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ABSTRACT 
 
In contemporary intelligent decision support systems, there is 
still a problem associated with increasing the performance 
speed of the structural-parametric synthesis of large discrete 
systems with a given behavior based on genetic algorithms. 
Currently, there are two main research areas that are 
designed for mathematical or hardware performance speed 
improvement. One way to improve hardware performance 
speed is the use of parallel computing, which includes 
general-purpose computing on graphics processing units 
(GPGPU). This article deals with the possibility of 
improving the performance speed of intelligent systems 
using the mathematical tool of artificial neural networks by 
introducing a control module of the genetic algorithm 
directly when performing the synthesis of solutions. Control 
of the structural-parametric synthesis process is achieved by 
predicting and evaluating the state of the genetic algorithm 
(convergence, attenuation, finding the population in local 
extremes) using artificial neural networks. This allows 
changing the operating parameters directly in the course of 
decision synthesis, changing their destructive ability relative 
to the binary string, which leads to a change in the trajectory 
of the population in the decision space, and as a result, 
should help to improve the performance speed of intelligent 
decision support systems. 
 
Key words: genetic algorithm, intelligent information 
systems, artificial neural networks, system analysis. 
 
1. INTRODUCTION 
Contemporary intelligent decision support systems based on 
evolutionary procedures in the synthesis of the structural and 
parametric problem of large discrete systems with a given 
behavior need to improve performance speed. 
 
In the structural-parametric synthesis of a large discrete 
system with a given behavior, the number of elements and 
parameters of their functioning is so large that the solution of 
this problem by iteration is impossible even with the use of 
contemporary computing systems. Therefore, it is advisable 
to use directional search methods. The range of such 
methods is quite wide and includes the following algorithms: 

 
 genetic algorithms; 
 simulated annealing method; 
 set of algorithms based on the ant colony method; 
 rough random search (Monte Carlo method); 
 binary search algorithm; 
 algorithm with a return at a failed step; 
 algorithm with recalculation at a failed step; 
 search with bans. 
 
Genetic algorithms have proven themselves well in the field 
of structural-parametric synthesis, but when solving 
synthesis problems with a large number of elements and 
connections between them, it is often necessary to adjust the 
functioning parameters of operators.  
This is associated with the following: 
 
 getting the population into the local extremum; 
 attenuation of the genetic algorithm; 
 slow convergence. 
 
Therefore, it is advisable to develop methods that can predict 
and evaluate the state of the genetic algorithm directly in the 
course of operation. 
 
2. MATERIALS AND METHODS 
The use of artificial neural networks that have well proved 
themselves in solving problems of forecasting, management, 
and analysis is proposed in this work as the main tool. 
 
3. RESULTS 
Let consider in more detail the use and application of the 
genetic algorithm [1]. 
 
The genetic algorithm can be represented as a tuple of 
operators: 
 
GA = <SEL, CROSS, MUT, RED>, 
 
where SEL is the selective operator; CROSS is the crossover 
operator; MUT is the mutation operator, and RED is the 
reduction operator. 
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Each tuple element is represented as a set of possible 
functioning parameters: 
 
SEL={Pseli}i =1M, 
 
where Psel is the i-th parameter of the selective operator 
functioning (roulette, tournament, etc.). For example, Psel1 is 
the tournament selection; Psel2 is the roulette selection. 
 
CROSS = {Pcrossj)j = 1

L, 
 
where Pcrossj is the j-th functioning parameter of the 
crossover operator (single-point, two-point, etc.). For 
example, Pcross1 is the single-point crossing; Pcross2 is the 
two-point crossing; Pcross3 is the multipoint crossing. 
 
MUT= {Pmutf}f= 1

K, 
 
where Pmutf is the f-th functioning parameter of the mutation 
operator (different probabilities of the operator triggering). 
For example, Pmut1 is the probability of mutation 0.1; Pmut2 
is the probability of mutation 0.3; Pmut3 is the probability of 
mutation 0.5. 
 
RED={Predo}o = 1r, 
 
where Predo is the o-th functioning parameter of the 
reduction operator (depends on the approach to the number 
and quality of individuals left in the generation by the 
objective function value). For example, Pred1 is the number 
of individuals in the generation of 50% according to the best 
value of the objective function; Pred2 is the number of 
individuals in the generation of 40% according to the best 
value of the objective function; Pred3 is the number of 

individuals in the generation of 60% according to the best 
value of the objective function. 
 
Thus, when solving the problem of structurally parametric 
synthesis of large discrete systems, the genetic algorithm 
with the functioning parameters of operators can be 
presented in the following form: 
 
GA = Pseli, Pcrossj, Pmutf Predo . 
 
In problems of structural and parametric synthesis of large 
discrete system models it is possible to modify the element 
base or elements’ operating parameters, while, as practice 
shows, the parameters of the genetic algorithm operators will 
require adjustment because the decay quickens. The problem 
arises to control the genetic algorithm directly in the course 
of finding solutions, i.e. changing the parameters of its 
operators that will increase the performance speed of the 
intelligent decision support system and improve the quality 
of decision synthesis. 
 
In this case, it is proposed to consider the parameters of the 
operators in terms of their destructiveness, since each 
operator performs a change in the binary string, destroying it 
relative to the original state. When showing signs of 
attenuation, it is advisable to increase the destructive ability 
of operators, thereby obtaining greater number of individuals 
with new qualities. 
Figure 1 shows an example of the attenuation of the genetic 
algorithm when solving the problem of structural-parametric 
synthesis of a large discrete system with the dimension of 
18x18 (based on the memory element base: RS, D and T 
triggers [2]) with the following parameters: 
 
GA = <Psel1 Pcross1, Pmut1 Pred2>. 

 
Figure 1: Example of attenuation of the genetic algorithm of discrete systems 
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When processing 140 generations, damping was formed, at 
which the minimum value of the objective function did not 
change for several generations, and the number of 
individuals with this function value increased. Without using 
a neural network, the algorithm processed 300 generations 
and found no solutions. 
 
In this regard, it is proposed to use artificial neural networks 
to solve the problem of the genetic algorithm control. 
 
The technology of the joint use of genetic algorithms and 
neural networks is very popular in various scientific studies. 
Genetic algorithms are used to search for the structure and 
training of neural networks, as well as to search for neural 
networks to work inside the genetic algorithm. The first 
approach is more common. The present article considers just 
the application of the second approach – the use of neural 
networks to configure the genetic algorithm [3]. 
 

The first step is to choose the neural network structure. There 
are two classes of the most frequently used neural network 
structures [4]. These are neural networks without feedback, 
so-called networks with unidirectional signal propagation, 
and neural networks that have feedback (recurrent neural 
networks). For the problem to be solved, it was found 
experimentally that the use of recurrent neural networks in 
comparison with direct propagation networks did not lead to 
a significant increase in its accuracy. To analyze the change 
in the fitness function, fifty of its last values were selected. 
Accordingly, the number of inputs to the neural network was 
also equal to fifty. Therefore, a multilayer direct distribution 
network with one hidden layer and an output layer was 
chosen (Fig. 2). The number of neurons in the output layer 
was the same as the number of output parameters.  
 
The training was performed using the Levenberg–Marquardt 
algorithm. Each neural network output corresponds to the 
number of operators of the genetic algorithm [5]. 

 

 
Figure 2: Neural network structure 

 
After determining the overall structure of the network, it is 
necessary to select the number of neurons in the hidden 
layer. On the one hand, too few hidden neurons lead to 
insufficient accuracy of the model. On the other hand, too 
many neurons can lead to low generalization ability, when 
the model produces good results on the examples included in 
the training sample, but almost does not work on other 
examples. To select a rational number of neurons in the 
hidden layer, several neural networks with the number of 
neurons in the hidden layer from 2 to 200 were tested. 
 
Due to the fact that the training results are greatly influenced 
by the selection of the initial values of the network weights, 
and random selection of the initial values of the weights is 
used (due to the lack of a universal method to select 
weights), each of the neural networks was trained and tested 
25 times. The best one was selected among all tested 
networks, providing the least error. At that, the fitness 
function value was chosen as an accuracy indicator. 
 
Figure 3 shows the neural network accuracy depending on 
the number of neurons in the hidden layer obtained using the 
training data and the supporting set. 
 
As is seen from the graph below (Fig. 3), the error on the 
sample used for training decreases as the number of neurons 
in the hidden layer increases, while error on the data not 
involved in training increases. 

The network showing the minimum error calculated as the 
average between the error on the new and training data was 
chosen as the best one. This fact indicates the high 
generalizing ability of the chosen network. Such a result was 
shown by a neural network with 19 neurons in the hidden 
layer. 
 
To assess the feasibility of using artificial neural networks, a 
computational experiment was conducted using genetic 
algorithm models based on nested Petri nets [6; 7]. 

 
Figure 3: Dependence of neural network accuracy on the 

number of neurons in the hidden layer. 
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In the course of the experiment, the neural network 
recognized the attenuation of the genetic algorithm on the 
180th generation, and performed changes in the operation 
parameters: 
 

GA = <Psel1 Pcross2, Pmut2, Pred3>. 
 
This change led to the finding of a solution in the 270th 
generation and the convergence of the genetic algorithm 
(Fig. 4).

 
Figure 4: Convergence of the genetic algorithm after controlling the artificial neural network 

 
4. DISCUSSION 
Thus, it can be concluded that changing the operating 
parameters of the genetic algorithm in the course of 
searching for solutions can lead to an exit from the state of 
decay, and contributes to its convergence. In general, this 
approach cannot only recognize the attenuation of the genetic 
algorithm but also helps to reduce the time of finding 
solutions. To do this, it is necessary to study all possible 
conditions of the genetic algorithm in which changing the 
operating parameters can have a positive effect, as well as 
determine these parameters, perform their visualization, and 
train an artificial neural network. 
 
5. CONCLUSION 
The neural network approach in the genetic algorithm control 
problems is a promising research line in the field of artificial 
intelligence. In the framework of the present research, it is 
advisable to perform simulation of an artificial neural 
network using the mathematical apparatus of Petri nets that 
will allow combining the genetic algorithm model based on 
nested Petri nets and the artificial neural network model. Due 
to the property of parallelism, which is peculiar to 
evolutionary methods and Petri net theory, it is possible to 
use the GPGPU technology when conducting software 
implementation of an intelligent information system. 
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