

6765

Distributed Frequent Itemset Mining Using Size Based

Assignment Technique

Manoj Sethi1, Dr. Rajni Jindal2
1Department of CSE, Delhi Technological University, Bawana Road, Delhi-42, India, manojsethi@dce.ac.in
2Department of CSE, Delhi Technological University, Bawana Road, Delhi-42, India,rajnijindal@dce.ac.in

ABSTRACT

Distributed data mining is attracting researchers due to the
globalisation and increase in the distributed databases. Very
little work has been done in this area. Algorithms which are
available, mostly first partition the database, distribute them
amongst different sites for parallel processing. In the real life
scenario data generated at different sites are not under control
of centralised database and the numbers of transactions at each
site are highly varied. Due to this some sites are heavily loaded
and some sites are comparatively free. A novel approach, size
based assignment, is proposed in this paper which takes care of
the database size available at each site while distributing the
load for finding the global frequent itemsets. It also reduces the
communication load by pruning and no-broadcasting
techniques. The algorithm is compared with similar algorithms
on execution time. Results show that the new technique
performed best amongst them in time execution.

Key words: Association Rule, Database, Distributed Mining,
Frequent itemset, Partition.

1. INTRODUCTION

 Association rule mining means finding interesting
association, correlations and frequent patterns amongst a large
number of items or objects that are contained in a transaction
database, relational database or some other kind of data
repository. It helps in decision making process for business
purpose like in supermarkets for catalogue design, basket data
analysis etc. Various algorithms have been proposed to find the
frequent itemsets. Association rule mining was first introduced
by R.Agrawal in 1993 [1]. After that a lot of research has been
done in this area and new approaches and algorithms have been
proposed.

 Huge amount of data is generated by different organisations
at various locations which varies in number of transactions.
Size of data is increasing and the parallel frequent mining
algorithms are not fit for that, rather algorithm which considers
the number of transactions at each site to distribute the work
load are required for optimum use of the computational
capabilities available at each site. Some Distributed
Association Rule Mining algorithms(DRAM) [2] are proposed

in the literature. In DARM, data is stored at different sites,
parallel processing is used to improve the efficiency. It finds
local frequent itemsets at various sites, communicates with all
other sites for finding the global frequent itemsets. There are
some popular distributed mining algorithms like AprTidRec
[1],“Fast Distributed Mining of Association Rules (FDM)”
[2],“Optimized Distributed Association Rule Mining (ODAM)”
[3] etc.The size of data has impacton the execution time[4].
Various DARM algorithms are proposed which use different
data structures proposed for better performance. Some popular
data structures are FP-tree introduced by FP-Growth [5];
Nodesets, an efficient data structure [6], a prearranged Trie
[7]or radix, or prefix tree data structure.

 The steps which are generally involved in the DARM are
scanning database for finding Local frequent itemsets, storage,
local pruning, sharing local counts, global pruning, finding
Association rule etc. The DARM algorithms work on these
problems for the improvement of the time performance. An
efficient technique is presented for the frequent itemset mining
considering the number of transitions at each site for load
balancing. It uses best techniques for reducing the load on the
network by reducing candidate sets and no-broadcasting
technique along with a new Size Based Assignment (SBA)
technique for polling site assignment for utilizing the under-
utilised resources in a better way. It takes the advantage of
local efficiency, load smoothing on unbalanced data and
reduced communication cost in finding association rules in
place of processing on a centralized node.

 Rest of the paper has 5sections. Section2explores the
literature. Section 3 explains the methodologies used and
explains the size based assignment technique in detail .In
section 4 new algorithm Size Based Distributed Association
Rule Mining (SBDARM) is presented. Results are analysed
and discussed in section 5. Lastly the work is concluded and
future scope of the work is discussed in section 6.

2. RELATED WORK

 Many surveys for finding association rules have been
conducted [8], [9].Association rule mining is popular field of
research [10],cited over22000 times as per google scholar.

 ISSN 2347 - 3983
Volume 8. No. 10, October 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter248102020.pdf

https://doi.org/10.30534/ijeter/2020/248102020

Manoj Sethi et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6765 – 6773

6766

The apriori based algorithms are of “anti-monotone property”
[11]. This is widely used in finding the association rules. These
algorithms use an approach to create and test candidate sets [1].
AprioriTID and AprioriHybrid [1]are two variations of apriori
in literature. AprioriTID [1] uses the database once only for
finding the frequency of the items. AprioriHybrid [1]uses both
Apriori initially and AprioriTID at the end.[5] proposed FP-
Growth, a tree structure which is created after database scan
for mining frequent itemsets.
 Algorithm FIN, “Fast mining frequent itemset” [6]uses
Nodesets data structure. This structure uses PPC-Treeto store
information of node. It generates the structure based
onpostorder or preorder of the node. DFIN [12] algorithm
suggested a new structure diffnodesets which is based on
nodeset.“DT-DPM (Decomposition Transaction for Distributed
Pattern Mining)”[13]framework is proposed by researcher. It
integrates “Density-Based Spatial Clustering of Applications
and distributed computing represented, CPU multi-cores and
Single CPU for solving pattern mining problems”. Performance
of any algorithm [14]is also effected by the number of nodes in
the distributed data system. With the increase of the
transactions or nodes, the performance improves. Execution
time increases when the number of nodesincreases but number
of transactions reduces[15]. FDM algorithm performance
improves when optimised with FP-Growth and DiffSet-
mining.

2.1.Distributed Data Mining Algorithms

 A parallel algorithm that runs on a distributed database with
uniform capabilities at different sites requires to divide the
workload equally for best load [16].Count Distribution (CD)
[17] is a simple algorithm where data is parallelized and apriori
algorithm runs parallel where local support count is found for
each itemset and then communicated to each other site and
hence the global frequent itemsets are found by all the sites.
AprTidRec, an algorithm based on apriori algorithm was
proposed in 2011 [11]. It is different from apriori because it
deploy only the joint step but no pruning step. It creates a
record structure called tidRec and has lesser execution time
than apriori algorithm. FDM [2]mainly uses apriori and CD
algorithms. This finds the locally large itemsets, which are sent
to the assigned polling sites and then the global counts are
found to finally find global frequent itemsets. The total support
count message exchange is just O(n).

 DMA [18] is another algorithm for distributed association
rule mining, which generates a small candidate sets and O(n)
messages are exchanged for n sites in a distributed database.
ODAM (Optimized Distributed Association Rule Mining)
algorithm for distributed data association rule mining proposed
by [3]. After discovering the global frequent-1 itemsets, it
removes the infrequent ones and inserts the transactions and
their count in a temporary file which is then used to find the
frequent itemsets of larger lengths. [19] proposed PFIN
algorithm for mining frequent itemsets using nodeset structure.
It breaks the large problem into sub-problems, executed in
parallel. Using the map-reduce approach also, many algorithms
can be processed in distributed environment, like the

MRPrepost [20] algorithm gives the processing of prepost
algorithm on the Hadoop platform. Nadar proposed nagFIN
algorithm using new nagNodeset [21] data structure which is
based on the nodes in the prefix tree. There are some negative
association [22] in data which are also interesting and useful.
[23] proposed algorithm based on “optimized matrix
computation for Multi party data computation”which has some
challenges. Applications of association rule mining [24] in
Large and Dispersed database are businesses, defence, public
safety, GIS, medical diagnosis, Hospital etc. As the data is
updated on regular basis and bringing all at one place is not
feasible and time consuming and mining data must be up-to-
date[25] otherwise it affects the decisions. Distributed data
mining also helps [26] in maintaining privacy, reducing
transmission cost, and sharing resources like memory.

3. METHEDOLOGY

3.1. Distributed Association Rule Mining

 This research focuses on DARM, where data is not
distributed rather generated in distributed manner at different
sites and number of transaction varies. FDM is one of the
popular DARM where Apriori algorithm generates the local
frequent itemsets at each site. In this work, the proposed
algorithm uses some of the properties of FDM along with some
other proposed techniques to find the association rule in the
distributed data. New techniques of no-broadcasting and size
based assignment of polling site are proposed for reduction of
communication overload and load balancing amongst the sites.
The problem statement [2] is as under:

 Let DB be a database, containsܫ = {݅ଵ, ݅ଶ, … , ݅} set of
items. T is a transaction of items whereܶ ⊆ Itemsetܼ .ܫ ⊆ ,ܫ
belongs to T only if ܼ ⊆ ܶ. An association rule(AR)is
represented [2] as ⇒ ܻ, where,ܼ ⊆ ܻ	݀݊ܽ	ܫ ⊆ andܼ	ܫ ∩ ܻ =
ϕ.The ARܼ ⇒ ܻ	present in the DB, with a confidence
‘c’means the probability of a transaction containing Z also
contains Y is ‘c’. The AR ܼ ⇒ ܻ	with support ‘s’ means that
the probability of a transaction contains both Z and Y is ‘s’.
The task here is to find all such ARs with support greater than
support threshold and confidence greater than minimum
confidence threshold.

 Z.sup isits support count for an itemset Z. If its support
count of Z is not less than the minimum support threshold then
Z is frequent. k-itemset is k sized itemset. The problem is AR
mining [10] is: (i) “to find all frequent itemsets for the given
minimum support threshold value”, and (ii) “to generate the
association rules using the frequent itemsets”.The focus of
mining is on the development of some efficient method for the
(i) [10] as main cost is involved in (i).Distributed algorithm
rule mining [2]is stated as :

 To find the association rulesin a distributed databaseDB
with D transactionsstored at n-sites ଵܵ,ܵଶ, … ,ܵwith different
data partitions{ܤܦଵ,ܤܦଶ , … is the size ofܦ	.}respectivelyܤܦ,
the data partitions ܤܦwherei = 1, 2, . . . , n. The support count
is written as Z.sup, andܼ. ݑܵ . For each siteܤܦ	݊݅ݐ݅ݐݎܽ	݊݅	

Manoj Sethi et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6765 – 6773

6767

ܵ, ܼ.ܵݑis the local support count of Z and Z. supis the global
support count. Zis also globally large itemset if	ܼ. 	ݑݏ ≥ ×	ݏ	
	correspondingly, Zis locally large itemset at site ;ܦ	 ܵ, if
	ܼ. 	ݑݏ ≥ ×	ݏ	 . LetL be the globally large itemset [2] inܦ	
the database, and ܮ()be the globally large k-sized itemsets.

3.2. Candidate Set Pruning

 Pruning of the candidate sets is done in order to reduce the
size of the candidate sets for all k-itemsets where k=1…n[2] at
each site. It is based on the assumption that if an itemset is not
local frequent at-least at one of the sites, it can’t be global
frequent. Pruning removes all such itemsets which are not
locally large i.e. their support count is less than the required
minimum support count. This helps in reducing the load on the
communication channel by reducing the size of the candidate
sets and improves the performance.

3.3.No-Broadcasting Technique

 Broadcasting of the local frequent itemsets to all sites is a
heavy load on the communication network. No-broadcasting
reduces the load on the network. All local frequent itemsets are
sent to a dedicated site for assignment of polling site for
finding the global frequent itemsets. There is no-broadcasting
of the local frequent itemsets. Suppose there are 5 sites then all
sites send frequent itemsets to other four sites means 5 x 4 = 20
packets but in no-broadcasting all 5 sites send local frequent
itemsets to one site only so 5 x 1 = 5 packets are being sent on
the communication channel. With the increase of the number of
sites there is a big reduction in the packets communicated over
network in the no-broadcasting technique and the performance
of the algorithm improves.

3.4. SizeBased Assignment (SBA) Technique for Polling Site
Assignment

 In the distributed setup,data is generated or createdat
different locations. The number of transactions at various sites
differ [14] from a few hundred to millions of transactions.In
this setup, resources at each site is also limited and are
distributed. Data mining requires great amounts of resources
[27] so technique for flexible distribution of work load
amongst sites needs to be developed. The sites with little
number of transactions are less occupied as they require less
memory, computational capabilities and time for maintaining
data, scanning for frequent itemsets and maintaining candidate
sets. In this paper a new technique SBA for polling site
assignment is presented for the real distributed database
considering the below assumptions.

Assumptions:
 Database is distributed around the globe
 Data is gathered at different locations
 Number of transactions at each site differ
 No site is having data size more than the double of the

average data size

 Considering the above assumptions, new technique SBA is
proposed to assign the polling sites to the locally large itemsets
received by a designated site. The poling site finds the globally
large itemsets from the itemsets received. The novel technique
takes care of the sites with the large data partitions and
distribute load considering the number of transitions at each
site and balance the load.

Definition : Size Based Assignment Technique:
For sites ܵ = 	 { ଵܵ, ܵଶ, … , ܵ} and candidate sets
ଵܩܥ} ଶܩܥ, , … .}sent by n sitesܩܥ,
Total Transactions ܶܶ = 	 { ଵܶ , ଶܶ, … , ܶ}
For size k-itemsets
Average Transactions percent per site ܶܣ = 			ଵ

Actual number of Transaction in percent at site

ܲ ܵ			 = 	 ܶ
∑ ܶ

 100	ݔ	

Load difference at site in percent ܵ =∆		ݏ݅		 ܶܣ −	ܲ ܵ

For all k-sized itemsets, complete candidate set

ܩܥ = 	 ଵܩܥ} ଶܩܥ, , … {ܩܥ,
 Complete Candidate sets received from all sites without = ′ܩܥ
any duplicates
′ܩܥ = 	 ଵܩܥ} 	∪ ଶܩܥ	 	∪ 	…∪ {ܩܥ	

Average candidate sets at each site in percent

ܩܥܣ = 		
ᇱܩܥ

݊

Arrange sites as per the partition size ܵ′
Local Frequent itemsets assigned to the polling site ܵ		݅ݏ	 =
ܩܥܣ	⌉	 + 		∆x		ܩܥ⌉

 After finding the average frequent itemsets to be allocated
to each site, from sites ܵ′ arranged in the order of the number of
transactions, the assignment of polling sites to the frequent
itemsets is done in this order by assigning upper integer value
of average candidate set plus load difference. Assignment
continues till the entire candidate set exhausted This way the
highly loaded sites are assigned nil or very little number of
locally large itemsets for finding globally large itemsets. This
technique assigns the load inversely proportional to the site
load and hence balance the load of polling station.
Let there be five sites ଵܵ, ܵଶ, 	ܵଷ,	ܵସ,ܵହ having transactions 10%
, 15%, 20%, 25% and 30% respectively. The candidate sets
sent by
sites ଵܵ{	1, 4, }, ܵଶ{2, 4	6, },
	ܵଷ{3, 8, 17, 16	}, 	ܵସ{12, 17, 1, 18	}, 	ܵହ{2, 8, 19,11}.	Applying
SBA technique, the ordered candidate set is
{1, 2, 3, 4, 6, 8, 11,12, 16, 17, 18,19	} with 12 locally large
itemsets and ordered site set is { ଵܵ,ܵଶ, 	ܵଷ,	ܵସ,ܵହ} with average
transactions 20% as there are 5 sites.

The load difference at S1 is 10% so local frequent itemsets to
be assigned to site S1 is
ceiling integer ቀଵଶ

ହ
+ ଵ

ଵ
x	12	ቁ = 4 i.e. { 1, 2, 3, 4} items

Manoj Sethi et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6765 – 6773

6768

Similarly assignment to S2 is
ceiling integerቀଵଶ

ହ
+ ହ

ଵ
x	12	ቁ = 3i.e. {6, 8, 11} items

Assignment to S3 is
ceiling integerቀଵଶ

ହ
+

ଵ
x	12	ቁ = 3i.e. {12, 16, 17} items

Assignment to S4 is
ceiling integerቀଵଶ

ହ
+ ିହ

ଵ
x	12	ቁ = 2.	i.e.{18, 19} items

Assignment to S5 is Zeroitems as candidate list exhausts.

 The sites with smalldata partition or with less number of
transactions are not fully occupied. These sites have less
processing scan and memory needs, as compared to the sites
with more transactions. ProposedSBA technique assigns load
inversely proportional to the site occupancy by considering the
partition size and balances the load.

4. SBDARM: THE PROPOSED ALGORITHM

 This section discusses the Size Based Distributed
Association Rule Mining (SBDARM) algorithm. It uses a
novel technique of size based assignment (SBA) of polling site
for finding globally large itemsets based on the data size
available at each site. Globally large itemsets
are found by sites which are less occupied hence increase the
overall computational capabilities and improve the
performance. It uses local as well as global pruning to reduce
the candidate sets. There is no-broadcasting of candidate sets
which further reduces the load on the communication network.

Symbol Description [2]
s –minimum Support;
D - Total transactions ;
ܮ − Globally large k-itemsets;
Z.sup - Global support count of Z;
ܣܥ − Candidate sets size k;
 ; - transactions in partition ܵܦ
 ;()–globally large itemset size k at ܵܮܩ
 ;() - Candidate sets size k at site ܵܩܥ
 ;()ܩܥ () - Locally large size-kitemsets inܮܮ
ܼ. ݑݏ − Local support count of ܼ	ܽݐ	 ܵ
ܮ ܲ() – Local pruning k-itemset at site ܵ

Algorithm-1: Size Based Assignment Technique (SBA)
Input: Locally large k-itemsets from each siteܩܥ and data size
of all sites ࡿ(݅ = 1,2, …݊)
Output: Assigned Polling sites list
1. ݂݅	݇ = ݏݐ݁ݏ݉݁ݐ݅	1
 ݁ݐ݅ݏ	݈݈ܽ ݎ݂ .2
 	ݏ݊݅ݐܿܽݏ݊ܽݎݐ	݂	ݎܾ݁݉ݑ݊	݁݃ܽݎ݁ݒܽ	ℎ݁ݐ	݂݀݊݅ .3

݁ܽܿℎ	݁ݐ݅ݏ	݊݅	݁݃ܽݐ݊݁ܿݎ݁	ܶܣ
4. Compute	the	transaction	size	at	each	site		ܵ݅	

ܲ	݁݃ܽݐ݊݁ܿݎ݁	݊݅ ܵ
 ∆	ݐ݊݁ܿݎ݁	݊݅	݅ܵ		݊݅	݁ݐ݅ݏ	ݐܽ	݁ܿ݊݁ݎ݂݂݁݅݀	݀ܽܮ .5
 ݏݐ݁ݏ݉݁ݐ݅	݁݃ݎ݈ܽ	ݕ݈݈݈ܽܿ		݈݈ܽ ݎ݂ .6

 ()ܮܮ	ݏ݁ݐ݈ܽܿ݅ݑ݀	݃݊݅ݒ݉݁ݎ	ݎ݁݀ݎ	݊݅	݁݃݊ܽݎݎܽ .7
 	݁ݐ݅ݏ	ݎ݁	ݏݐ݁ݏ	݁ݐܽ݀݅݀݊ܽܿ	݁݃ܽݎ݁ݒܽ	ℎ݁ݐ	݁ݐݑ݉ܿ .8
 ܩܥܣ	݁݃ܽݐ݊݁ܿݎ݁	݊݅ .9
10. ݂ 	ݏ݁ݐ݅ݏ	݈݈ܽ	ݎ
11. ݂ ݏ݁ݐܽ݀݅݀݊ܽܿ	݀݁ݎ݁݀ݎ	݈݈ܽ	ݎ
12. ܽ ݐ݊݁݉݊݃݅ݏݏܽ	݀݁ݏܾܽ	݁ݖ݅ݏ	݊݅	݁ݐ݅ݏ	݈݈݃݊݅	ℎ݁ݐ	݊݃݅ݏݏ

 	݁ܿ݊݁ݎ݂݂݁݅݀	݈݀ܽ	ݏݑ݈	ݏݐ݁ݏ	ݏ݁ݐܽ݀݅݀݊ܽܿ	݁݃ܽݎ݁ݒܽ
 ݐ݊݁ܿݎ݁	݊݅

13. ܾ ݇	ݎ݂	ݐݏ݈݅	݁ݐ݅ݏ	݈݈݃݊݅	ℎ݁ݐ	ݐݏܽܿ݀ܽݎ − ݏݐ݁ݏ	݁ݐܽ݀݅݀݊ܽܿ

Algorithm-2: Size Based Distributed Association Rule Mining
(SBDARM)
Input: database ܤܦ(݅ = 1,2, … ݊)
Output: Globally large itemsets.
Method: Running algorithm for all k-itemsets for k=1..n, on
all partitions
 ݏ݁ݐ݅ݏ	݈݈ܽ ݎ݂ .1
݇	ݎ݂ .2 = 1	
		ݐ݁ݏ݉݁ݐ݅	ݐ݊݁ݑݍ݁ݎ݂	݈݈ܽܿ	ℎ݁ݐ	݂݀݊݅ .3 ܶ(ଵ)
	ݐ݊ݑܿ	ݐݎݑݏ	ℎ݁ݐ	݂݀݊݅ .4 ܶ(ଵ)
݇	ݎ݂ .5 > 1
݁ݖ݅ݏ	ℎ݁ݐ	݂݀݊݅	 .6 − ݊݁݃݅ݎ݅ݎܽ	݊݅ݏݑ	ݐ݁ݏ݉݁ݐ݅	݇
 ݏݐ݁ݏ݉݁ݐ݅	ݐ݊݁ݑݍ݁ݎ݂ ݐ	ݏ݈ܾ݃݊݁	ܼ	ݏݐ݁ݏ݉݁ݐ݅ ݈݈ܽ	ݎ݂ .7

ܶ()݃݁݊݁݁ݐܽݎ	݈݈ܽܿ	݃݊݅݊ݑݎ	ݐݏ݈݅
 ℎ݁݊ݐ ݁݃ݎ݈ܽ	ݕ݈݈݈ܽܿ	ݏ݅	ݐ݊ݑܿ	ݐݎݑݏ ݂݅ .8
 	ݏ݁ݐ݅ݏ	݈݈ܽ	ݎ݂ .9
 ()ܮܮ 	ݐݏ݈݅	݁݃ݎ݈ܽ	ݕ݈݈݈ܽܿ	ݐ݊݅	ݐ݁ݏ݉݁ݐ݅	ݐݎ݁ݏ݊݅ .10
11. ݂ ݏ݁ݐ݅ݏ	݈݈ܽ	ݎ
12. ܿ 	݁ݖ݅ݏ	ܽݐܽ݀	݀݊ܽ()ܮܮ 	ݐݏ݈݅	݁݃ݎ݈ܽ	ݕ݈݈݈ܽܿ	݁ݐܽܿ݅݊ݑ݉݉

 ݁ݐ݅ݏ	݈݈݃݊݅	݂	ݐ݊݁݉݊݃݅ݏݏܽ	ݎ݂	݁ݐ݅ݏ	ݐ
 	ݏ݁ݐ݅ݏ	݈݈݃݊݅	݂	ݐݏ݈݅	ݐ݁݃	ܣܤܵ	݃݊݅ݏݑ .13
14. ݂ ,ݏ݁ݐ݅ݏ	݈݈ܽ ݎ
 ܵ ݁ݐ݅ݏ	݈݈݃݊݅ ݐ ()ܮܮ	݁݃ݎ݈ܽ	ݕ݈݈݈ܽܿ ݀݊݁ݏ .15
16. ݂ ܲܮ	݃݊݅݊ݑݎ	݈݈ܽܿ	ݐ	݈ܾ݃݊݁	ܼ	ݏݐ݁ݏ݉݁ݐ݅ ݈݈ܽ	ݎ
 	ݏ݁ݐ݅ݏ	݈݈ܽ	ݐ	ܼ	ݐ݁ݏ݉݁ݐ݅	ݎ݂	ݐݏ݁ݑݍ݁ݎ	݈݈݃݊݅	݀݊݁ݏ .17
18. ܽ ൫		݉ݎ݂	ݐݏ݁ݑݍ݁ݎ	݈݈݃݊݅	ݕ݈݁ݎ	ݏ݁ݐ݅ݏ	݈݈ ܶ()൯
.ܼ	ݏݐ݊ݑܿ	ݐݎݑݏ	݀݊݁ݏ .19 ݑݏ
20. ݂ ()ܲܮ	ݐ݁ݏ	݈݈݃݊݅	ℎ݁ݐ	݊݅	ܼ	ݏݐ݁ݏ݉݁ݐ݅ ݈݈ܽ	ݎ
.ܼ	ݐ݊ݑܿ	ݐݎݑݏ ݁ݒ݅݁ܿ݁ݎ .21 ݑݏ ݏ݁ݐ݅ݏ ݈݈ܽ ݉ݎ݂
22. ݂ 																																												ݏݐ݁ݏ݉݁ݐ݅	ℎ݁ݐ	݈݈ܽ	ݎ
23. ܿ .ܼ	ݐݎݑݏ	݈ܾ݈ܽ݃	݁ݐ݈ܽݑ݈ܿܽ supܾݕ

 ݁ݎℎ݁ݓ		ݐݎݑݏ	݈݈ܽܿ	݈݈ܽ	݂	ݑ݉ݑݏ
ݑܵ.ܼ	݂݅ > ݈݀ℎݏ݁ݎℎݐ	ݐݎݑݏ	݈ܾ݈ܽ݃	ℎ݁ݐ

 ()ܩ	ݐ݁ݏ݉݁ݐ݅	ݐ݊݁ݑݍ݁ݎ݂	݈ܾ݈ܽ݃ݐ	݀݀ܣ .24
25. ܾ ; ()ܩ	ݐ݁ݏ݉݁ݐ݅	ݐ݊݁ݑݍ݁ݎ݂	݈ܾ݈ܽ݃ ݐݏܽܿ݀ܽݎ
26. ݂݅(݇ = ;(ܤܦ)ݐ݊݁ݑݍ݁ݎ݂݊݅_݁ݒ݉݁ݎ		(1
 ݏݐ݁ݏ݉݁ݐ݅	݁݃ݎ݈ܽ	ݕ݈݈ܾ݈ܽ݃	݈݈ܽ	݂	ݐ݁ݏ	݁ݐܽݎ݁݊݁ܩ .27
݇	݁݃ݎ݈ܽ	ݕ݈݈ܾ݈ܽ݃	݊ݎݑݐ݁ݎ .28 − ()ܮ ݐ݁ݏ݉݁ݐ݅

The steps are discussed below:
(i) Database ܤܦat all sites are scanned, local frequent

itemsets of size-1 are found.For k>1 locally large itemsets
are found using apriorigen. This generates locally large
itemsets from all partitions and make candidate set ܩܥ().

Manoj Sethi et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6765 – 6773

6769

If ܩܥ() is empty, no generation and process stops. (line 1-
7)

(ii) Local pruningis done to generate candidate sets,locally
large k-itemsetsܮܮ()having the count greater than the
minimum support threshold.(line 8-10)

(iii) The locally large itemset ܮܮ()are communicated to the
site which assigns the polling sites to the locally large
itemsets. Size based assignment algorithm receives list of
sites with number of transactions and locally large items
communicated by each site. It communicates the polling
sites for locally large k-sized itemsets ܮܮ()sites ܵ.(line
11-13, call algorithm 1)

(iv) All the sites ܵsend the local counts for the locally large
items ܮܮ() to the polling sites assigned in the last step.
Polling sites store all information about the itemsets in
ܮ ܲ() and Z.large_sites. (line 14-17)

(v) Each Polling site receives counts, computes global counts
for assigned locally large itemsetsܮܮ(). It generates the
global large itemset, stores in ܩ() after removing the
itemsets having counts less than the support threshold
value. Then globally large itemsets are communicated to
all sites. (line 18-25)

(vi) All home site receives the global frequent itemsets, update
and remove all infrequent 1-itemset. In the next pass home
sites find the 2-itemset, i.e. locally large size k (k =2…n),
repeat the process. Remove all infrequent k-itemsets..(line
26-28)

4.1 Efficiency at Each Site

 There are n number of sites { ଵܵ,ܵଶ, … ,ܵ}and data is
partitioned and stored, called distributed database DBi. Sites
generate the local frequent k-itemset (k= 1..n) using efficient
algorithm. The polling sites are assigned on the basis of the
partition size where site with less number of transactions are
assigned more local frequent itemsets for finding global
frequent itemsets and sites handling bigger partition size are
assigned less workload considering the number of transactions
at each site. Sites with small data size uses less memory,
capabilities etc in handling the data, so less occupied and the
same is taken care by the proposed algorithm. Size based
assignment technique is developed which considers the load on
each site while assigning the polling sites for finding the
globally large itemsets. Using the size based technique, it
allocates less load to the sites have large data partition and
more load to less occupied sites with small data partition. The
proposed technique is best for the unbalanced data partitions
for the effective use of the resources and balancing the load for
finding the globally large items using locally large items. This
technique utilises all resources and as all the sites participate as
per their availability so there is no extra load on a centralised or
any other site in unbalanced way. This ensures a good amount
of parallelism in the real distributed database where centralised
database has no control on the partitions.

4.2. Low Communication Overhead

 The algorithm also takes care of the load on the
communication channelby reducing the size of the candidate
sets by pruning at each site. All the sites first find the frequent
itemsets and then through pruning process remove the frequent
itemsets having counts less than the required support counts to
become eligible for communication and may not be globally
frequent.

 Let frequent 2-itemset at site3be{ad, eg, jg, ht }. After
applying pruning process, removing not eligible itemsets whose
support count is less than the minimum support
thresholdi.e.{ad, jg}are removed. The reduced set {eg, ht }
after pruning is communicated to the site for the assignment of
polling sites.The technique reduces the size of the candidates
sets to half and reduces the communication overhead. The
algorithm uses no-broadcasting technique where all sites send
candidate sets to a polling assignment site in place of
broadcasting it to all sites. If reduces the number of candidate
set communication to O(n) messages and hence there is less
load on the communication network. This technique is network
efficient with reduced size of the data communicated.

5. RESULTS AND DISSCUSSION

5.1. Running Environment

 The setup used to perform the evaluation of the algorithms
and comparing the same with the existing algorithms on
various parameters is explained. Experiments are performed on
the setup of five nodes or sites with windows 10 Operating
systems,8 GB RAM, HDD 500 GB, 64 bit system with clock
3.20 GHz loaded with JDK 1.7.

Datasets: The algorithms are run on mushroom, connect,
chessand T10I4D100K datasets. The datasets are available for
research on data mining on the FIMI data repository [28].
Mushroom dataset is created using attributes of species
mushrooms, connect prepared based on UCI,chess is game
situations and T10I4D100K is a synthetic database generated
using the IBM Quest generator. The datasetsspecifications are
given in Table 1.

Table 1: Datasets and their specifications

Dataset
Total
Trans.

Number
of Items

Average
Length Type

File
Size

Mushroom 8124 119 23 Dense 570 KB
Connect 67557 129 43 Dense 9.3 MB
Chess 3196 75 37 Dense 342 KB

T10I4D100K 1,00,000 1000 40 Sparse 4 MB

 Data is partitioned and stored at five sites with varying size.
Data partitions with size available on each site, based on
number of transactions are shown in Table 2.

Manoj Sethi et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6765 – 6773

6770

Table2:Partition size at different sites

Partition

Size Mushroom Connect Chess T10I4D100K
DB1 10% 812 6756 320 10000
DB2 15% 1219 10134 479 15000
DB3 20% 1625 13511 639 20000
DB4 25% 2031 16889 799 25000
DB5 30% 2437 20267 959 30000
Total 100% 8124 67557 3196 100000

5.2. Performance Analysis

 The new proposed algorithm SBDARM implemented and
executed for execution performance comparison with some of
the existing algorithms FDM and PFIN. The SBDARM
algorithm effectively uses the resources at all the sites, reduces
the local load and communication load. It gives best throughput
by using pruning techniques for reducing candidate sets for
communication along with the size based assignment
technique. There is no-broadcasting of frequent itemsets by all
the sites rather all sites communicate the frequent itemsets to
one site for the assignment of the polling site. This reduces the
number of messages and hence load on the communication
network.
 In the experiments, algorithms are compared on time of
execution where sites have varying size of the data partitions
shown in Table 2.In the first experiment all algorithms are
executed on dataset mushroom with varying minimum support
threshold values i.e. 10%, 20%, 30%, 40%, 50%, and 60%.
Table 3 shows the local frequent 1-itemsets generated at each
site on the mushroom datasets. Similarly in the second
experiment these are run on connect dataset with same
minimum support threshold 10%, to 60%. Third experiment is
performed on chess dataset with 10%, 15%, 20%, 25%, 30%,
35% minimum support threshold. Lastly on T10I4D100K
dataset with minimum support threshold 0.1%, 0.2%, 0.3%,
0.4%, 0.5%, and 0.6%. The local frequent 1-temsets generated
by the proposed algorithm at each site on connect, chess and
T10I4D100K datasets are shown in Table 4, 5, and 6
respectively. The data available at each site is different but
frequent 1-itemsets generated are almost same and it reduces
with the increase the support threshold.

Table 3: Local frequent 1-itemsets generated at each partition on

Mushroom dataset

 ----- Support Count Threshold (%) -------
Partition 10 20 30 40 50 60

DB1 50 34 26 21 16 14
DB2 48 37 30 25 18 14
DB3 39 37 26 23 17 15
DB4 51 38 27 19 18 12
DB5 44 41 31 22 19 14

Table 4: Local frequent 1-itemsets generated at each partition on
Connect dataset

 ----- Support Count Threshold (%) ------

Partition 10 20 30 40 50 60
DB1 66 57 46 43 39 38
DB2 69 56 46 43 38 35
DB3 69 54 47 42 40 38
DB4 68 56 49 42 37 37
DB5 70 56 46 43 40 36

Table 5 : Local frequent 1-itemsets generated at each partition on

Chess dataset

 ----- Support Count Threshold (%) -----
Partition 10 15 20 25 30 35

DB1 52 50 47 46 44 42
DB2 52 50 48 46 42 41
DB3 55 53 48 46 44 41
DB4 61 58 58 53 50 43
DB5 66 57 54 52 51 49

Table 6 : Local frequent 1-itemsets generated at each partition on

T10I4D100K dataset

 ---- Support Count Threshold (%) ------
Partition 0.1 0.2 0.3 0.4 0.5 0.6

DB1 789 736 682 621 560 515
DB2 793 742 684 630 559 516
DB3 798 740 689 633 563 520
DB4 794 738 691 625 566 515
DB5 794 743 690 628 561 516

 The frequent itemsets are sent to one site only using no-
broadcast technique for the assignment of the polling sites. In
the proposed algorithm the polling site assignment is done
using size based assignment technique. Table 7-10 show that
the local frequent 1-itemsets assignment of polling site for
finding the global frequent itemsets by the SBDARM
algorithm. The same process is repeated for k-itemsets for all
k>1. This assignments balance the load on the sites as it
allocates the load for finding the global frequent itemsets i.e.
assignment of polling sites inversely proportional to the
partition size on sites. In the other two algorithms the
assignments are not based on the size of the partition rather
using some hash function or random, count distribution. The
assignment in FDM, PFIN increases the load on the already
occupied site and load balancing is poor. This size based
assignment technique is effective in the distributed data
environment with varied data size and it reduces the time of
execution.
Table 7 : Pruning site assignment by SBDARM to local frequent 1-

itemsets on Mushroom dataset
 ---- Support Count Threshold (%) ------

Partition 10 20 30 40 50 60
DB1 18 14 10 9 6 6
DB2 15 12 8 7 5 5
DB3 12 9 7 6 4 4
DB4 9 7 5 5 3 3
DB5 5 3 2 0 2 0
Total 59 45 32 27 20 17

Globally
Large 56 43 28 21 13 8

Manoj Sethi et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6765 – 6773

6771

Table 8 : Pruning site assignment by SBDARM to local frequent 1-
itemsets on Connect dataset

 ------- Support Count Threshold (%) ------

Partition 10 20 30 40 50 60
DB1 23 19 15 14 14 13
DB2 19 16 13 12 11 11
DB3 15 13 10 9 9 9
DB4 12 10 8 7 7 7
DB5 6 5 4 3 3 1
Total 75 63 50 45 44 41

Globally
Large 73 59 46 41 38 36

Table 9 : Pruning site assignment by SBDARM to local frequent 1-

itemsets on Chess dataset

 ------ Support Count Threshold (%) ------
Partition 10 15 20 25 30 35

DB1 21 19 18 17 17 17
DB2 17 16 15 14 14 14
DB3 14 13 12 12 12 11
DB4 11 10 9 9 9 9
DB5 5 4 6 4 4 3
Total 68 62 60 56 56 54

Globally
Large 61 57 54 51 50 45

Table 10: Pruning Site assignment by SBDARM to local frequent 1-
itemsets on T10I4D100K dataset

 --- Support Count Threshold (%) ----

Partition 0.1 0.2 0.3 0.4 0.5 0.6
DB1 240 223 209 189 172 157
DB2 200 186 174 158 143 131
DB3 160 149 140 126 115 105
DB4 120 112 105 95 86 79
DB5 80 73 68 62 55 50
Total 800 743 696 630 571 522

Globally
Large 796 740 691 628 568 516

 Figures 1 - 4 show that the performance of the proposed
algorithm on all datasets outperform the other two algorithms
intime execution. The time performance of SBDARM is best as
the load is balanced amongst the sites. The transactions at each
site differ means the resource utilization also differs. The sites
with more number of transactions takes more time for data
scan, use more memory, and more processing. SBDARM
utilises the load differencesas edge over other algorithms by
assigningmore load to less loaded sites as compared to highly
loaded sites. Some sites with less number of transactions,are
having less load of processing, data scan, generate less number
of candidate sets and are comparatively less occupied. This is
the best load balancing at each site by the assignment of polling
sites for finding global frequent itemset inversely proportional
to the data partition size available at each site. The number of
local frequent k-itemsets for k> 1, are further reduced and the
SBA algorithm further balance the load amongst the sites.

Figure 1: Execution time on Mushroom dataset

 With the increase of the support threshold less number of
frequent itemsets are generated and execution time of all the
algorithms also reduce. The performance of the proposed
algorithm takes less time although the time difference reduces
as number of global frequent itemsets also reduce. The
difference in the performance is also due to the reduced
communication load, local pruning and no-broadcasting
technique which reduces the load on the network and reduces
the time delay. In Figure 4 dataset used is sparse so when value
of k increases to 2,3,...n the number of frequent itemsets
generated reduce, therefore for low minimum support
threshold, the execution time is not very high as compared to
the execution time for the high minimum support threshold for
all the algorithms.

Figure 2: Execution time on Connect dataset

Figure 3: Execution time on Chess dataset

Manoj Sethi et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6765 – 6773

6772

Figure4: Execution time on T10I4D100K dataset

 The analysis shows that the proposed algorithm SBDARM
performs best in low and high minimum support threshold in
all four comparisons with PFIN and FDM having varying
partition sizes. It shows SBDARM outperforms other two
algorithms with low minimum support threshold. It uses the
advantages of the no-broadcasting by reducing communication
and size based assignment reducing load on heavy loaded sites
and pruning reducing candidate sets.
6. CONCLUSIONS

 New algorithm SBDARMis proposed for finding frequent
itemsets in the distributed data where size of the partitions are
varying in size. The proposed algorithm applies the technique
of local pruning, no-broadcasting and size based assignment of
the polling sites. The algorithm performance is evaluated on
four datasets on the 5-node setup with varying minimum
support threshold. The experiments are performed on the data
partitions with varying number of transactions on each site. The
performance of the algorithm is compared with the FDMand
PFIN algorithm for distributed data mining.

 Algorithm SBDARM outperforms other algorithms on the
time of execution comparisons. The new size based assignment
technique is effective in the distributed environment where data
is generated at different sites and data is skewed. i.e. highly
imbalanced in terms of number of transactions at each site. It
performs best as the data skewness is not effecting the
performance and is well adjusted. In addition to the reduction
in candidate sets by pruning, the proposed no-broadcasting
technique reduces the communication load and improve the
execution time of the proposed algorithm.

 In the future the research can be further extended for mining
in larger setupwith more number of sites and large datasets.
The resources and the capabilities available at each site can
also be considered while allocating load to different sites for
further improvement.

REFERENCES

1. Agrawal R. and Ramakrishnan Srikant, "Fast algorithms

for mining association rules", in Proc. International

Conference on Very Large Scale Data Base, 1994, pp.
487-499.

2. D. W. Cheung, Jiawei Han, V.T. Ng, A. W. Fu,
and Yongjian Fu, "A fast distributed algorithm for
mining association rules”, Fourth International
Conference on Parallel and Distributed Information
Systems, IEEE, 1996.

3. Ashrafi, Mafruz Zaman, David Taniar, and Kate Smith,
"ODAM: An optimized distributed association rule
mining algorithm”, IEEE distributed systems online,
2004.

4. P. Naresh and Dr. R. Suguna, “Association rule mining
algorithms on large and small datasets: a comparative
study”, in Proc. International Conference on Intelligent
Computing and Control Systems (ICICCS 2019) IEEE:
CFP19K34-ART, pp. 587-592.

5. Han, Jiawei, Jian Pei, and Yiwen Yin., "Mining frequent
patterns without candidate generation”, in Proc. of the
2000 ACM SIGMOD international conference on
Management of data, vol. 29. no. 2, pp. 1-12, 2000.

6. Deng, Zhi-Hong and Sheng-Long Lv., "Fast mining
frequent itemsets using Nodesets”, Expert Systems with
Applications, vol. 41 no. 10, pp. 4505-4512, 2014.

7. F. Bodon and L. Rónyai, “Trie: An alternative data
structure for data mining algorithm”, Mathematical and
Computer Modelling, vol. 38, Issue 7–9, pp. 739-751,
2003.

8. Vinaya Sawant and Ketan Shah, “A survey of distributed
association rule mining algorithms”, Journal of
Emerging Trends in Computing and Information Sciences,
vol. 5, pp. 391-398, 2014.

9. Han, Jiawei, et al., "Frequent pattern mining: current
status and future directions”, Data Mining and
Knowledge Discovery, vol.15.1, pp. 55-86, 2007.

10. Agrawal R., Tomasz Imieliński, and Arun Swami,
"Mining association rules between sets of items in large
databases", ACM SIGMOD Record 22.2, pp. 207-216,
1993.

11. Ailing Wang, "An improved distributed mining
algorithm of association rules”, Journal of Convergence
Information Technology, vol. 6, no. 4, pp.118-122, 2011.

12. Deng, Zhi-Hong, "DiffNodesets: An efficient structure
for fast mining frequent itemsets”, Applied Soft
Computing, vol. 41, pp. 214-223, 2016.

13. Vinaya Sawant and Ketan Shah, “Performance
evaluation of distributed association rule mining
algorithms”, 7th International Conference on
Communication, Computing and Virtualization, Procedia
Computer Science 79, pp. 127-134, 2016.

14. Asma Belhadi, Youcef Djenouri, Jerry Chun-Wei Linand
Alberto Cano, “A general-purpose distributed pattern
mining system”, Springer-Applied Intelligence,
vol. 50, pp. 2647–2662, 2020.

15. George Gatuha and Tao Jiang, “Smart frequent itemsets
mining algorithm based on FP-tree and DIFFset data
structures”, Turkish Journal of Electrical Engineering &
Computer Sciences, vol. 25, pp. 2096-2107, 2017.

16. Van Quoc Phuong Huynh and Josef Küng, “FPO Tree
and DP3 algorithm for distributed parallel frequent

Manoj Sethi et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6765 – 6773

6773

Itemsets mining”,Expert Systems With Applications,
vol.140, 112874, 2020.

17. Agrawal R. and Shafer John C., "Parallel mining of
association rules", IEEE Transactions on Knowledge &
Data Engineering, vol. 8, Issue 6, pp. 962-969, 1996.

18. David Cheung, Vincent T.Y. Ng, Ada W. Fu and Yongjian
Fu, "Efficient mining of association rules in distributed
databases”, IEEE Transactions on Knowledge and Data
Engineering, vol. 8, no. 6, pp. 911-922, 1996.

19. Chen Lin and Junzhong Gu, “PFIN: A parallel frequent
itemset mining algorithm using nodesets”, International
Journal of Database Theory and Application, vol. 9, no.6,
pp. 81-92, 2016.

20. Liao, Jinggui, Yuelong Zhao and Saiqin Long.,
"MRPrePost—A parallel algorithm adapted for mining
big data", IEEE Workshop on Electronics, Computer and
Applications(IWECA), 2014.

21.Nader Aryabarzan, Behrouz Minaei-Bidgoli and
Mohammad Teshnehlab, “negFIN: An efficient
algorithm for fast mining frequent itemsets”,Expert
System and Applications, vol. 105, pp. 129-143, 2018.

22. NVS Pavan Kumar, JKR Sastry and K Raja Sekhara Rao,
“On mining incremental databases for regular and
frequent patterns”, International Journal of Emerging

Trends in Engineering Research, vol. 7, no. 9, pp. 291–
305, 2019.

23.Jun Liu, Yuan Tian, Yu Zhou, Yang Xiao and Nirwan
Ansari, “Privacy preserving distributed data mining
based on secure multi-party computation”, Computer
Communications, vol. 153, pp. 208-216, 2020.

24. A. Pavithra,and S. Dhanaraj,“Comparative study of
effective performance of association rule mining in
different databases”,inProc.of International Conference
on Data Science and AnalyticsICDSA 17, 2017

25. NVS Pavan Kumar, JKR Sastry and K Raja Sekhara Rao,
“Mining negative frequent regular itemsets from data
streams” International Journal of Emerging Trends in
Engineering Research, vol. 7(8), pp. 85 – 98, 2019.

26. V. Devasekhar, and P. Natarajan, “Multi-agent
distributed data mining: challenges and research
directions”International Journal on Emerging
Technologies, vol. 11(4), 233–239, 2020.

27.Ammar Alhaj Ali, Pavel Varacha,Said Krayem,Petr
Zacekand Andrzej Urbanek,“Distributed data mining
systems: techniques, approaches and algorithms”,
MATEC Web of Conference 210, 04038, CSCC, 2018.

28. Fimidataset repository: Online Portal
http://fimi.ua.ac.be/data/

