzzy
neural networks in database mining]. Fundamental
Research, 4, pp. 108-114, 2011.

4. S.O. Haykin. Neural networks: A complete course, p.
1104, 2006.

5. D.A. Petrosov, V.A. Lomazov, V.I. Lomazova, A.V.
Glushak. Applications of parallel computations in the
problems of structural-parametric synthesis of discrete
systems based on evolution methods. Journal of
Advanced Research in Dynamical and Control Systems,
10(10), Special Issue, pp. 1840-1846, 2018.

6. D.A. Petrosov, V.A. Lomazov, A.L. Mironov, S.V.
Klyuev, K.A. Muravyov, F.M. Vasilieva. Intellectual

David Aregovich Petrosov et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 177 - 181

181

structural-parametric synthesis of large discrete systems
with a specified behavior. Journal of Engineering and
Applied Sciences, 13(8), pp. 2177-2182, 2018.

7. D.A. Petrosov, V.A. Lomazov, A.I. Dobrunova, S.I.
Matorin, V.I. Lomazova. Large discrete systems
evolutionary synthesis procedure. Biosciences
Biotechnology Research Asia, 12(2), pp. 1767-1775,
2015. https://doi.org/10.13005/bbra/1841

