
Wong Jin Kee et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 741- 746

741

ABSTRACT

Speculative execution (Spectre) and Meltdown is a chip
attempting to predict the future in order to improve the system
performance which involves multiple logical branches, it will
start working out the math for all those branches before the
program even has to decide between them. Normally, it works
together with caching which is to speed up the memory access
by filled with the data that will need some and often the output
of the speculative execution is stored here. The speculative
execution and caching in the operating system improve the
over- all system and operating system performance through
the prediction of data or resources to be used and cache
memory is for quick access of data or resources. The problem
arises where this function could allow potential attackers to
get access to data they should not have access by exploiting
the Spectre attacks and Meltdown. Spectre attacks and
meltdown open up the possibilities for dangerous attacks
which involved the breach of security and confidentiality of
the user. Various techniques and patches have been
introduced to mitigating the Spectre attack and meltdown. In
this paper, we present the view various variants of attack from
the speculative execution with its mitigation techniques.

Key words: Spectre Attack; Meltdown; Speculative
Execution; Attack Mitigation.

1. INTRODUCTION

Speculative Execution [1, 2, 3] is a technique used by a
processor to increase the performance by predicting the likely
outcome and execute the predicted outcome instruction
prematurely as shown in Figure 1. The processor will start to
calculate the math for all the branches while the program is
still deciding between them. It is also an optimization
technique where the processor performs tasks that may not be
required. In the simple term, the work is done before the
process determine whether it is actually needed as this is to
prevent the delay of the system performance if the work is
carried out after known that it might be needed. For example,
if the program decide that the process A is true then compute
function X; if A is false then compute function Y, therefore,

the processor with speculative execution will start working
out and compute both the outcome of whether A is true or
false which is X and Y in parallel before the it knows whether
A is true of false [1, 2]. Once after the A has made the decision
whether it is true or false, it already has a result ahead which
this is to speed up the processing time.

For a program instruction to be processed in the processor it
might takes several clock cycles before the outcome is known,
rather than wasting the cycle by putting it them in idle, the
processor speculatively execute the program to product
possible outcomes [4]. For any variation, the processor may
start to learn the function that frequently used or accessed by
the program and the program will speculatively execute the
function during the idle time even without the
acknowledgement of the user [1, 4, 5].

Figure 1: Definition of speculative execution.

1.1 Caching

As shown in Figure 2, caching is also a technique used to
speed up the process from aspect of how the memory is
accessed. For a process from the processor to access the
memory in RAM to fetch data it might take a relatively long
time compared to access the cache memory.

The RAM located on a separate chips but the cache memory is
a small amount of memory located in the processor or also
known as CPU memory which it can be accessed quicker. The
cache memory is stored with all the data and information that
needed by the processor that will be needed soon or often.
Besides, the results of the speculative execution are always
stored in this memory and this is a reason that speculative
execution will be performing faster [1, 2].

Mitigating Risk of Spectre and Meltdown Vulnerabilities

Wong Jin Kee1, Mohd Fadzil Abdul Kadir1*, Fauziah Ab Wahab1, Aznida Hayati Zakaria@Mohamad1,
Mohamad Afendee Mohamed1, Ahmad Faisal Amri Abidin@Bharun1

1Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Besut Campus, Malaysia

 ISSN 2347 - 3983

Volume 8. No. 3, March 2020
International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter21832020.pdf

https://doi.org/10.30534/ijeter/2020/21832020

Wong Jin Kee et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 741- 746

742

1.2 Protected Memory

In computer security, protected memory as shown in Figure 3,
is part of its fundamental concepts where the speculative
execution and caching is part of the protected memory [2].
With protected memory, no process will be allowed to access
the protected data without permission, this is to allow the
program to keep the data in privacy from some of the users
and also allow the program from accessed to other program’s
data. For a program to access a protected data it has to
undergo a process called – privilege check to determine
whether or not this process is allow to fetch the data [1, 2].
Since privilege check is also a process where it takes time for
it to be processed and while it is taking its time to compute the
process will be idle. While the process is being examined if
the process is allowed to access the data, the speculative
execution will start to execute its task by starting to work with
the data even it is not granted with permission [1].

Figure 2: Definition of caching

However, it is still safe and secure as the speculative execution
and cache is still being protected at the hardware level. Since
the results of the speculative execution will be stored in the
cache memory, the process will not be allowed to access and
see the data until it passes the privilege check, if it does not
pass through the check then the data is discarded. This is
where the problem begins, the protected data is kept in the
cache memory after speculatively executed even the process
has not been granted permission to access it and also due to
cache memory can be accessed relatively faster than other
memory like RAM, the process will attempt to access the
memory to locate whether the data has been cached [6]. The
data can be predicted and deduced by identifying the location
of the data through an attempt to access the data. If the data
has been cached, the attempts will be rejected more quickly so
the location of the data could be easily identified. This is also
known as side-channel attack [7]. Side-channel attack is type
of attack based on information gained from a physical level of
a cryptosystem. It is neither classified as brute force nor
attempts to breach a cryptosystem by social engineering with
legitimate access. Side-channel attack is based on the
assumption by observing the algorithm being executed on a
processing device [6, 7].

Figure 3: Definition of protected memory

2. MELTDOWN AND SPECTRE ATTACKS

Speculative execution has been running on many modern
CPUs for more than 20 years, which means these
vulnerabilities have existed for more than 20 years but there is
no one raise up the issues of these vulnerabilities. Speculative
execution is used to speed up the system performance based
on the prediction of the unknown future outcomes of branches
[8]. If the speculative execution is efficiently executed, it will
eventually improves the parallel computations in hardware
thus it can improve the performance of serial execution of the
program [9]. Recently, this method has been widely used in
high performance CPU designs and structure as these
hardware or machines have strong predictive ability for future
executions [10]. Speculative execution in the
microarchitectures supposed to be highly invisible to the
architecture of the programmers that develop its software, the
instruction that are predicted wrongly should be cancelled so
preventing its architectural outcomes from being revealed to
the program. The consequences of the speculative execution
is effect on the cache memory where this allows side-channel
attack to attack the memory which consists of the
speculatively executed outcomes and the attackers will able to
extract the content (sensitive data or private personal data)
from cache memory by manipulating the speculation
execution to trigger a cache-timing side channel back to the
attacker [11]. There are five variants of speculative execution
attack which affect affected many modern processors by Intel,
AMD and ARM [12, 13].

 Variant 1 : Bounds Check Bypass (CVE-2017-5753)
 Variant 2 : Branch Target Injection (CVE-2017-5715)
 Variant 3 : Rogue Data Cache Load (CVE-2017-5754)
 Variant 3a : Rogue System Register Cache

(CVE-2018-3640)
 Variant 4 : Speculative Store Bypass (CVE-2018-3639)

Google’s Project Zero team has posted an article about the
detailed technical information on these three variants of the
newly discovered security issues involving speculative
execution in the starting of year 2018 [14]. In the post, Google
provide a summary of speculative execution and how each of
the five variants being implemented [12]. According to the
post by Google, there is no specific fix of each of the attack

Wong Jin Kee et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 741- 746

743

variants but each of the attack requires its own mitigation,
patches or protection against this attack.

2.1 Variant 1: Bound Check Bypass (CVE-2017-5733)

This variant is the vulnerability which affects a certain
sequences in the compiled applications at which these
sequences must be addressed on a per-binary basis. Bounds
checking features have been built into most of the binaries and
this variant allows the malicious code to evade it. Bound
checking is a method used to detect whether a variable is falls
within some bounds before it is being used [12]. This is to
ensure that the number of variables of an array index is fits
into a given bounds (range checking and index checking).
Usually, it is time consuming to perform bound checking for
every usage therefore the CPU will speculatively execute the
instructions after the bounds check. The speculative execution
allows access to memory that the process could not access to.
Once the bounds check has been failed, it will discard the
outcome that was produced speculatively [12, 15].

However, the changes to the system which is the changes to
the state of cache memory will be observed by the malicious
code [12]. The attackers will use the malicious code to detect
the changes and read or retrieve the data that was
speculatively accessed. In the kernel, this affected the systems
as the extended Berkeley Packet Filter (eBPF) that receive the
packet filters from the user space code, just-in-time (JIT) will
gather the packet filter code and execute it within the context
of the kernel. The JIT compiler will be using bounds checking
to restrict the memory that the packet filter can access [12].
This allows an attacker to use Variant 1 speculation to evade
the bounds checking features by repeatedly calling the eBPF
program with an out-of-bounds offset which will target the a
data to leak [15].

Google’s Project Zero team has carried out a research and in
their proofs of concept (PoCs) they demonstrated the
operation of Variant 1 in userspace, testing on the Intel
Haswell Xeon CPU, AMD FX CPU, AMD PRO CPU and
ARM Cortex A57. From this PoCs, they have tested that it has
the ability to read the data from the mis-speculated execution
but it is within the same processes without overlap the
privilege boundaries [15]. One of the consequences of Variant
1 is that the system will have difficulties in running untrusted
code as it will restrict the access of untrusted code into the
memory [12].

2.2 Variant 2: Branch Target Injection (CVE-2017-5715)

This variant is the vulnerability which concern about the
leakage of information [12]. In this variant, the attacker may
use one of the processes to affect the other process’s
speculative execution behaviour of code [10]. In modern
processors, it uses the prediction of destination for indirect
jumps, the program may start the speculative execution code
for the predicted program. Prior research also shown there are

possibilities for a separated security contexts code to influence
each other via branch prediction. In simple term, this variant
allows the interference from victim to attacker and vice versa
as shown in Figure 4 [15].

Figure 4: Interference between victim & attacker in Variant 2

According to the whitepaper published by Intel on February
2018, this variant allows the indirect branch predictor to use
the information from the previously executed branches to
predict the location of the future indirect branches. Intel also
shows the example of indirect call in compiled languages like
C and C++ in the paper. Programmers will use the function in
the compiled languages to perform indirect calls [16]. The
indirect calls can be executed by passed a comparison
function using sort functions where the call from the sort () is
likely to be an indirect call, Figure 5 shows the indirect call of
calling from inside sort ().

Figure 5: The indirect call from inside sort () which can

passed a comparison function [16].

In the paper, it also added that indirect calls will be frequently
executed with calls to object functions in C++ as in Figure 6.

Figure 6: The indirect calls executed with the calls to object

in C++ [16].

2.3 Variant 3: Rogue Data Cache Load (CVE-2017-5754)

This variant is also known as meltdown as it will “melts” the
security boundaries which are enforced by the hardware [1].
The attackers will be able to violate the security of the
hardware and access to the memory even in user mode [17].
The attack allows a user mode process to access as if is in the
kernel mode via virtual memory. In some situations, the
speculative execution may access memory virtually to the
current executing processor, for example, a user mode may
access to the memory as if it is in the kernel mode using
speculative execution. In the recent post by Google, they have

Wong Jin Kee et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 741- 746

744

running the Intel Haswell Xeon CPU in the normal user mode
but they can successfully read kernel memory from the
processor under some predefined condition. Google believed
that this precondition is the targeted kernel memory must be
in the L1D cache [15]. However, this variant of attack is only
works with the specific types of Intel processors [15].

2.4 Variant 3a: Rogue System Register Cache
(CVE-2018-3640)

Variants 1 and 2, known as Spectre and Variant 3, known as
Meltdown which is the processor vulnerabilities proposed by
the Google Project Zero researched early of January 2018 [18].
Recently, Microsoft and Google researchers have discovered
Variant 3a and Variant 4 which is similar to Spectre variant
that takes advantages of speculative execution to retrieve
unauthorized data via side-channel attack. Variant 3a also
known as Rogue System Register Read is a variation of
Meltdown that allows the attacker to access to the system by
local access to read sensitive data and system parameters by
using the side-channel analysis. Kernel Address Space
Layout Randomization (KASLR) could be bypass once the
attacker successfully exploited this vulnerability. This variant
may affect AMD, ARM and Intel CPUs [19].

2.5 Variant 4: Speculative Store Bypass (CVE-2018-3639)

Storing data and loading data from memory addresses is part
of the processes in the processor. There are buffering requests
to store and load the data from the memory addresses which
uses the speculative execution to make sure the storing and
loading of data execute as quickly as possible to increase the
system performance. Before the memory writes, the processor
will check if any addresses used in the load was part of the
recent store to the same addresses to avoid error, if so, the
speculative data will gets thrown out [20]. The problem is,
this speculative occurs in a shared unsecured area so it is
possible for unauthorized users to see it. This allows
unauthorized disclosure of information to an attacker by local
user access via a side-channel analysis also known as
Speculative Store Bypass or SpectreNG. By tricking the
processor, attackers can steal data like passwords, and credit
card numbers undetected [18].

3. MITIGATION TECHNIQUES

The vulnerabilities attack at the hardware level and it cannot
be patched or there is no specific fix for each of the
vulnerabilities but there are techniques introduced by the
vendors to mitigate the vulnerabilities. By mitigating means
the vulnerabilities will be minimized or to prevent it from
being severe but not vulnerabilities will not be removed
completely. Many major processors vendor such as Intel,
AMD and ARM have re- ported that the processors have
being affected more than one variant of vulnerabilities. The
expert around world and the processor vendors has being
working around the vulnerabilities to research and product

the effective techniques and patches to mitigate the attacks.
Microsoft, Apple, Google, Firefox and Samsung has released
operating system patches for most version of their machine to
prevent this attack from attacking their users, their patches
was announced publicly at the starting of January 2018 [21].
Table 1 is the summary of the mitigation techniques to
mitigate the various variants of the vulnerabilities.

Table 1: Mitigation Techniques for Meltdown and Spectre
Attacks [10]

Type of Mitigation Technique
Branch avoidance in
favour of conditional
moves.

Mitigate: Variant 1

Conditional move instruction
permits conditional
behaviour.
No involve branches.
Reasonable form of
mitigating.
Not use of data-value
speculation.

Speculation barriers and
code behaviours to limit
speculation.

Mitigate: Variant 1,
Variant 2

Speculation barrier
instruction is used to prevent
further speculative loads.
Load Fence (LFENCE) used
as a barrier to eliminate all
outstanding speculation,
barrier can be placed follow by
software bounds check but be-
fore memory access. On AMD
processors, LFENCE is placed
before an indirect jump.
Indirect Branch Prediction
Barrier (IBPB) to limit
indirect branch prediction
after an explicit barrier.
Indirect Branch Restriction
Set (IBRS) to restrict branch
speculation.
STOBP to protect
hyperthreads from
branch-predictor
manipulation.
Conditional Speculation
Dependency Barrier.
(CSBD) to prevent speculative
loads, stores, instructions
prefetches and indirect
branches.
Return Trampoline
(Retpoline) techniques is in
introduced by Google to cause
indirect jump to prevent
branch prediction on Intel and
AMD processors [22].

Explicit flushes of
architec tural and
microarchitectural state.

Architecture does not include
portable interfaces to flush the
branch-predictor state.

Wong Jin Kee et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 741- 746

745

Mitigate: Variant 3

Recommend to clear untrusted
values from registers hen
entering privileged mode or
sensitive code.

Implicit flushes of
microar chitectural
state.

Mitigate: Variant 3

AMD suggested flushing the
branch-predictor table using a
well-defined series of function
calls.
Used during entering to
privileged modes to prevent
the behaviour of user space to
influence kernel branch
prediction

Un-sharing user and
kernel address spaces

Mitigate: Variant 3

Kernel Page Table Isolation
(KPTI) consists of
Side-channels Efficiently
Removed (KAISER) that
prevents the mapping to
kernel address space when
operating in user space [23].
Supervisor Mode Execution
Protection (SMEP) in Intel
and AMD processor to prevent
the influence of speculation of
user instruction towards the
kernel mode.
Supervisor Mode Access
Protection (SMAP) used to
prevent the speculated kernel
to access to the user data.

Mitigate Rogue System
Register Read

Mitigate: Variant 3a

This vulnerability is only via a
microcode or firmware update
[24].

Mitigate Speculative
Store By pass

Mitigate: Variant 4

Patches using Speculative
Store Bypass Disable (SSBD)
will be introduced by Intel and
AMD which this inhibit the
Speculative Store Bypass thus
elimination the risk of
security.
Microsoft to develop, release
and deploy defence-in-depth
mitigations [25].

4. CONCLUSION

In this paper, we presented the review of the current security
vulnerabilities which is Meltdown and Spectre attacks. Both
the Meltdown and Spectre attack take the benefit of
speculative execution features in most of the modern CPU or
high-performance computers. The speculative execution will
supposed to be a feature to increase the performance of the
processors and provide parallel computing to shorten the
process pro- cessing time but the Meltdown and Spectre
exploitation is abusing it to access to the protected memory or
privileged memory to retrieve the protected data. The

vulnerabilities arises from the speculative execution can be
divided into three variant which is Spectre (Variant 1 and 2)
and Meltdown (Variant 3). Later, Variant 3a and 4 has been
discovered on 21 May 2018 by Microsoft and Google. Each of
the variant uses the advantage of the speculative execution to
access to the protected memory by they access via a different
ways where Variant 1 is accessed via bounds checking
features, Variant 2 is accessed via branch target inject and
Variant 3 is accessed to kernel mode via the virtual memory
from the user mode. Variant 3a allows the attackers to read
the system parameters via local access using side-channel
analysis. Variant 4 which is Speculative Store Bypass allows
the attacker to read older memory values in the processor’s
stack or memory location using side-channel attack. Each of
the variant opens up the possibilities for dangerous attacks.
There are various patches and techniques have been
introduced by the vendor and computer expert to mitigate this
vulnerability. Each of the variant does not have a specific fix
to remove the vulnerability but it can only be managed by the
patches to minimize the attack.

ACKNOWLEDGEMENT

Special thanks to the Centre for Research Excellence and
Incubation Management (CREIM), Universiti Sultan Zainal
Abidin for providing research fund for this research project.

REFERENCES
1. J. Fruhlinger. CSO: Spectre and Meltdown explained:

What they are, how they work, what’s at risk,
https://www.csoonline.com/article/3247868/vulnerabilit
ies/spectre-and-
meltdown-explained-what-they-are-how-they-work-wha
ts-at-risk.html, last updated on 2018/01/15.

2. The ITS Crew. Spectre & Meltdown: Newly discovered
Vulnerabilities that affect almost all computing devices,
https://www.itstactical.com/digicom/security/spectre-me
ltdown-
newly-discovered-vulnerabilities-affect-almost-computi
ng-devices/, last updated on 2018/02/14.

3. J. Hruska. ExtremeTech: What is Speculative Execution,
https://www.extreme-
tech.com/computing/261792-what-is-speculative-execut
ion, latest update on 2018/01/10.

4. P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y.
Yarom. Spectre Attacks: Ex- ploiting speculative
execution, Cornell University Library (Jan 2018).
https://doi.org/10.1109/SP.2019.00002

5. Giorgi Maisuradze, Christian Rossow, Speculose:
Analyzing the Security Implications of Speculative
Execution in CPUs, Cornell University Library (January
2018).

6. P. Bright. As predicted, more branch prediction
processor attacks are discovered,
https://arstechnica.com/gadgets/2018/03/its-not-just-spe

Wong Jin Kee et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 741- 746

746

ctre-researchers-reveal-more- branch-prediction-attacks/
last update on 2018/03/27.

7. O. Cherednichenko, A.A. Baranov, T.I. Morozova.
Side-channel attack, National Min- ing University, pp.
155.

8. I. Sarju. Spectre & Meltdown Processor Vulnerabilities:
A Technical Introduction,
https://hackernoon.com/spectre-meltdown-processor-vul
nerabilities-a-technical-introduc- tion-e3d09d6699a6,
last update on 2018/02/03.

9. Trend Micro, Detecting Attacks that Exploit Meltdown
and Spectre with performance coun- ters,
https://blog.trendmicro.com/trendlabs-security-intellige
nce/detecting-attacks-that-ex-
ploit-meltdown-and-spectre-with-performance-counters/,
last update on 2018/03/13.

10. T. Robert, N.M. Watson, J. Woodruff, M. Roe, S. W.
Moore, P. G. Neumann. Technical Report: Capability
Hardware Enhanced RISC Instructions (CHERI): Notes
on the Meltdown and Spectre Attacks, University of
Cambridge (February 2018).

11. D. Page. Partitioned Cache Architecture as a
Side-Channel Defence Mechanism (January 2005).

12. M. Linton. Google Security Blog: More details about
mitigations for the CPU speculative execution issue,
https://security.googleblog.com/2018/01/more-details-a
bout-mitigations- for-cpu_4.html, last updated on
2018/01/04.

13. G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, T. H. Lai,
SgxPectre Attacks: Leaking Enclave Secrets via
speculative execution, Cornell University Li- brary
(February 2018).

14. C. Page. Google claims its Spectre patch results in ‘no
degradation’ to system performance,
https://www.theinquirer.net/inquirer/news/3024392/goo
gle-claims-its-spectre-patch-results-in-no-degradation-t
o-system-performance, last update on 2018/01/15.

15. J. Horn. Google’s Project Zero: Reading privileged
memory with a side-channel,
https://googleprojectzero.blogspot.my/2018/01/reading-
privileged-memory-with-side.html, last updated on
2018/01/03.

16. Retpoline: A branch target injection mitigation
whitepaper, Intel (February 2018).

17. M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S.
Mangard, P. Kocher, D. Genkin, Y. Yarom, M. Hamburg.
Meltdown, Graz University of Technology, Cyberus
Technology GmbH, Independent, University of
Pennsylva- nia and University of Maryland, University of
Adelaide and Data61, Rambus, Cryptography Research
Division (Jan 2018).

18. S. Khandelwal. New Spectre (Variant 4) CPU Flaw
Discovered-Intel, ARM, AMD Affected,
https://thehackernews.com/2018/05/fourth-critical-spect
re-cpu-flaw.html, last up- date on 2018/5/21.

19. Microsoft. Protect your Windows devices against Spectre
and Meltdown, https://support.mi-

crosoft.com/en-us/help/4073757/protect-your-windows-
devices-against-spectre-meltdown, last update on
2018/07/25.

20. Side-Channel Vulnerability Variants 3a and 4,
https://www.us-cert.gov/ncas/alerts/TA18-141A, last
update on 2018/05/21.

21. About speculative execution vulnerabilities in
ARM-based and Intel CPUs, Apple,
https://support.apple.com/en-my/HT208394, last update
on 2018/01/29.

22. P. Tuner. Retpoline: a software construct for
preventing branch-targ.get-injection, Google,
https://support.google.com/faqs/answer/7625886.

23. L. Abbott. KPTI-The new kernel feature to mitigate
“meltdown”,
https://fedoramagazine.org/kpti-new-kernel-feature-miti
gate-meltdown/, latest update on 2018/01/05.

24. Microsoft Guidance for Rogue System Register Read,
https://portal.msrc.microsoft.com/en-us/security-guidan
ce/advisory/ADV180013, last update on 2018/08/08.

25. Microsoft Guidance for Speculative Store Bypass,
https://portal.msrc.microsoft.com/en-
US/security-guidance/advisory/ADV180012, last update
on 2018/08/08.

