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ABSTRACT 
Mathematical modeling and numerical solution of problems 
of underground pipelines under spatial seismic effects are 
discussed in the paper. The systems of differential equations 
of motion are obtained for the problems of seismodynamics of 
underground pipelines with complex conditions of interacting 
with soil, at arbitrary direction of seismic load, based on 
Hamilton–Ostrogradsky variation principle, this allows in 
general form to consider a number of classes of problems. An 
analysis of results was made for an extended pipeline with 
joints located on the Oxy plane and interacting with 
surrounding soil. Applied software was created for 
calculation and visual representation of the results of solving 
problems in the form of graphs of changes in displacements, 
forces and moments over time at selected nodal points of the 
structure and in the form of animation. Results obtained 
present a new contribution into seismodynamic theory; they 
open wide possibilities for their use in optimal design of the 
complex of life support in seismic zones. 
 
Key words: model, underground pipeline, seismic wave, 
interaction, soil, numerical method.  
 
1. INTRODUCTION 
At present, the case-history of strong earthquakes that have 
occurred in the world shows that a preliminary hazard 
assessment of earthquakes and timely consideration of 
appropriate measures (problems of assessing seismic risk and 
their mitigation) are of great importance for the reduction of 
catastrophic aftermath. Thus, it is necessary to ensure the 
strength and stability of underground structures subjected to 
seismic loads. In this sense, the implementation of targeted 
scientific research to improve numerical methods for solving 
problems, to calculate the earthquake resistance of 
underground pipeline systems under random seismic effects 
is a relevant issue [1-3]. 
The current capability of computing facilities makes it 
possible to more fully account for numerous factors and, with 
a greater degree of reliability, determine the actual 
stress-strain state of an underground pipeline. 
Underground pipelines serve as a primary part of the 

 
 

life-support system of cities and centers of population (water-, 
gas- and heat supply, sewer system), objects of extraction and 
transportation of oil and gas; their safe operation especially in 
seismic zones is very important [1-14]. 

Severe earthquakes all over the world in recent years 
(Nepal, 15–26 April, 2015; Chile, 2 April, 2014; 
Cephalonia, 26 January and 3 February, 2014; Japan, 13 
April, 2013 and others) affected normal operation of 
underground support networks; their number growing 
considerably high in 1960-1980 years of the last century due 
to urbanization of towns and villages. 

In the second half of the twentieth century to calculate 
the complex system of underground pipelines with a large 
number of branches and inclusions (water supply, drainage 
systems, etc.) T.R. Rashidov has proposed “Dynamic theory 
of seismic stability of complex systems of underground 
structures”, based on the presentation of linear part of the 
pipeline by core elements of finite length and joint 
connections (structural inclusion) – by absolutely rigid 
bodies. 
At present abroad there have already appeared several 
scientific research works, which state not only the problems of 
seismic stability of underground structures, but also the 
formation of normative documents on their calculation and 
design (Japan, USA, China, Russia and others). This is 
facilitated, on the one hand, by active development of urban 
areas, expansion of support system networks, on the other 
hand, by sufficient number of strong earthquakes in the 
world, which caused damage to underground networks. 
Tashkent earthquake (1966) has also caused serious damage 
and destruction to underground networks of life support – to 
water supply pipelines, sewer systems and other. However, as 
noted in the paper, this was observed only in cases when the 
pipes were laid in soil of a certain bearing capacity. 
In works of S. Sarioletlagh, M. Nekooei, A. Aziminejad, 
D. Ha, T.H. Abdoun, M.J. O'Rourke, M.D. Symans, 
M. Saberi, H. Arabzadeh, A. Keshavarz, P. Vazouras, 
S.A. Karamanos, et al. the use of different mechanical 
mathematical models was analyzed and a number of urgent 
problems of underground and ground structures were solved 
[4-14]. 
The results of theoretical and practical research in the field of 
seismic stability of underground pipelines were analyzed in 
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detail in monographs by M.J. O'Rourke and X.L. Liu (1999). 
A deep analysis of the results of this monographic study 
allows us to trace the history of formation and development of 
seismodynamics worldwide. There were only a few data on 
the consequences of the earthquake in Japan (Tokyo, 1923), 
United States (California, 1906), Turkmenistan (Ashgabat), 
Uzbekistan (Tashkent), and others. This is explained by the 
fact that the length of underground pipelines in seismically 
active areas was comparatively short and it was difficult to 
find the damage. 
This paper is devoted to the study of the underground 
pipelines dynamics based on the seismodynamic theory of 
underground structures, using a mathematical model of the 
theory of rods, considered in [1-2] for the case of rod point 
displacements under combined action of longitudinal and 
transverse forces. 
 
2. MATHEMATICAL SIMULATION DYNAMICS OF 
UNDERGROUND PIPELINES 
 
In seismodynamic theory of underground structures the 
studies on the problem of interaction in the «structure-soil» 
system have a primary importance. In this connection, 
various laws of soil-structure interaction are developed; they 
consider the parameters characterizing the process of 
contact interaction of deformable rigid bodies with soil [1-
3].  
Pipeline life support systems consist of straight-line sections 
connected by joints orthogonally and non-orthogonally 
coupled together. A seismic wave initiated during an 
earthquake affects such a system of pipelines at an arbitrary 
angle of attack in space. For an underground system of 
arbitrarily located pipelines with an arbitrary angle of attack 
of seismic effect in space, it is necessary to develop new 
computational mathematical models and software for 
determining the stress-strain state [3]. 
To study the longitudinal, torsional and transverse 
vibrations of underground pipelines under randomly 
directed seismic load, the applied theory of rod vibrations 
was used [9-11]. 
The Hamilton–Ostrogradsky variational principle for an 
underground pipeline has the form [1-2] 
  

t

dt 0 , (1) 

where δТ, δП are the variations of kinetic and potential 
energies; δА is the variation of the work of external forces; t 
is time. 
The pipeline is modeled as a rod. Displacements are defined 
as follows [1-2]: 

211  zyuu  , zu  v2 , ywu 3 , (2) 
where the components u1, u2, u3 are the displacements of 
any point in the pipeline; u, v, w – are the longitudinal, 
transverse horizontal and vertical displacements of the 
pipeline axis; α1, α2 are the angles of rotation of the pipeline 
axis under pure bending; θ is the torsion of the pipeline. 

Variations in kinetic energy of the pipeline. Kinetic 
energy variations can be represented as 
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Variations in potential energy of the pipeline. Consider 
the potential energy variations 

    
t t V

dVdtdt 131312121111  . (4) 

Metal pipelines are strained within the elastic limit. 
Therefore, for a metal pipeline the Hooke’s law is 
considered 
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For underground polymer pipelines, the stress-strain 
relation is: 
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Based on stresses σi j (5) and (6), the longitudinal and 
transverse forces Nx and Qi j, and the moments of bending 
and torques Mi j were calculated. 
Variations in external forces work of the pipeline. 
Variations in external forces work of the pipeline in a 
general way are as follows 
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 (7) 

Here 321 ,, PPP  are the volume forces, 321 ,, qqq  are the 
surface forces, 321 ,,   are the lateral forces acting on the 
pipeline. 
After setting the variation of kinetic (3), potential (4) energy 
and the work of external forces (7) based on the Hamilton-
Ostrogradsky variational principle (1) and performing the 
operation of similar terms reduction, we obtain the 
variational equation of underground pipelines with the 
corresponding initial and boundary conditions. 
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Based on this statement, a system of differential equations, 
natural boundary and initial conditions is obtained from the 
variational equation. The resulting systems of differential 
equations and natural boundary and initial conditions can be 
represented in a vector form. 
The system of differential equations for linear sections of 
underground pipelines in a local (for each linear section) 
spatial coordinate system (Oxyz) under random seismic 
action, with corresponding boundary conditions at the ends 
and initial conditions, has a vector form 
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where М, А, В, С, D, Q are the sixth-order matrices, U are 
the pipeline and nodes displacements, U0 are the given 
displacements of soil under the effect of seismic waves, 
depending on time and coordinates. 

The stresses in the underground pipeline generated from 
axial force N and the combined action of axial force and the 
force moment M under random action are calculated 
according to the following formulas 
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The finite element method (FEM) in spatial coordinates and 
the implicit finite difference method (FDM) in time to 
discretize the pipeline problem under the action of random 
seismic waves are used as numerical methods for solving the 
equation of motion (9) with account for (10) and (11). 
In this paper, an approach is proposed for determining the 
stress-strain state of a pipeline subjected to randomly 
directed plane longitudinal unsteady-state seismic wave. Its 
propagation direction makes an angle α with the pipeline 
axis Ox and β is the angle between the projection of this 
wave direction vector onto the Oyz plane and the Oy axis of 
the pipeline. 
Consider an extended pipeline with joints located on the 
Oxy plane and interacting with surrounding soil according 
to a simplified elastic model. Let the length of underground 
pipeline be 200 m and the length of each section - 5 m 
(Figure 1). 

 
Figure 1: Underground pipeline with joint 

 
The left and right ends of the pipeline are embedded into the 
ground, and the seismic wave is given as a harmonic 
function with incidence angles α=30°, β=30°. In general, 
the problem is an unsteady-state spatial one for studying the 
processes in underground pipelines under the action of 
seismic waves. 
Mechanical and geometrical parameters of underground 
pipeline and soil are taken as follows: 
Problem. E=1.2·105 МPа; ρ=7.0·103 kg/m3; l=200 m; 
DH=0.5 m; DB=0.49 m; in a straight section 
kx=1.5·104 kN/m3; ky,z=3.9·104 kN/m3; vsoil=0.2; vpipe=0.3; 
u0=a0·sinω(t-x·cosα/Cp)·H(t-x·cosα/Cp); a0=0.01 m; 
ω=2π/T; T=0.3 s; Cp=700 m/s; u0х=u0·cosα; 
u0y=u0·sinα·cosβ; u0z=u0·sinα·sinβ. 
The amplitude of ground vibrations a0 corresponds to a 9 
point earthquake on the MSK-64 scale. Joint stiffness 
factors are 

KN=80·104 kN/m; KQ=200·104 kN/m; 

uMK =9·102 kNm; 
kMK =8·104 kNm. 

Here E, DH are the elastic modulus of the pipeline material 
and the outer diameter of the pipe, respectively; ρ is the 
density of the pipeline material; kx, ky,z are the coefficients of 
longitudinal, transverse and vertical interaction of the pipe 

x 
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with soil; a0 is the amplitude of ground vibration; ω is the 
vibration frequency; Ср is the propagation velocity of 
seismic waves in soil. 
 
3. RESULTS AND DISCUSSIONS 
Let’s analyse the results. Figure 2 shows the changes in 
longitudinal displacements along the pipeline axis at a fixed 
time. The wave distribution along the pipeline length in the 
time range t=0.05÷0.3 s is presented here. It was found that 
at t=0.286 s the wave propagating in soil reaches the right 
end of the pipeline (Figure 2). 
 

0
0,001
0,002
0,003
0,004
0,005
0,006
0,007
0,008
0,009

0 40 80 120 160 200

u, m

х, m

t=0,05 s t=0,1 s t=0,15 s

-0,01
-0,008
-0,006
-0,004
-0,002

0
0,002
0,004
0,006
0,008

0,01

0 40 80 120 160 200

u, m

х, m

t=0,2 s t=0,25 s t=0,3 s  
Figure 2: Changes in longitudinal displacements along the pipeline 

axis at a fixed time 
Figure 3 shows the changes in transverse and vertical 
displacements along the pipeline axis at a fixed time. 
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Figure 3: Changes in transverse (a, b) and vertical (c, d) 

displacements along the pipeline axis at a fixed time 

The results show that the displacements in each section of 
the underground pipeline along the coordinate are complex 
in nature with certain small bursts associated with the 
presence of flexible joints. 
Figure 4 shows the changes in compressive (tensile) stress 
along the axis of underground pipeline at a fixed time. The 
results show that in each joint, the compressive (tensile) 
stress of underground pipeline along the coordinate has a 
value distinctive for this joint with certain small bursts. This 
is due to the wave reflection from the joint and the wave 
propagation through the joint to the adjacent section of the 
pipeline. 
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Figure 4: Changes in compressive (tensile) stress along the axis of 

underground pipeline at a fixed time 
 
Figure 5 shows the changes in total stresses (σy

+, σy
-) along 

the axis of the underground pipeline at a fixed time. It is 
seen that at each joint, the values of total stresses of the 
underground pipeline along the coordinate are of a different 
nature and have certain small bursts due to the joints 
flexibility. 
The results show that at each joint, as in the case in Figure 
5, the values of total stresses in underground pipeline along 
the coordinate have different pattern with certain small 
burst. 
Figure 6 shows the changes in total stresses (σz

+, σz
-) along 

the underground pipeline axis at a fixed time. 
From the graphs in Figures 5 and 6, it is seen that each 
section of the underground pipeline affects the values of 
bending moments. 
It can be seen from the results, the values of bending 
moment of the underground pipeline are separately formed 
at each section of the pipeline and at the joints. 
At the joints, the values of bending moments are much 
smaller, compared with their values in sections, due to the 
flexibility of joints. The burst in value of bending moment 
near the wave front is associated with the pipeline end 
embedding in the deflection points. 
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Figure 5: Changes in total stresses (σy

+, σy
-) along the underground 

pipeline axis at a fixed time 
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Figure 6: Changes in total stresses (σz

+, σz
-) along the underground 

pipeline axis at a fixed time 
 

For visualization, Figure 7 shows the change in bending 
moments values (My, Mz) for a different range of lengths 
(х=5÷25 m and х=170÷195 m) of the underground pipeline 
at a fixed time. 
The figures show that the bending moments (My, Mz) 
change along the length of the underground pipeline 
section; they increase from the left joint and then decrease to 
the right joint (see Figure 7), and at the joint the values of 
bending moment are less than in the middle of the section. 
The previous graphs show the flexibility effect of section 
joints of the pipeline on the forces and moments distribution 
along the pipeline. 
From the results obtained for the bending moment, it is seen 
that a separate bending moment arises in each section of the 
joined underground pipeline during earthquakes. Therefore, 
the dynamic process in an underground pipeline is of a 
complex pattern and the values of total stress increase. A 
seismic wave acts on a joined pipeline; calculations should 
be carried out at an angle to its longitudinal axis using a 
composite model of the pipeline, where each section of a 
pipeline and each of its joints are taken into account. 
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Figure 7: Change in bending moment (bending relative to axes Oy 

and Oz) in different sections of the underground pipeline 
at a fixed time 
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5. CONCLUSION 
A generalized system of differential equations of underground 
pipeline spatial vibrations under random seismic actions at 
natural initial conditions based on the 
Hamilton–Ostrogradsky variational principle was developed. 
The system of differential equations with corresponding 
boundary and initial conditions is derived. 
As seen from results of numerical experiments, based on 
hypothesis taken in calculations concerning the forces of 
interaction between long underground structures (pipelines) 
and soil, a good agreement is stated with actual data obtained 
from analysis of earthquake aftermath. 
Joints of the underground pipeline play an important role in 
the stress-strain state formation, since the total stresses 
change in each section of underground pipeline due to the 
bending strains in the sections. 
The problems were solved by the Finite difference method 
with consideration of combined longitudinal and transverse 
equations of oscillations of the system of pipelines, various 
mechanical, geometrical parameters and the modes of seismic 
loads. Developed mathematical models, algorithms and a 
complex of applied programs for the study of combined 
longitudinal and transverse oscillations of underground 
pipelines are described in details at arbitrary direction of 
seismic loading. So, new results were obtained for the systems 
of life support in seismodynamics of underground pipelines. 
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