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ABSTRACT 
 
Speculative execution (Spectre) and Meltdown is a chip 
attempting to predict the future in order to improve the system 
performance which involves multiple logical branches, it will 
start working out the math for all those branches before the 
program even has to decide between them. Normally, it works 
together with caching which is to speed up the memory access 
by filled with the data that will need some and often the output 
of the speculative execution is stored here. The speculative 
execution and caching in the operating system improve the 
over- all system and operating system performance through 
the prediction of data or resources to be used and cache 
memory is for quick access of data or resources. The problem 
arises where this function could allow potential attackers to 
get access to data they should not have access by exploiting 
the Spectre attacks and Meltdown. Spectre attacks and 
meltdown open up the possibilities for dangerous attacks 
which involved the breach of security and confidentiality of 
the user. Various techniques and patches have been 
introduced to mitigating the Spectre attack and meltdown. In 
this paper, we present the view various variants of attack from 
the speculative execution with its mitigation techniques.  
 
Key words: Spectre Attack; Meltdown; Speculative 
Execution; Attack Mitigation.  
 
1. INTRODUCTION 
 
Speculative Execution [1, 2, 3] is a technique used by a 
processor to increase the performance by predicting the likely 
outcome and execute the predicted outcome instruction 
prematurely as shown in Figure 1. The processor will start to 
calculate the math for all the branches while the program is 
still deciding between them.  It is also an optimization 
technique where the processor performs tasks that may not be 
required. In the simple term, the work is done before the 
process determine whether it is actually needed as this is to 
prevent the delay of the system performance if the work is 
carried out after known that it might be needed. For example, 
if the program decide that the process A is true then compute 
function X; if A is false then compute function Y, therefore, 

 
 

 

the processor with speculative execution will start working 
out and compute both the outcome of whether A is true or 
false which is X and Y in parallel before the it knows whether 
A is true of false [1, 2]. Once after the A has made the decision 
whether it is true or false, it already has a result ahead which 
this is to speed up the processing time.  
 
For a program instruction to be processed in the processor it 
might takes several clock cycles before the outcome is known, 
rather than wasting the cycle by putting it them in idle, the 
processor speculatively execute the program to product 
possible outcomes [4]. For any variation, the processor may 
start to learn the function that frequently used or accessed by 
the program and the program will speculatively execute the 
function during the idle time even without the 
acknowledgement of the user [1, 4, 5]. 

 
Figure 1: Definition of speculative execution. 

 
1.1 Caching 
 
As shown in Figure 2, caching is also a technique used to 
speed up the process from aspect of how the memory is 
accessed. For a process from the processor to access the 
memory in RAM to fetch data it might take a relatively long 
time compared to access the cache memory.  
 
The RAM located on a separate chips but the cache memory is 
a small amount of memory located in the processor or also 
known as CPU memory which it can be accessed quicker. The 
cache memory is stored with all the data and information that 
needed by the processor that will be needed soon or often. 
Besides, the results of the speculative execution are always 
stored in this memory and this is a reason that speculative 
execution will be performing faster [1, 2]. 
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1.2 Protected Memory 
 
In computer security, protected memory as shown in Figure 3, 
is part of its fundamental concepts where the speculative 
execution and caching is part of the protected memory [2]. 
With protected memory, no process will be allowed to access 
the protected data without permission, this is to allow the 
program to keep the data in privacy from some of the users 
and also allow the program from accessed to other program’s 
data. For a program to access a protected data it has to 
undergo a process called – privilege check to determine 
whether or not this process is allow to fetch the data [1, 2]. 
Since privilege check is also a process where it takes time for 
it to be processed and while it is taking its time to compute the 
process will be idle. While the process is being examined if 
the process is allowed to access the data, the speculative 
execution will start to execute its task by starting to work with 
the data even it is not granted with permission [1]. 

 
Figure 2: Definition of caching 

 
However, it is still safe and secure as the speculative execution 
and cache is still being protected at the hardware level. Since 
the results of the speculative execution will be stored in the 
cache memory, the process will not be allowed to access and 
see the data until it passes the privilege check, if it does not 
pass through the check then the data is discarded. This is 
where the problem begins, the protected data is kept in the 
cache memory after speculatively executed even the process 
has not been granted permission to access it and also due to 
cache memory can be accessed relatively faster than other 
memory like RAM, the process will attempt to access the 
memory to locate whether the data has been cached [6]. The 
data can be predicted and deduced by identifying the location 
of the data through an attempt to access the data. If the data 
has been cached, the attempts will be rejected more quickly so 
the location of the data could be easily identified. This is also 
known as side-channel attack [7]. Side-channel attack is type 
of attack based on information gained from a physical level of 
a cryptosystem. It is neither classified as brute force nor 
attempts to breach a cryptosystem by social engineering with 
legitimate access. Side-channel attack is based on the 
assumption by observing the algorithm being executed on a 
processing device [6, 7]. 
 

 
 

Figure 3: Definition of protected memory 
 
2. MELTDOWN AND SPECTRE ATTACKS 
 
Speculative execution has been running on many modern 
CPUs for more than 20 years, which means these 
vulnerabilities have existed for more than 20 years but there is 
no one raise up the issues of these vulnerabilities. Speculative 
execution is used to speed up the system performance based 
on the prediction of the unknown future outcomes of branches 
[8]. If the speculative execution is efficiently executed, it will 
eventually improves the parallel computations in hardware 
thus it can improve the performance of serial execution of the 
program [9]. Recently, this method has been widely used in 
high performance CPU designs and structure as these 
hardware or machines have strong predictive ability for future 
executions [10]. Speculative execution in the 
microarchitectures supposed to be highly invisible to the 
architecture of the programmers that develop its software, the 
instruction that are predicted wrongly should be cancelled so 
preventing its architectural outcomes from being revealed to 
the program. The consequences of the speculative execution 
is effect on the cache memory where this allows side-channel 
attack to attack the memory which consists of the 
speculatively executed outcomes and the attackers will able to 
extract the content (sensitive data or private personal data) 
from cache memory by manipulating the speculation 
execution to trigger a cache-timing side channel back to the 
attacker [11]. There are five variants of speculative execution 
attack which affect affected many modern processors by Intel, 
AMD and ARM [12, 13]. 
 

  Variant 1      : Bounds Check Bypass (CVE-2017-5753) 
  Variant 2      : Branch Target Injection (CVE-2017-5715) 
  Variant 3      : Rogue Data Cache Load (CVE-2017-5754) 
  Variant 3a    : Rogue System Register Cache 

(CVE-2018-3640) 
  Variant 4      : Speculative Store Bypass (CVE-2018-3639) 

 
Google’s Project Zero team has posted an article about the 
detailed technical information on these three variants of the 
newly discovered security issues involving speculative 
execution in the starting of year 2018 [14]. In the post, Google 
provide a summary of speculative execution and how each of 
the five variants being implemented [12]. According to the 
post by Google, there is no specific fix of each of the attack 
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variants but each of the attack requires its own mitigation, 
patches or protection against this attack. 

 
2.1 Variant 1: Bound Check Bypass (CVE-2017-5733) 

 
This variant is the vulnerability which affects a certain 
sequences in the compiled applications at which these 
sequences must be addressed on a per-binary basis. Bounds 
checking features have been built into most of the binaries and 
this variant allows the malicious code to evade it. Bound 
checking is a method used to detect whether a variable is falls 
within some bounds before it is being used [12]. This is to 
ensure that the number of variables of an array index is fits 
into a given bounds (range checking and index checking). 
Usually, it is time consuming to perform bound checking for 
every usage therefore the CPU will speculatively execute the 
instructions after the bounds check. The speculative execution 
allows access to memory that the process could not access to. 
Once the bounds check has been failed, it will discard the 
outcome that was produced speculatively [12, 15]. 
 
However, the changes to the system which is the changes to 
the state of cache memory will be observed by the malicious 
code [12]. The attackers will use the malicious code to detect 
the changes and read or retrieve the data that was 
speculatively accessed. In the kernel, this affected the systems 
as the extended Berkeley Packet Filter (eBPF) that receive the 
packet filters from the user space code, just-in-time (JIT) will 
gather the packet filter code and execute it within the context 
of the kernel. The JIT compiler will be using bounds checking 
to restrict the memory that the packet filter can access [12]. 
This allows an attacker to use Variant 1 speculation to evade 
the bounds checking features by repeatedly calling the eBPF 
program with an out-of-bounds offset which will target the a 
data to leak [15]. 
 
Google’s Project Zero team has carried out a research and in 
their proofs of concept (PoCs) they demonstrated the 
operation of Variant 1 in userspace, testing on the Intel 
Haswell Xeon CPU, AMD FX CPU, AMD PRO CPU and 
ARM Cortex A57. From this PoCs, they have tested that it has 
the ability to read the data from the mis-speculated execution 
but it is within the same processes without overlap the 
privilege boundaries [15]. One of the consequences of Variant 
1 is that the system will have difficulties in running untrusted 
code as it will restrict the access of untrusted code into the 
memory [12]. 
 
2.2 Variant 2: Branch Target Injection (CVE-2017-5715) 

 
This variant is the vulnerability which concern about the 
leakage of information [12]. In this variant, the attacker may 
use one of the processes to affect the other process’s 
speculative execution behaviour of code [10]. In modern 
processors, it uses the prediction of destination for indirect 
jumps, the program may start the speculative execution code 
for the predicted program. Prior research also shown there are 

possibilities for a separated security contexts code to influence 
each other via branch prediction. In simple term, this variant 
allows the interference from victim to attacker and vice versa 
as shown in Figure 4 [15]. 
 

 
 
Figure 4: Interference between victim & attacker in Variant 2 
 
According to the whitepaper published by Intel on February 
2018, this variant allows the indirect branch predictor to use 
the information from the previously executed branches to 
predict the location of the future indirect branches. Intel also 
shows the example of indirect call in compiled languages like 
C and C++ in the paper. Programmers will use the function in 
the compiled languages to perform indirect calls [16]. The 
indirect calls can be executed by passed a comparison 
function using sort functions where the call from the sort ( ) is 
likely to be an indirect call, Figure 5 shows the indirect call of 
calling from inside sort ( ). 
 

 
Figure 5: The indirect call from inside sort ( ) which can 

passed a comparison function [16]. 
 
In the paper, it also added that indirect calls will be frequently 
executed with calls to object functions in C++ as in Figure 6. 
 

 
Figure 6: The indirect calls executed with the calls to object 

in C++ [16]. 
 
2.3 Variant 3: Rogue Data Cache Load (CVE-2017-5754) 

 
This variant is also known as meltdown as it will “melts” the 
security boundaries which are enforced by the hardware [1]. 
The attackers will be able to violate the security of the 
hardware and access to the memory even in user mode [17]. 
The attack allows a user mode process to access as if is in the 
kernel mode via virtual memory. In some situations, the 
speculative execution may access memory virtually to the 
current executing processor, for example, a user mode may 
access to the memory as if it is in the kernel mode using 
speculative execution. In the recent post by Google, they have 
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running the Intel Haswell Xeon CPU in the normal user mode 
but they can successfully read kernel memory from the 
processor under some predefined condition. Google believed 
that this precondition is the targeted kernel memory must be 
in the L1D cache [15]. However, this variant of attack is only 
works with the specific types of Intel processors [15]. 
 
2.4 Variant 3a: Rogue System Register Cache 
(CVE-2018-3640) 

 
Variants 1 and 2, known as Spectre and Variant 3, known as 
Meltdown which is the processor vulnerabilities proposed by 
the Google Project Zero researched early of January 2018 [18]. 
Recently, Microsoft and Google researchers have discovered 
Variant 3a and Variant 4 which is similar to Spectre variant 
that takes advantages of speculative execution to retrieve 
unauthorized data via side-channel attack. Variant 3a also 
known as Rogue System Register Read is a variation of 
Meltdown that allows the attacker to access to the system by 
local access to read sensitive data and system parameters by 
using  the  side-channel  analysis. Kernel Address Space 
Layout Randomization (KASLR) could be bypass once the 
attacker successfully exploited this vulnerability. This variant 
may affect AMD, ARM and Intel CPUs [19]. 

 
2.5 Variant 4: Speculative Store Bypass (CVE-2018-3639) 

 
Storing data and loading data from memory addresses is part 
of the processes in the processor. There are buffering requests 
to store and load the data from the memory addresses which 
uses the speculative execution to make sure the storing and 
loading of data execute as quickly as possible to increase the 
system performance. Before the memory writes, the processor 
will check if any addresses used in the load was part of the 
recent store to the same addresses to avoid error, if so, the 
speculative data will gets thrown out [20]. The problem is, 
this speculative occurs in a shared unsecured area so it is 
possible for unauthorized users to see it. This allows 
unauthorized disclosure of information to an attacker by local 
user access via a side-channel analysis also known as 
Speculative Store Bypass or SpectreNG. By tricking the 
processor, attackers can steal data like passwords, and credit 
card numbers undetected [18]. 
 
3. MITIGATION TECHNIQUES 
 
The vulnerabilities attack at the hardware level and it cannot 
be patched or there is no specific fix for each of the 
vulnerabilities but there are techniques introduced by the 
vendors to mitigate the vulnerabilities. By mitigating means 
the vulnerabilities will be minimized or to prevent it from 
being severe but not vulnerabilities will not be removed 
completely. Many major processors vendor such as Intel, 
AMD and ARM have re- ported that the processors have 
being affected more than one variant of vulnerabilities. The 
expert around world and the processor vendors has being 
working around the vulnerabilities to research and product 

the effective techniques and patches to mitigate the attacks. 
Microsoft, Apple, Google, Firefox and Samsung has released 
operating system patches for most version of their machine to 
prevent this attack from attacking their users, their patches 
was announced publicly at the starting of January 2018 [21]. 
Table 1 is the summary of the mitigation techniques to 
mitigate the various variants of the vulnerabilities. 
 
Table 1: Mitigation Techniques for Meltdown and Spectre 
Attacks [10] 

 
Type of Mitigation                                           Technique 
Branch avoidance in 
favour of conditional 
moves. 
 
Mitigate: Variant 1 

Conditional move instruction 
permits conditional 
behaviour.            
No involve branches. 
Reasonable form of 
mitigating. 
Not use of data-value 
speculation. 

Speculation barriers and 
code behaviours to limit 
speculation. 
 
Mitigate: Variant 1, 
Variant 2 

Speculation barrier 
instruction is used to prevent 
further speculative loads. 
Load Fence (LFENCE) used 
as a barrier to eliminate all 
outstanding speculation, 
barrier can be placed follow by 
software bounds check but be- 
fore memory access. On AMD 
processors, LFENCE is placed 
before an indirect jump. 
Indirect Branch Prediction 
Barrier (IBPB) to limit 
indirect branch prediction 
after an explicit barrier. 
Indirect Branch Restriction 
Set (IBRS) to restrict branch 
speculation. 
STOBP to protect 
hyperthreads from 
branch-predictor 
manipulation. 
Conditional  Speculation  
Dependency  Barrier. 
(CSBD) to prevent speculative 
loads, stores, instructions 
prefetches and indirect 
branches.  
Return Trampoline 
(Retpoline) techniques is in 
introduced by Google to cause 
indirect jump to prevent 
branch prediction on Intel and 
AMD processors [22]. 

Explicit flushes of 
architec tural and 
microarchitectural state. 

Architecture does not include 
portable interfaces to flush the 
branch-predictor state. 
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Mitigate: Variant 3 

Recommend to clear untrusted 
values from registers hen 
entering privileged mode or 
sensitive code. 

Implicit flushes of 
microar chitectural 
state. 

 
Mitigate: Variant 3 

AMD suggested flushing the 
branch-predictor table using a 
well-defined series of function 
calls. 
Used during entering to 
privileged modes to prevent 
the behaviour of user space to 
influence kernel branch 
prediction 

Un-sharing user and 
kernel address spaces 

 
Mitigate: Variant 3 

Kernel Page Table Isolation 
(KPTI) consists of 
Side-channels Efficiently 
Removed (KAISER) that 
prevents the mapping to 
kernel address space when 
operating in user space [23]. 
Supervisor Mode Execution 
Protection (SMEP) in Intel 
and AMD processor to prevent 
the influence of speculation of 
user instruction towards the 
kernel mode. 
Supervisor Mode Access 
Protection (SMAP) used to 
prevent the speculated kernel 
to access to the user data. 

Mitigate Rogue System 
Register Read 
 
Mitigate: Variant 3a 

This vulnerability is only via a 
microcode or firmware update 
[24]. 

Mitigate Speculative 
Store By pass 
 
Mitigate: Variant 4 

Patches using Speculative 
Store Bypass Disable (SSBD) 
will be introduced by Intel and 
AMD which this inhibit the 
Speculative Store Bypass thus 
elimination the risk of 
security. 
Microsoft to develop, release 
and deploy defence-in-depth 
mitigations [25]. 

 
4. CONCLUSION 
 
In this paper, we presented the review of the current security 
vulnerabilities which is Meltdown and Spectre attacks. Both 
the Meltdown and Spectre attack take the benefit of 
speculative execution features in most of the modern CPU or 
high-performance computers. The speculative execution will 
supposed to be a feature to increase the performance of the 
processors and provide parallel computing to shorten the 
process pro- cessing time but the Meltdown and Spectre 
exploitation is abusing it to access to the protected memory or 
privileged memory to retrieve the protected data. The 

vulnerabilities arises from the speculative execution can be 
divided into three variant which is Spectre (Variant 1 and 2) 
and Meltdown (Variant 3). Later, Variant 3a and 4 has been 
discovered on 21 May 2018 by Microsoft and Google. Each of 
the variant uses the advantage of the speculative execution to 
access to the protected memory by they access via a different 
ways where Variant 1 is accessed via bounds checking 
features, Variant 2 is accessed via branch target inject and 
Variant 3 is accessed to kernel mode via the virtual memory 
from the user mode. Variant 3a allows the attackers to read 
the system parameters via local access using side-channel 
analysis. Variant 4 which is Speculative Store Bypass allows 
the attacker to read older memory values in the processor’s 
stack or memory location using side-channel attack. Each of 
the variant opens up the possibilities for dangerous attacks. 
There are various patches and techniques have been 
introduced by the vendor and computer expert to mitigate this 
vulnerability. Each of the variant does not have a specific fix 
to remove the vulnerability but it can only be managed by the 
patches to minimize the attack. 
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