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ABSTRACT 
 
Distributed data mining is attracting researchers due to the 
globalisation and increase in the distributed databases. Very 
little work has been done in this area. Algorithms which are 
available, mostly first partition the database, distribute them 
amongst different sites  for parallel processing. In the real life 
scenario data generated at different sites are not under control 
of centralised database and the numbers of transactions at each 
site are highly varied. Due to this some sites are heavily loaded 
and some sites are comparatively free. A novel approach, size 
based assignment, is proposed in this paper which takes care of 
the database size available at each site while distributing the 
load for finding the global frequent itemsets. It also reduces the 
communication load by pruning and no-broadcasting 
techniques. The algorithm is compared with similar algorithms 
on execution time. Results show that the new technique 
performed best amongst them in time execution.  
 
Key words: Association Rule, Database, Distributed Mining, 
Frequent itemset, Partition. 
 
1. INTRODUCTION 
 
 Association rule mining means finding interesting 
association, correlations and frequent patterns amongst a large 
number of items or objects that are contained in a transaction 
database, relational database or some other kind of data 
repository. It helps in decision making process for business 
purpose like in supermarkets for catalogue design, basket data 
analysis etc. Various algorithms have been proposed to find the 
frequent itemsets. Association rule mining was first introduced 
by R.Agrawal in 1993 [1]. After that a lot of research has been 
done in this area and new approaches and algorithms have been 
proposed.  
 
 Huge amount of data is generated by different organisations 
at various locations which varies in number of transactions. 
Size of data is increasing and the parallel frequent mining 
algorithms are not fit for that, rather algorithm which considers 
the number of transactions at each site to distribute the work 
load are required for optimum use of the computational 
capabilities available at each site.  Some Distributed 
Association Rule Mining algorithms(DRAM)  [2] are proposed 

in the literature. In DARM,  data is stored at different sites, 
parallel processing is used to improve the efficiency. It finds 
local frequent itemsets at various sites, communicates with all 
other sites for finding the global frequent itemsets. There are 
some popular distributed mining algorithms like AprTidRec 
[1],“Fast Distributed Mining of Association Rules (FDM)” 
[2],“Optimized Distributed Association Rule Mining (ODAM)” 
[3] etc.The size of data has impacton the execution time[4]. 
Various DARM algorithms are proposed which use different 
data structures proposed for better performance. Some popular 
data structures are FP-tree introduced by FP-Growth [5]; 
Nodesets, an efficient data structure [6], a prearranged Trie 
[7]or radix,    or prefix tree  data structure.  
 
 The steps which are generally involved in the DARM are 
scanning database for finding Local frequent itemsets, storage, 
local pruning, sharing local counts, global pruning, finding 
Association rule etc. The DARM algorithms work on these 
problems for the improvement of the time performance. An 
efficient technique is presented for the frequent itemset mining 
considering the number of transitions at each site for load 
balancing. It uses best techniques for reducing the load on the 
network by reducing candidate sets and no-broadcasting 
technique along with a new Size Based Assignment (SBA) 
technique for polling site assignment for utilizing the under-
utilised resources in a better way. It takes the advantage of 
local efficiency, load smoothing on unbalanced  data and 
reduced communication cost in finding association rules in 
place of processing on a centralized node. 
 
 Rest of the paper has 5sections. Section2explores the 
literature. Section 3 explains the methodologies used and 
explains the size based assignment technique in detail .In 
section 4 new algorithm Size Based Distributed Association 
Rule Mining (SBDARM) is presented. Results are analysed 
and discussed in section 5. Lastly the work is concluded and 
future scope of the work is discussed in section 6. 
 
2.  RELATED WORK  
 
 Many surveys for finding association rules have been 
conducted [8], [9].Association rule mining is popular field of 
research [10],cited over22000 times as per google scholar.  
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The apriori based algorithms are of “anti-monotone property” 
[11]. This is widely used in finding the association rules. These 
algorithms use an approach to create and test candidate sets [1].  
AprioriTID and AprioriHybrid [1]are two variations of apriori 
in literature. AprioriTID [1] uses the database once only for 
finding the frequency of the items. AprioriHybrid [1]uses both 
Apriori initially and AprioriTID at the end.[5] proposed FP-
Growth, a tree structure  which is created after database scan 
for mining frequent itemsets.  
 Algorithm FIN, “Fast mining frequent itemset” [6]uses 
Nodesets data structure. This structure uses PPC-Treeto store 
information of node. It generates the structure based 
onpostorder or preorder of the node. DFIN [12] algorithm 
suggested a new structure diffnodesets which is based on 
nodeset.“DT-DPM (Decomposition Transaction for Distributed 
Pattern Mining)”[13]framework is proposed by researcher. It 
integrates “Density-Based Spatial Clustering of Applications 
and distributed computing represented, CPU multi-cores and 
Single CPU for solving pattern mining problems”. Performance 
of any algorithm [14]is also effected by the number of nodes in 
the distributed data system. With the increase of the 
transactions or nodes, the performance improves. Execution 
time increases when the number of nodesincreases but number 
of transactions reduces[15]. FDM algorithm performance 
improves when optimised with FP-Growth and  DiffSet-
mining. 
 
2.1.Distributed Data Mining Algorithms 
 
 A parallel algorithm that runs on a distributed database with 
uniform capabilities at different sites requires to divide the 
workload equally for best load [16].Count Distribution (CD) 
[17] is a simple algorithm where data is parallelized and apriori 
algorithm runs parallel where local support count is found for 
each itemset and then communicated to each other site and 
hence the global frequent itemsets are found by all the sites. 
AprTidRec, an algorithm based on apriori algorithm was 
proposed in 2011 [11]. It is different from apriori because it 
deploy only the joint step but no pruning step. It creates a 
record structure called tidRec and has lesser execution time 
than apriori algorithm.  FDM [2]mainly uses apriori and CD 
algorithms. This finds the locally large itemsets, which are sent 
to the assigned polling sites and then the global counts are 
found to finally find global frequent itemsets. The total support 
count message exchange is just O(n).  
 
 DMA [18] is another algorithm for distributed association 
rule mining, which generates a small candidate sets and  O(n) 
messages are exchanged for n  sites in a distributed database. 
ODAM (Optimized Distributed Association Rule Mining) 
algorithm for distributed data association rule mining proposed 
by [3]. After discovering the global frequent-1 itemsets, it 
removes the infrequent ones and inserts the transactions and 
their count in a temporary file which is then used to find the 
frequent itemsets of larger lengths. [19] proposed PFIN 
algorithm for mining frequent itemsets using nodeset structure. 
It breaks the large problem into sub-problems, executed in 
parallel. Using the map-reduce approach also, many algorithms 
can be processed in distributed environment, like the 

MRPrepost [20] algorithm gives the processing of prepost 
algorithm on the Hadoop platform. Nadar proposed  nagFIN 
algorithm using new nagNodeset [21] data structure which is 
based on the nodes in the prefix tree. There are some negative 
association [22]  in data which are also interesting and useful. 
[23] proposed algorithm based on “optimized matrix 
computation for Multi party data computation”which has some 
challenges. Applications of association rule mining [24] in 
Large and Dispersed database are businesses, defence, public 
safety, GIS, medical diagnosis, Hospital etc. As the data is 
updated on regular basis and bringing all at one place is not 
feasible and time consuming and mining data  must be up-to-
date[25] otherwise it affects the decisions. Distributed data 
mining also helps [26] in maintaining privacy, reducing 
transmission cost, and sharing resources like memory.  
 
3.  METHEDOLOGY  
 
3.1. Distributed Association Rule Mining  
 
 This research focuses on DARM, where data is not 
distributed rather generated in distributed manner at different 
sites and number of transaction varies.  FDM is one of the 
popular DARM where Apriori algorithm generates the local 
frequent itemsets at each site. In this work, the proposed 
algorithm uses some of the properties of FDM along with some 
other proposed techniques to find the association rule in the 
distributed data. New techniques of no-broadcasting and size 
based assignment of polling site are proposed for reduction of 
communication overload and load balancing amongst the sites. 
The problem statement [2] is as under: 
 
 Let DB be a database, containsܫ = {݅ଵ, ݅ଶ, … , ݅} set of 
items. T is a transaction of items whereܶ ⊆ Itemsetܼ .ܫ ⊆  ,ܫ
belongs to T only if ܼ ⊆ ܶ. An association rule(AR)is 
represented [2] as ⇒ ܻ, where,ܼ ⊆ ܻ	݀݊ܽ	ܫ ⊆ andܼ	ܫ ∩ ܻ =
ϕ.The ARܼ ⇒ ܻ	present  in the DB, with a confidence 
‘c’means the probability of a transaction containing Z also 
contains Y is ‘c’. The AR ܼ ⇒ ܻ	with support ‘s’ means that 
the probability of a transaction contains both Z and Y is ‘s’. 
The task here is to find all such ARs  with support greater than 
support threshold and confidence greater than minimum 
confidence threshold. 
 
 Z.sup isits support count for an itemset Z. If its support 
count of Z is not less than the minimum support threshold then 
Z is frequent. k-itemset is k sized itemset. The problem is AR 
mining [10] is: (i) “to find all frequent itemsets for the given 
minimum support threshold value”, and (ii) “to generate the 
association rules using the frequent itemsets”.The focus  of 
mining is on the development of some efficient method for the 
(i) [10]  as main cost is involved in (i).Distributed algorithm 
rule mining [2]is stated as : 
 
 To find the association rulesin a distributed databaseDB 
with D transactionsstored at n-sites ଵܵ,ܵଶ, … ,ܵwith different 
data partitions{ܤܦଵ,ܤܦଶ , …  is the size ofܦ	.}respectivelyܤܦ,
the data partitions ܤܦwherei = 1, 2, . . . , n. The support count 
is written as Z.sup, andܼ. ݑܵ  . For each siteܤܦ	݊݅ݐ݅ݐݎܽ	݊݅	
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ܵ, ܼ.ܵݑis the local support count of Z and Z. supis the global 
support count. Zis also globally large itemset if	ܼ. 	ݑݏ ≥ ×	ݏ	
	correspondingly, Zis locally large itemset at site ;ܦ	 ܵ, if 
	ܼ. 	ݑݏ ≥ ×	ݏ	  . LetL be the globally large itemset [2] inܦ	
the database, and ܮ()be the globally large k-sized itemsets.  
 
3.2. Candidate Set Pruning  
 
 Pruning of the candidate sets is done in order to reduce the 
size of the candidate sets for all k-itemsets where k=1…n[2] at 
each site. It is based on the assumption that if an itemset is not 
local frequent at-least at one of the sites, it can’t be global 
frequent. Pruning removes all such itemsets which are not 
locally large i.e. their support count is less than the required 
minimum support count. This helps in reducing the load on the 
communication channel by reducing the size of the candidate 
sets and improves the performance. 
 
3.3.No-Broadcasting Technique 
 
 Broadcasting of the local frequent itemsets to all sites is a 
heavy load on the communication network. No-broadcasting 
reduces the load on the network. All local frequent itemsets are 
sent to a dedicated site for assignment of polling site for 
finding the global frequent itemsets. There is no-broadcasting 
of the local frequent itemsets. Suppose there are 5 sites then all 
sites send frequent itemsets to other four sites means 5 x 4 = 20 
packets but in no-broadcasting all 5 sites send local frequent 
itemsets to one site only so 5 x 1 = 5 packets are being sent on 
the communication channel. With the increase of the number of 
sites there is a big reduction in the packets communicated over 
network in the no-broadcasting technique and the performance 
of the algorithm improves. 
 
3.4. SizeBased Assignment (SBA) Technique for Polling Site 
Assignment 
 
 In the distributed setup,data is generated or createdat 
different locations. The number of transactions at various sites 
differ [14] from a few hundred to millions of transactions.In 
this setup, resources at each site is also limited and are 
distributed. Data mining requires great amounts of resources 
[27] so technique for flexible distribution of  work load 
amongst sites needs to be developed. The sites with little 
number of transactions are less occupied as they require less 
memory, computational capabilities and time for maintaining 
data, scanning for frequent itemsets and maintaining candidate 
sets. In this paper a new technique SBA for polling site 
assignment is presented for the real distributed database 
considering the below assumptions. 
 
Assumptions: 
 Database is distributed around the globe 
 Data is gathered at different locations 
 Number of transactions at each site differ 
 No site is having data size more than the double of the 

average data size 
 

 Considering the above assumptions, new technique SBA  is 
proposed to assign the polling sites to the locally large itemsets 
received by a designated site. The poling site finds the globally 
large itemsets from the itemsets received. The novel technique  
takes care of the sites with the large data partitions and 
distribute load considering the number of transitions at each 
site and balance the load.   
 
Definition : Size Based Assignment Technique:  
For sites ܵ = 	 { ଵܵ, ܵଶ, … , ܵ} and candidate sets  
ଵܩܥ} ଶܩܥ, , …  .}sent by n sitesܩܥ,
Total Transactions ܶܶ = 	 { ଵܶ , ଶܶ, … , ܶ} 
For  size k-itemsets 
Average Transactions percent per site   ܶܣ = 			ଵ


 

 
Actual number of Transaction in percent at site 

ܲ ܵ			 = 	 ܶ
∑ ܶ

 100	ݔ	

Load difference at site in percent ܵ =∆		ݏ݅		 ܶܣ −	ܲ ܵ 
 
For all k-sized itemsets, complete candidate set 

ܩܥ = 	 ଵܩܥ} ଶܩܥ, , …  {ܩܥ,
 Complete Candidate sets received from all sites without = ′ܩܥ
any  duplicates 
′ܩܥ = 	 ଵܩܥ} 	∪ ଶܩܥ	 	∪ 	…∪  {ܩܥ	
 
Average candidate sets at each site in percent  

ܩܥܣ = 		
ᇱܩܥ

݊  
 
Arrange sites as per the partition size ܵ′ 
Local Frequent itemsets assigned to the polling site ܵ		݅ݏ	 =
ܩܥܣ	⌉	 + 		∆x		ܩܥ⌉ 
 
 After finding the average frequent itemsets to be allocated 
to each site, from sites ܵ′ arranged in the order of the number of 
transactions, the assignment of polling sites to the frequent 
itemsets is done in this order by assigning upper integer value 
of average candidate set plus load difference.  Assignment 
continues till the entire candidate set exhausted  This way the 
highly loaded sites are assigned nil or very little number of 
locally large itemsets for finding globally large itemsets. This 
technique assigns the load inversely proportional to the site 
load and hence balance the load of polling station. 
Let  there be five sites ଵܵ, ܵଶ, 	ܵଷ,	ܵସ,ܵହ having transactions 10% 
, 15%, 20%, 25% and 30% respectively. The candidate sets 
sent by 
sites ଵܵ{	1, 4, }, ܵଶ{2, 4	6, },
	ܵଷ{3, 8, 17, 16	}, 	ܵସ{12, 17, 1, 18	}, 	ܵହ{2, 8, 19,11}.	Applying 
SBA technique, the ordered candidate set is 
{1, 2, 3, 4, 6, 8, 11,12, 16, 17, 18,19	} with 12 locally large 
itemsets and ordered site set is { ଵܵ,ܵଶ, 	ܵଷ,	ܵସ,ܵହ} with average 
transactions 20% as there are 5 sites.  

 
The load difference at S1 is 10% so local frequent itemsets to 
be assigned to site S1 is  
ceiling integer  ቀଵଶ

ହ
+ ଵ

ଵ
x	12	ቁ = 4 i.e. { 1, 2, 3, 4} items 
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Similarly assignment to S2  is   
ceiling integerቀଵଶ

ହ
+ ହ

ଵ
x	12	ቁ = 3i.e. {6, 8, 11} items 

 
Assignment to S3 is 
ceiling integerቀଵଶ

ହ
+ 

ଵ
x	12	ቁ = 3i.e. {12, 16, 17} items 

 
Assignment to S4 is 
ceiling integerቀଵଶ

ହ
+ ିହ

ଵ
x	12	ቁ = 2.	i.e.{18, 19} items 

 
Assignment to S5 is Zeroitems as candidate list exhausts. 
 
 The sites with smalldata partition or with less number of 
transactions are not fully occupied. These sites have less 
processing scan and memory needs, as compared to the sites 
with more transactions. ProposedSBA technique assigns load 
inversely proportional to the site occupancy by considering the 
partition size  and balances the load. 
 
4.  SBDARM: THE PROPOSED ALGORITHM 
 
 This section discusses the Size Based Distributed 
Association Rule Mining (SBDARM) algorithm. It uses a 
novel technique of size based assignment (SBA) of polling site 
for finding globally large itemsets based on the data size 
available at each site. Globally large itemsets                                                                                                                                      
are found by sites which are less occupied hence increase the 
overall computational capabilities and improve the 
performance. It uses local as well as global pruning to reduce 
the candidate sets. There is no-broadcasting of candidate sets 
which further reduces the load on the communication network.  
 
Symbol Description [2] 
s –minimum Support;  
D -  Total transactions ;  
ܮ − Globally large k-itemsets;  
Z.sup - Global support count of Z;  
ܣܥ − Candidate sets size k;  
  ; -  transactions in partition ܵܦ
 ;()–globally large itemset size k at ܵܮܩ
  ;() - Candidate sets size k at site ܵܩܥ
  ;()ܩܥ () - Locally large size-kitemsets inܮܮ
ܼ. ݑݏ − Local support count of  ܼ	ܽݐ	 ܵ 
ܮ ܲ() – Local pruning k-itemset  at site ܵ 
 
Algorithm-1: Size Based Assignment Technique (SBA) 
Input: Locally large k-itemsets from each siteܩܥ and data size 
of all sites ࡿ(݅ = 1,2, …݊) 
Output: Assigned Polling sites list  
1. ݂݅	݇ =  ݏݐ݁ݏ݉݁ݐ݅	1
 ݁ݐ݅ݏ	݈݈ܽ ݎ݂ .2
 	ݏ݊݅ݐܿܽݏ݊ܽݎݐ	݂	ݎܾ݁݉ݑ݊	݁݃ܽݎ݁ݒܽ	ℎ݁ݐ	݂݀݊݅ .3

݁ܽܿℎ	݁ݐ݅ݏ	݊݅	݁݃ܽݐ݊݁ܿݎ݁	ܶܣ 
4. Compute	the	transaction	size	at	each	site		ܵ݅	 

ܲ	݁݃ܽݐ݊݁ܿݎ݁	݊݅ ܵ 
 ∆	ݐ݊݁ܿݎ݁	݊݅	݅ܵ		݊݅	݁ݐ݅ݏ	ݐܽ	݁ܿ݊݁ݎ݂݂݁݅݀	݀ܽܮ .5
 ݏݐ݁ݏ݉݁ݐ݅	݁݃ݎ݈ܽ	ݕ݈݈݈ܽܿ		݈݈ܽ ݎ݂ .6

 ()ܮܮ	ݏ݁ݐ݈ܽܿ݅ݑ݀	݃݊݅ݒ݉݁ݎ	ݎ݁݀ݎ	݊݅	݁݃݊ܽݎݎܽ .7
 	݁ݐ݅ݏ	ݎ݁	ݏݐ݁ݏ	݁ݐܽ݀݅݀݊ܽܿ	݁݃ܽݎ݁ݒܽ	ℎ݁ݐ	݁ݐݑ݉ܿ .8
 ܩܥܣ	݁݃ܽݐ݊݁ܿݎ݁	݊݅ .9
10. ݂  	ݏ݁ݐ݅ݏ	݈݈ܽ	ݎ
11. ݂  ݏ݁ݐܽ݀݅݀݊ܽܿ	݀݁ݎ݁݀ݎ	݈݈ܽ	ݎ
12. ܽ  ݐ݊݁݉݊݃݅ݏݏܽ	݀݁ݏܾܽ	݁ݖ݅ݏ	݊݅	݁ݐ݅ݏ	݈݈݃݊݅	ℎ݁ݐ	݊݃݅ݏݏ

 	݁ܿ݊݁ݎ݂݂݁݅݀	݈݀ܽ	ݏݑ݈	ݏݐ݁ݏ	ݏ݁ݐܽ݀݅݀݊ܽܿ	݁݃ܽݎ݁ݒܽ
 ݐ݊݁ܿݎ݁	݊݅

13. ܾ ݇	ݎ݂	ݐݏ݈݅	݁ݐ݅ݏ	݈݈݃݊݅	ℎ݁ݐ	ݐݏܽܿ݀ܽݎ −  ݏݐ݁ݏ	݁ݐܽ݀݅݀݊ܽܿ
 
Algorithm-2: Size Based Distributed Association Rule Mining 
(SBDARM) 
Input:  database ܤܦ(݅ = 1,2, … ݊) 
Output: Globally large itemsets.  
Method: Running algorithm for all k-itemsets for k=1..n, on  
all partitions  
 ݏ݁ݐ݅ݏ	݈݈ܽ ݎ݂ .1
݇	ݎ݂ .2 = 1	 
		ݐ݁ݏ݉݁ݐ݅	ݐ݊݁ݑݍ݁ݎ݂	݈݈ܽܿ	ℎ݁ݐ	݂݀݊݅ .3 ܶ(ଵ) 
	ݐ݊ݑܿ	ݐݎݑݏ	ℎ݁ݐ	݂݀݊݅ .4 ܶ(ଵ) 
݇	ݎ݂ .5 > 1 
݁ݖ݅ݏ	ℎ݁ݐ	݂݀݊݅	 .6 −  ݊݁݃݅ݎ݅ݎܽ	݊݅ݏݑ	ݐ݁ݏ݉݁ݐ݅	݇
 ݏݐ݁ݏ݉݁ݐ݅	ݐ݊݁ݑݍ݁ݎ݂ ݐ	ݏ݈ܾ݃݊݁	ܼ	ݏݐ݁ݏ݉݁ݐ݅ ݈݈ܽ	ݎ݂ .7

ܶ()݃݁݊݁݁ݐܽݎ	݈݈ܽܿ	݃݊݅݊ݑݎ	ݐݏ݈݅ 
  ℎ݁݊ݐ ݁݃ݎ݈ܽ	ݕ݈݈݈ܽܿ	ݏ݅	ݐ݊ݑܿ	ݐݎݑݏ ݂݅ .8
  	ݏ݁ݐ݅ݏ	݈݈ܽ	ݎ݂ .9
 ()ܮܮ 	ݐݏ݈݅	݁݃ݎ݈ܽ	ݕ݈݈݈ܽܿ	ݐ݊݅	ݐ݁ݏ݉݁ݐ݅	ݐݎ݁ݏ݊݅ .10
11. ݂  ݏ݁ݐ݅ݏ	݈݈ܽ	ݎ
12. ܿ  	݁ݖ݅ݏ	ܽݐܽ݀	݀݊ܽ()ܮܮ 	ݐݏ݈݅	݁݃ݎ݈ܽ	ݕ݈݈݈ܽܿ	݁ݐܽܿ݅݊ݑ݉݉

 ݁ݐ݅ݏ	݈݈݃݊݅	݂	ݐ݊݁݉݊݃݅ݏݏܽ	ݎ݂	݁ݐ݅ݏ	ݐ
 	ݏ݁ݐ݅ݏ	݈݈݃݊݅	݂	ݐݏ݈݅	ݐ݁݃	ܣܤܵ	݃݊݅ݏݑ .13
14. ݂ ,ݏ݁ݐ݅ݏ	݈݈ܽ ݎ   
 ܵ ݁ݐ݅ݏ	݈݈݃݊݅ ݐ ()ܮܮ	݁݃ݎ݈ܽ	ݕ݈݈݈ܽܿ ݀݊݁ݏ .15
16. ݂  ܲܮ	݃݊݅݊ݑݎ	݈݈ܽܿ	ݐ	݈ܾ݃݊݁	ܼ	ݏݐ݁ݏ݉݁ݐ݅ ݈݈ܽ	ݎ
 	ݏ݁ݐ݅ݏ	݈݈ܽ	ݐ	ܼ	ݐ݁ݏ݉݁ݐ݅	ݎ݂	ݐݏ݁ݑݍ݁ݎ	݈݈݃݊݅	݀݊݁ݏ .17
18. ܽ ൫		݉ݎ݂	ݐݏ݁ݑݍ݁ݎ	݈݈݃݊݅	ݕ݈݁ݎ	ݏ݁ݐ݅ݏ	݈݈ ܶ()൯ 
.ܼ	ݏݐ݊ݑܿ	ݐݎݑݏ	݀݊݁ݏ .19  ݑݏ
20. ݂   ()ܲܮ	ݐ݁ݏ	݈݈݃݊݅	ℎ݁ݐ	݊݅	ܼ	ݏݐ݁ݏ݉݁ݐ݅ ݈݈ܽ	ݎ
.ܼ	ݐ݊ݑܿ	ݐݎݑݏ ݁ݒ݅݁ܿ݁ݎ .21 ݑݏ  ݏ݁ݐ݅ݏ ݈݈ܽ ݉ݎ݂ 
22. ݂  																																												ݏݐ݁ݏ݉݁ݐ݅	ℎ݁ݐ	݈݈ܽ	ݎ
23. ܿ .ܼ	ݐݎݑݏ	݈ܾ݈ܽ݃	݁ݐ݈ܽݑ݈ܿܽ supܾݕ   

 ݁ݎℎ݁ݓ		ݐݎݑݏ	݈݈ܽܿ	݈݈ܽ	݂	ݑ݉ݑݏ
ݑܵ.ܼ	݂݅ >  ݈݀ℎݏ݁ݎℎݐ	ݐݎݑݏ	݈ܾ݈ܽ݃	ℎ݁ݐ

 ()ܩ	ݐ݁ݏ݉݁ݐ݅	ݐ݊݁ݑݍ݁ݎ݂	݈ܾ݈ܽ݃ݐ	݀݀ܣ .24
25. ܾ  ; ()ܩ	ݐ݁ݏ݉݁ݐ݅	ݐ݊݁ݑݍ݁ݎ݂	݈ܾ݈ܽ݃ ݐݏܽܿ݀ܽݎ
26. ݂݅(݇ =  ;(ܤܦ)ݐ݊݁ݑݍ݁ݎ݂݊݅_݁ݒ݉݁ݎ		(1
 ݏݐ݁ݏ݉݁ݐ݅	݁݃ݎ݈ܽ	ݕ݈݈ܾ݈ܽ݃	݈݈ܽ	݂	ݐ݁ݏ	݁ݐܽݎ݁݊݁ܩ .27
݇	݁݃ݎ݈ܽ	ݕ݈݈ܾ݈ܽ݃	݊ݎݑݐ݁ݎ .28 −  ()ܮ ݐ݁ݏ݉݁ݐ݅
 
The steps are discussed below: 
(i) Database ܤܦat all sites are scanned,  local frequent 

itemsets of size-1 are found.For k>1 locally large itemsets 
are found using apriorigen.  This generates locally large 
itemsets from all partitions and make candidate set ܩܥ(). 
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If ܩܥ() is empty, no generation and process stops. (line 1-
7) 

(ii) Local pruningis done to generate candidate sets,locally 
large k-itemsetsܮܮ()having the count greater than the 
minimum support threshold.(line 8-10) 

(iii) The locally large itemset ܮܮ()are communicated to the 
site which assigns the polling sites to the locally large 
itemsets. Size based assignment algorithm receives list of 
sites with number of transactions and locally large items 
communicated by each site. It communicates the polling 
sites for locally large k-sized itemsets ܮܮ()sites ܵ.(line 
11-13, call algorithm 1) 

(iv) All the sites ܵsend the local counts for the locally large 
items ܮܮ() to the polling sites assigned in the last step. 
Polling sites store all information about  the itemsets in 
ܮ ܲ() and Z.large_sites. (line 14-17) 

(v) Each Polling site receives counts, computes global counts 
for assigned locally large itemsetsܮܮ(). It generates the 
global large itemset, stores in ܩ() after removing the 
itemsets having counts less than the support threshold 
value. Then globally large itemsets are communicated to 
all sites. (line 18-25) 

(vi) All home site receives the global frequent itemsets, update 
and remove all infrequent 1-itemset. In the next pass home 
sites find the 2-itemset, i.e. locally large size k (k =2…n),  
repeat the process. Remove all infrequent k-itemsets..(line 
26-28) 

 
4.1 Efficiency at Each Site 
 
 There are n number of sites { ଵܵ,ܵଶ, … ,ܵ}and data is 
partitioned and stored, called distributed database DBi. Sites 
generate the local frequent k-itemset  (k= 1..n) using efficient 
algorithm. The polling sites are assigned on the basis of the 
partition size where site with less number of transactions are 
assigned more local frequent itemsets for finding global 
frequent itemsets and sites handling bigger partition size are 
assigned less workload considering the number of transactions 
at each site. Sites with small data size uses less memory, 
capabilities etc in handling the data, so less occupied and the 
same is taken care by the proposed algorithm. Size based 
assignment technique is developed which considers the load on 
each site while assigning the polling sites for finding the 
globally large itemsets.  Using the size based technique, it 
allocates less load to the sites have large data partition and 
more  load to less occupied sites with small data partition. The 
proposed technique is best for the unbalanced data partitions 
for the effective use of the resources and balancing the load for 
finding the globally large items using locally large items. This 
technique utilises all resources and as all the sites participate as 
per their availability so there is no extra load on a centralised or 
any other site in unbalanced way. This ensures a good amount 
of parallelism in the real distributed database where centralised 
database has no control on the partitions.  
 
 
 
 

4.2. Low Communication Overhead 
 
 The algorithm also takes care of the load on the 
communication channelby reducing the size of the candidate 
sets by pruning at each site. All the sites first find the frequent 
itemsets and then through pruning process remove the frequent 
itemsets having counts less than the required support counts to 
become eligible for communication and may not be globally 
frequent.  
 
 Let frequent 2-itemset at site3be{ad, eg, jg, ht }. After  
applying pruning process, removing not eligible itemsets whose 
support count is less than the minimum support 
thresholdi.e.{ad, jg}are removed. The reduced set {eg, ht } 
after pruning is communicated to the site for the  assignment of 
polling sites.The technique reduces the size of the candidates 
sets to half and reduces the communication overhead. The 
algorithm uses no-broadcasting technique where all sites send 
candidate sets to a polling assignment site in place of 
broadcasting it to all sites. If reduces the number of  candidate 
set communication to O(n) messages and hence there is less 
load on the communication network.  This technique is network 
efficient with reduced size of the data communicated. 
 
5.  RESULTS AND DISSCUSSION 
 
5.1. Running Environment 
 
 The setup used to perform the evaluation of the algorithms 
and comparing the same with the existing algorithms on 
various parameters is explained. Experiments are performed on 
the setup of five nodes or sites with windows 10 Operating 
systems,8 GB RAM, HDD 500 GB, 64 bit system with clock 
3.20 GHz loaded with JDK 1.7. 
 
Datasets: The algorithms are run on mushroom, connect, 
chessand T10I4D100K datasets. The datasets are available  for 
research on data mining on the FIMI data repository [28]. 
Mushroom dataset is created using attributes of species 
mushrooms, connect prepared based on UCI,chess is game 
situations and T10I4D100K is a synthetic database generated 
using the IBM Quest generator. The datasetsspecifications are 
given in Table 1.  

 
Table 1: Datasets and their specifications 

 

Dataset 
Total 
Trans. 

Number 
of Items 

Average 
Length Type 

File 
Size 

Mushroom 8124 119 23 Dense 570 KB 
Connect 67557 129 43 Dense 9.3 MB 
Chess 3196 75 37 Dense 342 KB 

T10I4D100K 1,00,000 1000 40 Sparse 4 MB 
 
 Data is partitioned and stored at five sites with varying size. 
Data partitions with size available on each site, based on 
number of transactions are shown in Table 2.  
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Table2:Partition size at different sites 
 

 
Partition 

Size Mushroom Connect Chess T10I4D100K 
DB1 10% 812 6756 320 10000 
DB2 15% 1219 10134 479 15000 
DB3 20% 1625 13511 639 20000 
DB4 25% 2031 16889 799 25000 
DB5 30% 2437 20267 959 30000 
Total 100% 8124 67557 3196 100000 

 
 

5.2.  Performance Analysis 
 
 The new proposed  algorithm SBDARM implemented and 
executed for execution performance comparison with some of 
the existing algorithms FDM and PFIN. The SBDARM 
algorithm effectively uses the resources at all the sites, reduces 
the local load and communication load. It gives best throughput 
by using pruning techniques for reducing candidate sets for 
communication along with the size based assignment 
technique. There is no-broadcasting of frequent itemsets by all 
the sites rather all sites communicate the frequent itemsets to 
one site for the assignment of the polling site. This reduces the 
number of messages and hence load on the communication 
network.  
 In the experiments, algorithms are compared on time of 
execution where sites have varying size of the data partitions 
shown in Table 2.In the first experiment all algorithms are 
executed on dataset mushroom with varying minimum support 
threshold values i.e. 10%, 20%, 30%, 40%, 50%, and 60%. 
Table 3 shows the local frequent 1-itemsets generated at each 
site on the mushroom datasets. Similarly in the second 
experiment these are run on connect dataset with same 
minimum support threshold 10%, to 60%. Third experiment is 
performed on chess dataset with 10%, 15%, 20%, 25%, 30%, 
35% minimum support threshold. Lastly on  T10I4D100K 
dataset with minimum support threshold 0.1%, 0.2%, 0.3%, 
0.4%, 0.5%, and 0.6%. The local frequent 1-temsets generated 
by the proposed algorithm at each site on connect, chess and 
T10I4D100K datasets are shown in Table 4, 5, and 6 
respectively. The data available at each site is different but 
frequent 1-itemsets generated are almost same and it reduces 
with the increase the support threshold. 

 
Table 3: Local frequent 1-itemsets generated at each partition on 

Mushroom dataset 
 
 

 ----- Support Count Threshold (%) ------- 
Partition 10 20 30 40 50 60 

DB1 50 34 26 21 16 14 
DB2 48 37 30 25 18 14 
DB3 39 37 26 23 17 15 
DB4 51 38 27 19 18 12 
DB5 44 41 31 22 19 14 

 
 
 
 
 

Table 4: Local frequent 1-itemsets generated at each partition on 
Connect dataset 

 
 ----- Support Count Threshold (%) ------ 

Partition 10 20 30 40 50 60 
DB1 66 57 46 43 39 38 
DB2 69 56 46 43 38 35 
DB3 69 54 47 42 40 38 
DB4 68 56 49 42 37 37 
DB5 70 56 46 43 40 36 

 
Table 5 : Local frequent 1-itemsets generated at each partition on 

Chess dataset 
 

 ----- Support Count Threshold (%) ----- 
Partition 10 15 20 25 30 35 

DB1 52 50 47 46 44 42 
DB2 52 50 48 46 42 41 
DB3 55 53 48 46 44 41 
DB4 61 58 58 53 50 43 
DB5 66 57 54 52 51 49 

 
Table 6 : Local frequent 1-itemsets generated at each partition on 

T10I4D100K dataset 
 

 ---- Support Count Threshold (%) ------ 
Partition 0.1 0.2 0.3 0.4 0.5 0.6 

DB1 789 736 682 621 560 515 
DB2 793 742 684 630 559 516 
DB3 798 740 689 633 563 520 
DB4 794 738 691 625 566 515 
DB5 794 743 690 628 561 516 

 The frequent itemsets are sent to one site only using no-
broadcast technique for the assignment of the polling sites. In 
the proposed algorithm the polling site assignment is done 
using size based assignment technique. Table 7-10  show that 
the local frequent 1-itemsets assignment of polling site for 
finding the global frequent itemsets by the SBDARM 
algorithm. The same process is repeated for k-itemsets for all 
k>1. This assignments balance the load on the sites as it 
allocates the load for finding the global frequent itemsets i.e. 
assignment of polling sites inversely proportional to the 
partition size on sites. In the other two algorithms the 
assignments are not based on the size of the partition rather 
using some hash function or random, count distribution. The 
assignment in FDM, PFIN increases the load on the already 
occupied site and load balancing is poor.  This size based 
assignment technique is effective in the distributed data 
environment with varied data size and it reduces the time of 
execution. 
Table 7 :  Pruning site assignment by SBDARM to local frequent 1-

itemsets on Mushroom dataset 
 ---- Support Count Threshold (%) ------ 

Partition 10 20 30 40 50 60 
DB1 18 14 10 9 6 6 
DB2 15 12 8 7 5 5 
DB3 12 9 7 6 4 4 
DB4 9 7 5 5 3 3 
DB5 5 3 2 0 2 0 
Total 59 45 32 27 20 17 

Globally 
Large 56 43 28 21 13 8 
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Table 8 :  Pruning site assignment by SBDARM to local frequent 1-
itemsets on Connect dataset 

 
 ------- Support Count Threshold (%) ------ 

Partition 10 20 30 40 50 60 
DB1 23 19 15 14 14 13 
DB2 19 16 13 12 11 11 
DB3 15 13 10 9 9 9 
DB4 12 10 8 7 7 7 
DB5 6 5 4 3 3 1 
Total 75 63 50 45 44 41 

Globally 
Large 73 59 46 41 38 36 

 
Table 9 :  Pruning site assignment by SBDARM to local frequent 1-

itemsets on Chess dataset 
 

 ------ Support Count Threshold (%) ------ 
Partition 10 15 20 25 30 35 

DB1 21 19 18 17 17 17 
DB2 17 16 15 14 14 14 
DB3 14 13 12 12 12 11 
DB4 11 10 9 9 9 9 
DB5 5 4 6 4 4 3 
Total 68 62 60 56 56 54 

Globally 
Large 61 57 54 51 50 45 

 
 
 
 

Table 10: Pruning Site assignment by SBDARM to local frequent 1-
itemsets on T10I4D100K dataset 

 
 --- Support Count Threshold (%) ---- 

Partition 0.1 0.2 0.3 0.4 0.5 0.6 
DB1 240 223 209 189 172 157 
DB2 200 186 174 158 143 131 
DB3 160 149 140 126 115 105 
DB4 120 112 105 95 86 79 
DB5 80 73 68 62 55 50 
Total 800 743 696 630 571 522 

Globally 
Large 796 740 691 628 568 516 

 
 Figures 1 - 4  show that the performance of the proposed 
algorithm on all datasets outperform the other two algorithms 
intime execution. The time performance of SBDARM is best as 
the load is balanced amongst the sites. The transactions at each 
site differ means the resource utilization also differs. The sites 
with more number of transactions takes more time for data 
scan, use more memory, and more processing. SBDARM 
utilises the load differencesas edge over other algorithms by 
assigningmore load to less loaded sites as compared to highly 
loaded sites. Some sites with less  number of transactions,are 
having less load of processing, data scan, generate less number 
of  candidate sets and are comparatively less occupied. This is 
the best load balancing at each site by the assignment of polling 
sites for finding global frequent itemset inversely proportional 
to the data partition size available at each site. The number of 
local frequent k-itemsets for k> 1,  are further reduced and the 
SBA algorithm further balance the load amongst the sites.  
 

 
 

Figure 1: Execution time on Mushroom dataset 
 

 With the increase of the support threshold less number of 
frequent itemsets are generated and execution time of all the 
algorithms also reduce. The performance of the proposed 
algorithm takes less time although the time difference reduces 
as number of global frequent itemsets also reduce. The 
difference in the performance is also due to the reduced 
communication load,  local pruning and no-broadcasting 
technique which reduces the load on the network and reduces 
the time delay. In Figure 4 dataset used is sparse so when value 
of k increases to 2,3,...n  the number of frequent itemsets 
generated reduce, therefore for low minimum support 
threshold, the execution time is not very high as compared to 
the execution time for the high minimum support threshold for 
all the algorithms. 
 

 
 

Figure 2: Execution time on Connect dataset 
 

 
 

Figure 3: Execution time on Chess dataset 
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Figure4: Execution time on T10I4D100K dataset 

 
 The analysis shows that the proposed algorithm SBDARM 
performs best in low and high minimum support threshold in 
all four comparisons with PFIN and FDM having varying 
partition sizes. It shows SBDARM outperforms other two 
algorithms with low minimum support threshold. It uses the 
advantages of the no-broadcasting by reducing communication 
and size based assignment reducing load on heavy loaded sites 
and pruning reducing candidate sets. 
6. CONCLUSIONS 
 
 New algorithm SBDARMis proposed for finding frequent 
itemsets in the distributed data where size of the partitions are 
varying in size. The proposed algorithm applies the technique 
of local pruning, no-broadcasting and size based assignment of 
the polling sites. The algorithm performance is evaluated on 
four datasets on the 5-node setup with varying minimum 
support threshold. The experiments are performed on the data 
partitions with varying number of transactions on each site. The 
performance of the algorithm is compared with the FDMand 
PFIN algorithm for distributed data mining.  
 
 Algorithm SBDARM outperforms other algorithms on the 
time of execution comparisons. The new size based assignment 
technique is effective in the distributed environment where data 
is generated at different sites and data is skewed. i.e. highly 
imbalanced in terms of number of transactions at each site.  It 
performs best as  the data skewness is not effecting the 
performance and is well adjusted. In addition to the reduction 
in candidate sets by pruning, the proposed no-broadcasting 
technique reduces the communication load and improve the 
execution time of the proposed algorithm.  
 
 In the future the research can be further extended for mining 
in larger setupwith more number of sites and large datasets. 
The resources and the capabilities available at each site can 
also be considered while allocating load to different sites for 
further improvement. 
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