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 
ABSTRACT 
 
The traffic flow conditions in developing countries are 
predominantly heterogeneous. The early developed traffic 
flow models have been derived from fluid flow to capture the 
behavior of the traffic. The very first two-equation model 
derived from fluid flow is known as the Payne-Whitham or 
PW Model. Along with the traffic flow, this model also 
captures the traffic acceleration. However, the PW model 
adopts a constant driver behavior which cannot be ignored, 
especially in the situation of heterogeneous traffic.This 
research focuses on testing the PW model and its suitability 
for heterogeneous traffic conditions by observing the model 
response to a bottleneck on a circular road. The PW model is 
mathematically approximated using the Roe Decomposition 
and then the performance of the model is observed using 
simulations. 
 
Key words : Heterogeneous Traffic, Payne-Whitham Model, 
Roe decomposition, Simulation. 
 
1. INTRODUCTION 
 
With the increase in population and interest of people in urban 
life, complications related to traffic have become common. 
Focus of town planners and engineers these days, is on 
solving the issues of traffic congestion and environmental 
pollution. However, it is not that simple. Observing and 
recording the traffic behavior on-site and then studying it is 
very laborious, time consuming and uneconomical. For this 
reason, mathematical modelling of traffic flow is carried out 
for the analysis of traffic flow and hence, using numerical 
simulations, the problems are identified and solutions are 
presented.     
 
The types of traffic flow conditions can be classified as; 
homogeneous traffic flow and heterogeneous traffic flow. 
Homogeneous traffic flow can be recognized by the vehicles 
closely following the lanes. Also, the vehicles are not very 

 
 

diverse as far as the physical size is concerned [1]. In this type 
of traffic, the vehicles are inclined to stay within the center of 
their respective lanes. Conversely, heterogeneous traffic flow 
can be acknowledged by the absence of lane-discipline. 
Moreover, it is composed of both the engine-driven as well as 
non-engine-driven vehicles and the vehicles differ 
significantly from each other in terms of the physical size. 
Because of this, different vehicle types enjoy different 
operating conditions on the road [2]. There is continuous 
movement both in longitudinal and cross directions within the 
heterogeneous traffic flow as opposed to the homogeneous 
conditions [3].Hence, the interactions between the vehicles in 
heterogeneous traffic flow are much more intricate. This 
poses a serious challenge to traffic engineers and transport 
planners. 
 
Speed, traffic density and traffic flow are the three traffic 
parameters considered in macroscopic traffic flow modeling 
and this approach is applicable to large road networks because 
of less complications, mathematically [4].The first 
macroscopic traffic flow model is called Lighthill, Whitham 
and Richards (LWR) Model and was developed first by 
Lighthill and Whitham[5] and then separately, by Richards 
[6]. The LWR model is based on a single equation that mimics 
the conservation law of fluid flow. The LWR model is 
mathematically represented as follows: 
 
ߩ߲ 

ݐ߲ +
((ߩ)ݒߩ)߲

ݔ߲ = 0 (1)

   
where ρ is the traffic density and (ߩ)ݒ is the equilibrium 
velocity distribution. Physically, this equation can be defined 
as the number of vehicles leaving a road section is equal to the 
number of vehicles entering it. LWR model is an easy to apply 
model however, it does not seize the traffic acceleration. Also, 
it undertakes equilibrium velocity distribution at every instant 
of time which is idealistic. Then, firstly Payne [7] and 
Whitham [8] separately, presented a two-equation model 
famously known as the Payne-Whitham or PW model. It is 
represented mathematically as follows:  
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ߩ߲ 
ݐ߲ +

((ߩ)ݒߩ)߲
ݔ߲ = 0 (2)

ݒ߲ 
ݐ߲ +

ݒ߲ݒ
ݔ߲ = −

଴ଶܥ

ߩ
ߩ߲
ݔ߲ + (

−(ߩ)ݒ ݒ
߬ ) (3)

 
where ܥ଴ଶ is known as the driver’s behavior constant while ߬is 
known as the relaxation time. The second equation models the 
traffic acceleration. The first term on the right-hand side of 
this equation is called the driver behavior term while the 
second term is known as the relaxation term. This second 
equation has been derived from Navier-Stokes equation of 
fluid flow. PW model is considered as one of the 
state-of-the-art traffic flow models. However, because of the 
constant driver behavior assumption, it has been criticized in 
detail by [9]. After that, numerous traffic flow models have 
been developed by different researchers which can be briefly 
reviewed in [4].  
 
This research concentrates on studying and observing the 
response of the PW model to a bottleneck on a circular road 
and then on the basis of this behavior, its suitability for 
heterogeneous traffic flow conditions is discussed.  
 
In section 2, we present the numerical solution of our model 
using the Roe decomposition. In section 3, we put forward the 
simulation conditions and then the results and discussions on 
it. Lastly, section 4 comprises of the research conclusions 
 
2. NUMERICAL SOLUTION OF THE MODEL 
 
In this section, the PW model is numerically approximated 
using the Roe decomposition [10] which is a finite volume 
method. The Entropy Fix [11] is also applied so as to remove 
any discontinuous approximations at the ends of the cells. The 
Roe’s scheme involves writing the equations in conservation 
form given as follows:  
 
௧ݑ  + ௫(ݑ)݂ = ܵ (4)
 
where ݑ௧  is a matrix of traffic flow parameters, ݂(ݑ)௫  is a 
matrix of the function of traffic flow parameters and S is 
called the source term. Since (2) is already in conservation 
form, (3) can be written in conservation form as follow: 
 
 

௧(ݒߩ) + ଶݒߩ) + ௫(ߩ଴ଶܥ = )ߩ
−(ߩ)ݒ ݒ

߬ ) (5)

 
(2) and (5) are summarized in conservation form inTable 1. 
 

Table 1: PW Model Conservation Vectors 

According to Roe’s scheme, firstly, the source term is 
assumed to be zero and thus (4) can be re-written as:  
 
ݑ߲ 

ݐ߲ + (ݑ)ܣ
ݑ߲
ݔ߲ = 0 (6)

 
where (ݑ)ܣ  is known as the Jacobian matrix. The Roe’s 
scheme then approximates the velocity at the edges of the 
finite volumes as follows:  
 
 

ݒ =
ඥߩଶݒଶ + ඥߩଵݒଵ
ඥߩଶ +ඥߩଵ

 (7)

 
while the average density at the limits of finite volumes is 
calculated as:  
 
ߩ  = ඥߩଶߩଵ (8)
 
After that, the matrix of the function of traffic parameters at 
these limits of the finite volumes is approximated using the 
following equation: 
 
 

௜݂ାభమ

௧ ௜௧ݑ) ௜ାଵ௧ݑ, ) =
1
2
൫݂(ݑ௜௧) + ௜ାଵ௧ݑ)݂ )൯

−
1
ܣ2

൬ݑ௜ାభమ
൰ ௜ାଵ௧ݑ) −  (௜௧ݑ

(9)

 
For all the edges or boundaries, this matrix is estimated 
using(9). Finally, for the next time step and all distance steps, 
the traffic variables are estimated using the following 
equation: 
 
௜௧ାଵݑ  = ௜௧ݑ −

ݐ݀
ݔ݀

൬
௜݂ାభమ

௧ +
௜݂ିభమ

௧ ൰+ (10) (௜௧ݑ)ܵݐ݀

 
In this way, the traffic parameters are estimated for the whole 
road section and at all time instants.  
 

3. SIMULATION OF THE MODEL ON CIRCULAR 
ROAD 
 
In this section, the PW model is simulated in MATLAB to 
assess the performance. The road conditions are selected such 
that they represent a circular or a ring road. It means that no 
vehicle enters or exits the road section. Rather, the vehicles at 
the end of the section are the ones entering the start of the 
same road section. The total length of the road section is taken 
as 200 meters while the total simulation time is chosen as 15 
seconds. The maximum velocity is 20 m/sec and the 
relaxation time is 2.5 sec. The distance step and time step are 
selected such that they satisfy CFL stability condition [11]. 
The input constraints for simulation are given in Table 2. 
 
The initial density conditions are given as follows: 
 

Vectors PW Model Parameters 
u ቂ

ߩ
 ቃݒߩ

൤ (࢛)ࢌ
ݒߩ

ଶݒߩ + ߩ଴ଶܥ
൨ 

S 
൥

0

)ߩ
(ߩ)ݒ − ݒ

߬
)൩ 
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ߩ = ൝
0.1, ݔ < 90݉
0.7, 90݉ ≤ ݔ ≤ 112݉
0.1, ݔ > 112݉

 

 
 

Table 2: Simulation Inputs 

 
This means that at the distance less than 90 meters, the density 
is very low. But beyond that, the density suddenly increases to 
0.7 until 112 meters. This can be pondered as a bottleneck at a 
distance of 91-112 meters. The bottleneck diminishes after 
that and the density reduces to 0.1 again. The bottleneck has 
been introduced to observe the behavior of the model for 
extreme traffic conditions. The velocity distribution at t=0, is 
assumed to be Greenshield distribution. 
 
Before beginning simulations, the important points to be kept 
in mind for observing the behavior of the model includes 
observing the values of the densities as well as velocities and 
seeing if they are within the upper and lower limits. Another 
key point in observations will be the response of the model to 
the bottleneck.  
 
The density conduct of the PW model can be observed in 
Figure 1. Observing the density conduct in general, the model 
yields quite practical values. In other words, the density is 
within the upper and lower boundaries.  
 

 
 

Figure 1: Density profile of the PW model  
 
 
Despite this, aninadequacy in this behavior can be observed. 
The bottleneck is there but its influence cannot be seen at any 
other point throughout the simulation. The curve very quickly 
levels down. In reality, especially in case of heterogeneous 
traffic conditions, the impact of an obstruction like a 
bottleneck is definitely recorded. According to the projected 

reality, the effect of this bottleneck must travel backward and 
must result in amplified densities at other distances and 
moments. This abnormal conduct of the density can be more 
clearly observed in Figure 2. The initial bottleneck at time, t=0 
is very clear. But no consequence of this bottleneck is 
observed at other time instants.  
 

 
 

Figure 2: Density profile of the PW model in 2D  
 
As far as the velocity performance of the PW model is 
concerned, it yields even more unrealistic values. As indicated 
earlier by [9], the PW model results in negative velocities 
which is not possible. In this simulation, it is also observed 
that the model exceeds the upper limit of velocity. This 
limitation of the model was also confirmed by [13], [14]. The 
velocity behavior of the PW model can be observed in Figure 
3.  
 

 
 

Figure 3: Velocity profile of the PW model  
 
 
In detail, the velocity behavior can be observed in Figure 4. At 
time, t=0.43 seconds, the velocity reaches up to29.73 m/sec. 
While the maximum allowable velocity is 20 m/sec. This 
violation of the upper limit of the velocity can be recorded till 
time, t=4.3 seconds. Here, the velocity is just above 20 m/sec. 
The negative velocities can also be clearly seen. The 
velocities go as low as -6.73 m/sec at time, t=0.29 seconds. 
These negative velocities can be recorded till time, t=2.22 
seconds, where the velocity is just below 0. The negative 
velocity displays right at the location where there is the 

Input Parameters Values 
Total road length 200 m 

Total simulation time  15 s 
Distance step 2 m 

Time step 0.01 s 
Equilibrium velocity distribution Greenshield 

Relaxation time 2.5 s 
Driver behavior constant 20 m/s 

Maximum velocity 20 m/s 
Maximum density 1 
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bottleneck. This can be physical thought as when the vehicles 
reach the bottleneck, instead of just slowing down, they start 
moving in the reverse direction. This is one of the most 
criticized drawbacks of the PW model.  
 
 

 
Figure 4: Velocity profile of the PW model in 2D  

 

4. CONCLUSION 
In this paper, the behavior of the PW model is studied by 
observing its response to a bottleneck on a circular road. On 
the basis of these results, its suitability for capturing and 
analyzing the heterogeneous traffic flow is determined.  
 
The PW model was mathematically approximated using Roe 
decomposition along with the Entropy fix. The model was 
then numerically simulated for a circular or ring road. 
 
The density behavior of the model indicated that there are no 
abnormal or impractical values. However, dropping of the 
densities very quickly to a uniform behavior indicated that the 
model did not respond to the bottleneck in a realistic manner.  
 
In terms of velocity, the PW model violated both the upper as 
well as lower velocity limits. The PW model exhibited 
negative velocities right at the location of the bottleneck. 
Again, the response of the model to the bottleneck is nowhere 
near the reality.  
 
In light of this, it can be concluded that the PW model 
responded idealistically to the bottleneck condition. Since, no 
consequence of this bottleneck was observed, it can also be 
concluded that the use of this model for studying 
heterogeneous traffic flow is not recommended.  
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