

752

A Bigdata processing with Hadoop Map Reduce in Cloud Systems

K.Jose Triny1, G.Anjuka2, C.Dhanapal3, S.Kavibharani4,C.Kowsalya5
1Department of CSE,M.Kumarasamy College Of Engineering, Karur, India, kbjtriny@gmail.com

2Department of CSE,M.Kumarasamy College Of Engineering, Karur, India, anjukarenya23399@gmail.com
3Department of CSE,M.Kumarasamy College Of Engineering, Karur, India, dhanapalmhr@gmail.com

4Department of CSE,M.Kumarasamy College Of Engineering, Karur, India, kavirajisathish@gmail.com
5Department of CSE,M.Kumarasamy College Of Engineering, Karur, India, kowsalyac1404@gmail.com

ABSTRACT

The new ages of cell phones have high preparing force
and capacity, yet they linger behind as far as programming
frameworks for large information stockpiling and preparing.
Hadoop is a versatile stage that gives disseminated capacity
and computational capacities on groups of product
equipment. Building Hadoop on a versatile system
empowers the gadgets to run information escalated
processing applications without direct information on basic
conveyed frameworks complexities. In any case, these
applications have serious vitality and unwavering quality
requirements (e.g., brought about by startling gadget
disappointments or topology changes in a powerful system).
As cell phones are progressively helpless to unapproved get
to, when contrasted with customary servers, security is
additionally a worry for delicate information. Consequently,
it is vital to think about unwavering quality, vitality
effectiveness and security for such applications. The MDFS
(Mobile Distributed File System) addresses these problems
for huge information preparing in portable mists. We0have
built up the Hadoop Map Reduce structure over MDFS and
have examined its exhibition by differing input outstanding
burdens in a genuine heterogeneous0portable bunch. Our
assessment shows that the execution tends to all imperatives
in handling enormous measures of information in versatile
mists. In this manner, our framework is a suitable answer for
satisfy the developing needs of information handling in a
portable condition.

Key words: Hadoop Map Reduce, Mobile Distributed file
system

1.INTRODUCTION
With progresses in innovation, cell phones are gradually

supplanting conventional PCs. The new periods of phones
are ground-breaking with gigabytes of memory and multi-
focus processors. These gadgets have very good quality
figuring equipment furthermore, complex programming
applications that produce huge measures of information on
the request for many megabytes. This information can extend
from application crude information to images, sound, video
or content documents. With the quick increment in the
quantity of cell phones, large information preparing on cell

phones has become a key developing need for giving
capacities like those gave by customary servers 0[1].

Current versatile applications that perform gigantic
figuring errands (huge information preparing) offload
information and errands to server farms or ground-breaking
servers in the cloud0[2].The casing work parts the client
work into littler undertakings and runs these undertakings in
equal on various hubs, subsequently decreasing the in
general execution0time when contrasted and a successive
execution on a solitary hub. This engineering however, fails
without outer system network, as it is the situation in military
or fiasco reaction operations. This engineering is additionally
stayed away from in crisis reaction situations where there is
constrained network to cloud, prompting costly information
transfer and download tasks. In such circumstances, remote
portable specially appointed systems are regularly sent 0[3].
The restrictions of the conventional distributed computing
rouse us to examine the information preparing issue in an
infrastructure less and versatile condition in which the web is
inaccessible and0all occupations are performed on cell
phones. We expect that cell phones in the region are willing
to share each other's computational assets.

 There are numerous difficulties in bringing large
information capabilities to the versatile condition: 1) cell
phones are asset obliged as far as memory, processing force
and vitality. Since most cell phones are battery fueled,
vitality utilization during work execution must be limited. By
and large vitality utilization relies upon the hubs chose for
the activity execution. The hubs must be chosen0dependent
on every hub's remaining vitality, work recovery time,0and
vitality profile.0As the employments are recovered remotely,
shorter0 occupation recovery time demonstrates lower
transmission vitality and shorter work fruition time.
Contrasted with the conventional cloud processing,
transmission time is the bottleneck for the work makespan
and remote transmission is the major wellspring of the
vitality utilization; 2) unwavering quality of information is a
significant test in powerful systems with unpredictable
topology changes. Association disappointments could cause
cell phones to leave the system reach after restricted
investment. Gadget disappointments may likewise occur
because of vitality exhaustion or application explicit
disappointments. Consequently, an unwavering quality
model more grounded than those utilized by conventional
static systems is basic; 3) security likewise a significant
worry as the put away information frequently contains

 ISSN 2347 - 3983

Volume 8. No. 3, March 2020
International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter23832020.pdf

https://doi.org/10.30534/ijeter/2020/23832020

 K.Jose Triny et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 752 - 758

753

delicate client data [4] [5]. Conventional security instruments
customized for static systems are lacking for dynamic
systems. Gadgets can be caught by unapproved clients and
information can be undermined effectively on the off chance
that essential safety efforts are not given. To address the
previously mentioned issues of vitality productivity, rely
capacity and security of dynamic system topologies, the k
out of n registering system was presented [8]0[9].

 Here, in this paper, we execute Hadoop Map
Reduce system over MDFS and assess its exhibition on a
general0heterogeneousbunch of gadgets. We implement the
nonexclusive document framework interface of for MDFS
which makes our framework interoperable with other
Hadoop structures like HBase. There are no progressions
required for existing HDFS applications to be sent over
MDFS. As far as we could possibly know, this0is the
primary work to bring Hadoop Map Reduce structure for
portable cloud that genuinely addresses the difficulties of the
dynamic system condition. Our framework gives an
appropriated figuring model to processing0of huge datasets
in versatile condition while guaranteeing solid certifications
for vitality productivity, information unwavering quality and
security.

2.LITERATURE SURVEY

There have been a few researches contemplates
that0attempted to bring Map Reduce structure to the
heterogeneous bunch of gadgets, because of its
effortlessness and ground-breaking deliberations0[11].

Marinelli presented the Hadoop based stage Hyrax
for distributed computing on cell0phones.0Hadoop
Task0Tracker and Data0Node forms were0ported on
Android cell phones, while a solitary case of Name Node
and Job Tracker were run in a customary server. Porting
Hadoop forms straightforwardly onto versatile gadgets
doesn't moderate the issues looked in the0mobile
condition[12]. As exhibited before, HDFS isn't well
appropriate for dynamic system situations. There is a need
for a progressively lightweight document framework which
can satisfactorily address dynamic system
topology0concerns. Another Map Reduce system dependent
on Python, Misco was executed on Nokia cell phones[13].
It has0a comparative server-customer model0where the
server follows along of different client occupations and
doles out them0to laborers on request. One more
server0customer model0based Map0Reduce framework
was0proposed over0a bunch of portable gadgets [14]0where
the versatile customer actualizes Map Reduce rationale to
recover work and produce results from the ace hub.
The0above arrangements, be that as it may, don't
comprehend the issues associated with information
stockpiling and handling of enormous datasets0in
the0dynamic system[6].

P2P Map Reduce depicts a model implementation
of a Map Reduce system which0utilizes a distributed model
for equal information handling in0dynamic cloud
topologies. It depicts components for overseeing hub and
occupation disappointments in a decentralized way[15].

The past research concentrated uniquely on the

equal handling of undertakings on cell phones utilizing the

Map0Reduce structure without tending to the genuine
difficulties that happen when0these gadgets are sent in the
portable condition. Huchton et al. [1] proposed a k-
Versatile Mobile Distributed File System (MDFS) for cell
phones focused on essentially for military operations. Chen
et al.0proposed another asset allocation plot dependent on k-
out-of-n structure and executed an increasingly solid and
vitality effective Mobile Dispersed0File System0for Mobile
Ad Hoc Networks (MANETs) with critical upgrades in
vitality utilization over0the customary MDFS engineering.
[16].

3.PROPOSED SYSTEM

3.1 Hadoop Architecture
0The two essential segments of Apache Hadoop0 are the
Map0Reduce system and HDFS, as appeared in Figure01.
Map0Reduce is a versatile equal preparing system that
sudden spikes in demand for HDFS. It alludes to two
particular assignments that Hadoop0occupations play out
the Map0Task and the Reduce0Task. The Map0Task takes
the information set and creates a lot of middle of the road 0

Figure 1:0Hadoop architecture

<key,0value>sets which0are arranged and parceled per
reducer.0The map yield is0then passed0to Reducers0to
deliver the last yield. The client applications execute mapper
furthermore, reducer0interfaces to give the guide and lessen
capacities[7]. In0the Map0Reduce system, calculation is
constantly drawn nearer to hubs where information is found,
rather than moving information to0the figure hub. In0the
perfect case,0the figure hub is likewise the capacity hub
limiting the system blockage and along these lines
maximizing0 the general0throughput[10].

2 significant modules in Map Reduce are0the Job

Tracker and the Task Tracker. Job Tracker is the Map
Reduce ace daemon that acknowledges the client
employments also, parts them into numerous errands[17]. It
at that point doles out these errands to Map0Reduce slave
hubs in the group called the Task Trackers. Task Trackers
are the processing0hubs in the group that run the errands
Map and Diminish[26]. The Job Tracker is liable for
planning errands on the Task Trackers and re-executing the
fizzled errands. Task0Trackers report to Job Tracker at

 K.Jose Triny et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 752 - 758

754

customary interims through0heartbeat messages which
convey the data with respect to the status of running errands
and the quantity of accessible spaces. HDFS0is a solid,
shortcoming tolerant appropriated record framework
intended to store huge datasets. Its key highlights
incorporate burden adjusting for greatest effectiveness,
configurable square replication systems for information
protection, recuperation systems for adaptation to internal
failure and auto versatility. In HDFS, each record is part into
squares and each square is recreated to a few gadgets over
the bunch[27].

3.2 MDFS Overview

As appeared in Figure 2, each document is scrambled

utilizing a mystery key and divided into n1 record pieces
utilizing deletion encoding (Reed Solomon calculation).
Unlike customary plans, the mystery key isn't put away
locally. The key is part into n2 sections utilizing Shamir's
mystery key sharing calculation. Document creation is
finished at the point when all the key and record sections are
disseminated over the bunch. For record recovery, a hub
needs to recover in any event k1 (<n1) document sections
and k2 (<n2) key pieces to remake the first document.
MDFS system gives high security by0ensuring that
information can't be decoded except if an0authorized client
acquires k2 unmistakable key pieces[18]. It likewise
guarantees versatility by permitting the approved clients to
reproduce the information considerably in the wake of
losing n1-k1 fragments0of information. Unwavering quality
of the document increments when the proportion k1/n1
diminishes, however it additionally brings about higher
information repetition[19]. The information sections are set
on a set of chosen stockpiling hubs thinking about every
hub's disappointment likelihood and its separation to the
potential[20]
customers. A hub's disappointment likelihood is assessed
based on the rest of the vitality, arrange availability, and
application-subordinate elements. Information sections are
at that point dispensed to the system with the end goal that
the normal information moving vitality for all customers to
recover/recoup the document is limited.

MDFS has a completely circulated registry
administration in which every gadget keeps up data with
respect to the rundown of accessible documents and their
comparing key and document sections. Every hub in the
system occasionally synchronizes the catalog with different
hubs guaranteeing that the catalogs of all gadgets are
constantly refreshed[21].

Figure 2: Overview of MDFS Architecture

3.3 System Architechture0

We0propose two methodologies for our0MDFS design

A0Distributed design where0there is0no focal element to
deal with the bunch and a0Master-slave0architecture, as0in
HDFS. In spite of the fact that the tradeoffs0between0the
circulated engineering and0the incorporated architecture0in
a circulated framework is well-considered; this paper is the
first to actualize and analyze Hadoop system on these two
structures.

a) Distributed Architecture0

Figure 3: Distributed Architecture of MDFS

Here in this system, each participating0hub runs a0Name

Server0and a0Fragment0Mapper.0After each record
framework activity, the update is communicated in the
system with the goal that the neighborhood reserves of all
hubs are synchronized. Also, every hub0periodically
synchronizes with different hubs by0sending communicate
messages.0Any0new hub entering0the system gets these
communicate messages0and makes a neighborhood reserve
for0further tasks. In0the equipment execution, the0updates
are communicated utilizing0UDP parcels. We expect every
utilitarian hub can effectively get the communicate
messages. The more complete and vigorous circulated
catalog administration is left as0future work[22].

This system has0no single purpose of disappointment
and no imperative is forced on0the system topology.0Each
hub can work autonomously, as every hub stores0a different
duplicate of the namespace0and section 0mapping. The heap

 K.Jose Triny et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 752 - 758

755

is uniformly appropriated over the group as far as metadata
stockpiling when contrasted with the brought together
design. Be that as it may, organize data transfer capacity is
squandered because of the messages communicate by every
hub for refreshing the nearby store of each other hub in the
organize. As the quantity of hubs associated with handling
expands, this issue turns out to be increasingly extreme,
prompting higher reaction time for every client activity[23].

b) Master Slave Architecture

In this design portrayed, the Name0Server and0the
Fragment0Mapper are0singleton in0positions over the total
group. These0daemons can be0run in any0of the hubs in the
group. The hub that0runs these0daemons is known as the
ace hub. MDFS0stores metadata0on0the ace hub like other
disseminated frameworks like HDFS, GFS and PVFS[24].

Figure 4: Master Slave Architecture

c)System Operation

i) File read operation

Figure 5: Dataflow0of 0read0operation

Figure outlines the control stream of a0read activity
through0these0numbered advances.
Stage 1:0The client gives a0read solicitation for record
squares of length0L at a0byte balance O.
Stages 2,3:0As in0HDFS, the0MDFS customer inquiries the
Name0Server to restore all squares of0the document that
range the0byte balance run from O0to O+L.0The0Name
Server looks the nearby store for the0mapping0from the
record to0the rundown of squares. It restores the rundown of
hinders that0contain the mentioned bytes.
Stage 4:0For each square in the rundown returned0by the
Name0Server, the customer gives a recovery solicitation to
the Information Server.0Each document framework activity
is distinguished by a particular opcode0in the solicitation.
Stage 5: The Data0Server recognizes the opcode and starts
up the File0Retriever0module to deal with the square
recovery.
Stages 6-7: The Data0Server demands the
Fragment0Mapper to give data in regards to the key and
record pieces of the document. The Fragment0Mapper
answers with0the character of the pieces and0the areas of
the parts in0the systems.
Stages8to15: The0DataServer0demands
the0Communication Server0to get the necessary number0of
pieces from0the areas which0are recently returned0by the
Section Mapper. Sections are brought in equal also, put
away in the nearby document arrangement of the
mentioning customer. In the wake of bringing each
solicitation, the0Communication Server0recognizes the
Data Server with the area where the sections are put away in
the nearby document framework.
Stage 16: The above activities are rehashed for bringing the
key sections. These subtleties are0not 0included in the chart
for quickness. The mystery key0is built from0the key
sections.
Stage 17:0Once the necessary grind parts are0downstacked
into the nearby document framework, they are decoded and
at that point unscrambled utilizing the mystery key0to0get
the first square.
Stage 18:0The key0and document parts which0were
downloaded0into the nearby document framework during
the retrieval0process are erased for security0reasons.
Stage 19:0The Data0Server recognizes the customer with
the area of the square in the neighborhood record
framework.
Stage 20:0The0MDFS customer peruses the mentioned
number0of bytes of0the square. Stages 4-190are rehashed
on the off chance that there are different squares to be
perused. When the read activity is finished, the square is
erased for security motivations to reestablish the first
condition of the group.

ii) File write operation

 K.Jose Triny et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 752 - 758

756

Figure 6: Data0flow of0write0operation

Figure shows the control stream of a compose activity
through these numbered advances
Stage 1: The client gives a compose demand for0a
document of length0L. The record is part into squares of
size0[L/B] where0B is the client designed square size.0The
last square may not0be finished relying upon the record
length. The client solicitation can likewise be a gushing
compose where the client keeps in touch with the document
framework byte by byte. When the square limit is come to
or when the document is shut, the square is kept in touch
with the system. In the two situations, the information to be
composed is thought to be available in the nearby record
framework.
Stage 2:0Similar to0HDFS square allotment conspire, for
each square to0be composed, the0MDFS customer demands
the Name0Server to designate another square Id which is a
one of a kind identifier for each square. As every one of the
identifiers0are created by0a solitary Name0Server in a
concentrated engineering, there won't be any0identifier. Be
that as it may, in the dispersed engineering, a fitting hashing
work is required to produce the novel worldwide 0identifier.
In our usage, the outright way of0each record is utilized as
the hash0key.
Stage 3:0The Name0Server restores another square id in
light of the assignment calculation and includes the square
identifier0in its nearby store. The0mapping of record to0list
of squares is put away in the Name0Server.
Stages 4to5:0The MDFS customer gives a creation demand
to the Data0Server which0contains a particular opcode in
the solicitation message. The0Data Server distinguishes the
opcode and starts up the File0Creator0module to handle0the
square creation.
Stage 6:0The square put away in the neighborhood record
framework is encoded utilizing the mystery key.0The
encoded square is parceled into n parts utilizing deletion
encoding.
Stage 7:0The key0is likewise part into pieces utilizing
Shamir's mystery key0sharing calculation.
Stages 8,9: The Data0Server demands the k out of n
structure to give n stockpiling hubs with the end goal that
aggregate expected0transmission0cost from0any hub to0k
nearest capacity hubs is insignificant.

Stage 10:0The0Data Server demands the Fragment0Mapper
to include the part data of each record which incorporates
the part identifier with the new areas returned by the k out of
n system. On the off chance that the arrange topology
changes after the underlying calculation, k-out-of-n system
recomputes0the capacity hubs for each record put away in
the system and0updates the Piece Mapper.0This guarantees
Fragment0Mapper is consistently in a state of harmony with
the present system topology.
Stages 11-18: The document pieces are circulated in equal
over the group. The key pieces are additionally put away in
a similar way. These subtleties are definitely not
remembered for the graph for quickness.
Stages 19to20:0Once the record and0key sections are
disseminated over the group, the Data0Server educates the
customer that0the record has0been effectively composed to
the hubs. For0security0purposes, the first square put away in
the neighborhood document arrangement of the author is
erased after the compose activity as it is never again
required.

iii) File0Append Operation

MDFS0underpins append activity which was0introduced in
Hadoop 0.19. In the event that a client needs to keep in
touch with an existing record, the document must be open in
annex mode. On the off chance that the client adds
information to0the document, bytes0are added0to the0last
square of0the record. Thus, for square affix mode, the0last
square is added something extra to the neighborhood record
arrangement of the essayist and the record pointer is
refreshed properly to the last composed byte. At that point,
composes are executed in a comparative route as portrayed
in the past segment.

iv) File0Delete0Operation

For a record to be erased, all document sections of each
square of the record must be erased. At the point when the
client gives a document erase demand, the MDFS customer
inquiries the Name Server for every one of the squares of
the document. It at that point demands the Information
Server0to erase these squares from the system. The0Data
Server accumulates data about the record pieces from the
Fragment0Mapper and solicitations the Communication
Server0to send erase solicitations to every one of the areas
returned0by the Fragment0Mapper.0Once the erase demand
has0been effectively executed,0the comparing section in the
Fragment0Mapper is expelled. If there should be an
occurrence of the appropriated engineering, the update must
be communicated to the system so that the passage is erased
from all hubs in the system.

v) File0Rename0Operation

The File Rename activity requires just an update in the
namespace where the document is referenced with0the0new
way name rather than the old way. At the point when0the
client issues a document rename demand, the MDFS
customer demands the Name Server to refresh its

 K.Jose Triny et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 752 - 758

757

namespace.0The Name0Server refreshes the current0inode
structure0of the record in view of the renamed way.

vi) Directory0Create/Delete/Rename0Operations

At the point when the client gives the record directions to
make, erase or then again rename0any catalog, the0MDFS
customer demands the Name0Server to refresh the
namespace.0The namespace0keeps a0mapping of each
record to its0parent registry where0the highest level is0the
root index ('/'). All ways from the0root hub to the0leaf hubs
are one of a kind. Recursive activities are likewise took into
account erase and rename activities.

4.PERFORMANCE EVALUATION

4.1 Effect0of Cluster0Size on0Job Completion0Time

The cluster0size decides the0degree of conceivable

parallelization0in the bunch. As0the group size0increments,
more errands can0be run0in equal, in this manner
diminishing the work consummation time. Fig 7(a)0shows
the impact of cluster size on work consummation time.0For
bigger documents, there are a few guide assignments that
can be worked in equal contingent upon the arranged square
size.0So the presentation is0improved essentially with
increment in group size0as0in the0figure.0For littler
documents, the execution isn't influenced much0by the
group size, as the presentation gain got as a major aspect of
parallelism0is similar to the extra expense acquired in the
errand arrangement[25].

Figure 7: Effect0of (a)0Comparison0of job0completion rate
Between0HDFS and0MDFS (b)0Job time0vs. Number0of
failures.

4.2 Effect0of Input0Data0Size

Fig 8(a) and Fig 8(b) show0the impact of info dataset0size
on MDFS0throughput. The investigation measures0the
normal peruse and compose throughput0for different record
sizes.0The square size0is set0to 40MB. The outcome shows
that0the framework is0less effective with little records
because of the overhead0in arrangement of creation and
recovery errands. Greatest throughput is watched for record
sizes that are products of square size. This will decrease the
total number of subtasks expected to peruse/compose the
entirety document, diminishing the general overhead. In
Figure 8(b), the throughput bit by bit increments when the
information dataset size is expanded from 1 MB to 4 MB
since more information can be moved in a solitary square
read/compose demand. In any case,
when0input0dataset0size is expanded further,0one extra
solicitation is required0for additional information and along

these lines0throughput drops unexpectedly. The outcomes
show0that most extreme MDFS0throughput is around02.83
MB/s for peruses and 2.120MB/s for composes for
document measures that0are products of square0size.

Figure08: MDFS0Read/Write0Throughput of (a)0Large
files(b)0Small files

Fig 9 shows0the impact of information dataset0size on work
consummation time.0The trial quantifies the activity
fulfillment time for various document sizes going from05
MB to 100MB. Documents produced in cell phones are far-
fetched to surpass 100 MB. In any case, MDFS doesn't have
any hard point of confinement on input0dataset size0and0it
can0take0any information size permitted in the standard
Hadoop discharge. The outcome shows that the activity
fulfillment time fluctuates in not exactly direct time with
input0dataset0size.0For bigger datasets, there is an adequate
number0of errands that0can0be executed0in equal over the
bunch coming about in0better hub usage and
improved0execution

Figure09 (a) Job0Completion 0time v.s.0input0dataset0size
(b)0Processing0time vs0Transmission0time

5.CONCLUSION

The Hadoop0Map Reduce structure over MDFS shows the
abilities of cell phones to capitalize on the relentless
development of huge information in the portable condition.
Our framework tends to every one of the limitations of
information preparing in versatile cloud - vitality
effectiveness, information unwavering quality and0security.
The assessment results0show that our framework is skilled
for huge information investigation of unstructured
information like0media documents, content and0sensor
information. Our presentation results look encouraging0for
the organization of our framework in genuine groups for
large information scientific of unstructured information like
media0records, content and sensor information.

REFERENCES

 K.Jose Triny et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 752 - 758

758

[1] S. Huchton, G. Xie, and R. Beyerly, “Building and
evaluating a k-resilient mobile distributed file system
resistant to device compromise,” in Proc. MILCOM,2011.
[2] G. Huerta-Canepa and D. Lee, “A virtual cloud
computing provider for mobile devices,” in Proc. of
MobiSys, 2010.
https://doi.org/10.1145/1810931.1810937
[3] K. Kumar and Y.-H. Lu, “Cloud computing for mobile
users: Can offloading computation save energy?”
Computer, 2010.
[4] S. George, Z. Wei, H. Chenji, W. Myounggyu, Y. O.
Lee, A. Pazarloglou, R. Stoleru, and P. Barooah,
“Distressnet: a wireless ad hoc and sensor network
architecture for situation management in disaster
response,” Comm. Mag., IEEE, 2010.
[5] J.-P. Hubaux, L. Butty´an, and S. Capkun, “The quest
for security in mobile ad hoc networks,” in Proc. of
MobiHoc, 2001.
[6] H. Yang, H. Luo, F. Ye, S. Lu, and L. Zhang, “Security
in mobile ad hoc networks: challenges and solutions,”
Wireless Communications, IEEE, 2004.
[7] C. A. Chen, M. Won, R. Stoleru, and G. Xie, “Resource
allocation for energy efficient k-out-of-n system in
mobile ad hoc networks,” in Proc. ICCCN, 2013.

[8] C. Chen, M. Won, R. Stoleru, and G. Xie, “Energy-
efficient fault-tolerant data storage and processing in
dynamic net- work,” in MobiHoc, 2013.
https://doi.org/10.1145/2491288.2491325
[9] K. Shvachko, H. Kuang, S. Radia, and R. Chansler,
“The hadoop distributed file system,” in Proc. of MSST,
2010.
[10] J. Dean and S. Ghemawat, “Mapreduce: Simplified
data processing on large clusters,” Commun. ACM, 2008.
[11] E. E. Marinelli, “Hyrax: Cloud computing on mobile
devices using mapreduce,” Master’s thesis, School of
Computer Science Carnegie Mellon University, 2009.
[13] T. Kakantousis, I. Boutsis, V. Kalogeraki, D.
Gunopulos, G. Gasparis, and A. Dou, “Misco: A system for
data analysis applications on networks of smartphones
using mapreduce,” in Proc. Mobile Data Management,
2012.
https://doi.org/10.1109/MDM.2012.75
[14] P. Elespuru, S. Shakya, and S. Mishra “Mapreduce
system over heterogeneous mobile devices,”, in Software
Technologies for Embedded and Ubiquitous Systems, 2009.
[15] F. Marozzo, D. Talia, and P. Trunfio, “P2p-
mapreduce: Parallel data processing in dynamic cloud
environments,” J. Comput. Syst. Sci., 2012.
[16] C. A. Chen, M. Won, R. Stoleru, and G. G. Xie,
“Energy- efficient fault-tolerant data storage and
processing in dynamic networks,” in Proc. of MobiHoc,
2013.
[17] Saravanan, V. Venkatachalam, “Advance Map
Reduce Task Scheduling algorithm using mobile cloud
multimedia services architecture” IEEE Digital Explore,
pp.21-25,2014.
https://doi.org/10.1109/ICoAC.2014.7229736
[18] K.Sindhanaiselvan, T.Mekala , “A Survey on Sensor
Cloud: Architecture and Applications”, International
Journal of P2P Network Trends and Technology (IJPTT),
Vol.6, PP.1-6,2014.

[19] Allae Erraissi, Abdessamad Belangour, “Meta-
modeling of Big Data management layer”, International
Journal of Emerging Trends in Engineering Research
(IJETER),Vol.7,PP.36-43,2019.
https://doi.org/10.30534/ijeter/2019/01772019
[20] Amita Dhankhar, Kamna Solanki “A Comprehensive
Review of Tools & Techniques for Big Data Analytics”,
International Journal of Emerging Trends in Engineering
Research (IJETER),Vol.7,PP.556-562,2019.
https://doi.org/10.30534/ijeter/2019/257112019
[21].Pandiaraja, P, Vijayakumar, P, Vijayakumar, V &
Seshadhri, R, ‘Computation Efficient Attribute Based
Broadcast Group Key Management for Secure
Document Access in Public Cloud’, Journal of Information
Science and Engineering, 33, No. 3, pp. 695-712
[22]. S.Sravanan , T.Abiramai , and P.Pandiaraja, ‘Improve
Efficient Keywords Searching Data Retrieval Process in
Cloud Server ”, 2018 International Conference on
Intelligent Computing and Communication for Smart World
(I2C2SW) .PP 219 -223.
[23]. P.RajeshKanna and P.Pandiaraja,” An Efficient
Sentiment Analysis Approach for Product Review using
Turney Algorithm”, International Conference on Recent
Trends in Advanced Computing (ICRTAC 2019). Journal
of Procedia Computer Science , Elsevier ,Vol 165 ,Issue
2019, Pages 356-362.
[24]. S.Thilagamani , N. Shanthi,Object Recognition Based
on Image Segmentation and Clustering, Journal of
Computer Science, Volume 7,No.11,pp. 1741-1748, 2011.
https://doi.org/10.3844/jcssp.2011.1741.1748
[25]. P.santhi, G. Mahalakshmi, ,Classification of
magnetic resonance images using eight directions
gray level co-occurrence matrix (8DGLCM) based
feature extraction, International journal of engineering and
advanced technology, volume 8,No.4,pp.839-846,2019.
[26]. W N Hussein1 , L M Kamarudin2 , M R Hamzah3 , H
N.Hussain4 , K J Jadaa, A Methodology for Big Data
Analytics and IoT-Oriented Transportation System for
future implementation , International Journal of Emerging
Trends in Engineering Research, International Journal of
Emerging Trends in Engineering Research ,Vol 7,No11,pp
449-453.
https://doi.org/10.30534/ijeter/2019/087112019
[27]Amita Dhankhar and Kamna Solanki, A
Comprehensive Review of Tools & Techniques for Big
Data Analytics, International Journal of Emerging Trends
in Engineering Research, International Journal of Emerging
Trends in Engineering Research ,Vol 7,No11,pp 556-562.
https://doi.org/10.30534/ijeter/2019/257112019

 K.Jose Triny et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 752 - 758

759

.

