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ABSTRACT 
 
Exon prediction has always been a challenge for computational 
biologist. Although there have been many advances in 
identification and prediction of exons by computational 
methods. The efficacy and efficiency of prediction methods 
need to be further improved using new parameters and 
algorithms. Moreover, it is essential to develop new prediction 
methods by combining already existing approaches that can 
greatly improve prediction accuracy. A eukaryotic gene 
contains several exons and introns that are separated by splice 
site junction. It is important to accurately identify splice sites in 
a gene. Splice sites regions are known, but computational 
signal prediction is still challenging due to numerous false 
positives and other problems. In this paper, a novel 
combination of Support Vector Machine and bidirectional 
LSTM-RNN based Deep Learning approaches has been applied 
to improve the efficiency and accuracy of exon prediction. The 
proposed method takes into account the conventional machine 
learning as well as the deep learning approach on predictive 
accuracy of eukaryotic exons. 
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1. INTRODUCTION 

 
Eukaryotes got a special feature from nature that makes them 
complex organisms, that is the mechanism of “splicing”. The 
diverse nature of proteins in eukaryotes are due to the 
mechanism of splicing only. One of the primary factors 
supporting protein diversity in eukaryotes is splicing. Through 
splicing, the stability of mRNA variants is also regulated. An 
important factor which depends on alternative splicing is the 
spatial localization of transcripts [1]. 
 

In eukaryotes, each gene consists of protein-coding regions 
(exons) and non-coding region (introns). In the DNA sequence, 
the intron starts with a donor splice site region GT and ends 
with an acceptor splice site AG. In order for a gene to be 
expressed as a protein, the new precursor messenger RNA (pre-
MRNA) is modified by splicing the transcript, which removes 
the introns and joins them to the exons [2]. 
Precise identification of donor splice site (GT) and acceptor 
splice site (AG) from a genetic sequence is significant for 
transcriptome research and the diversity of expressed proteins. 
For solving this problem, we have applied both Machine 
Learning and Deep Learning methods. For machine learning, 
Support Vector Machine (SVM) and in deep learning, 
Bidirectional Long short-term memory Recurrent Neural 
Networks (LSTM-RNN) has been used. 
 
2. MATERIALS AND METHODS 

 
Machine Learning (ML) is a branch of computer 
programming that provides self-learning proficiencies for 
machines without explicit programming. ML algorithms are 
used widely in bioinformatics for classification, prediction and 
feature selection. ML methods are brilliant at solving problems 
such as differentiating DNA sequences and classifying DNA 
sequences. Now, ML in Bioinformatics has been developed as 
a substantial area with the introduction of deep learning [3]. 
 
Support Vector Machine (SVM) is a supervised machine 
learning method with a robust theoretical basis and high 
classification accuracy for many applications. SVMs can learn 
precise classifiers for linear inseparable data sets at the input 
space [4]. This is accomplished by selecting the appropriate 
kernel function to convert the input data into alternative 
feature, where it is easy to calculate the exact classification. 
Through learning the optimal separating hyperplane of this 
feature space, one can learn a non-linear classifier at the 
original input space [5]. 
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Bidirectional Long short-term memory Recurrent Neural 
Networks (LSTM-RNN) is mainly a deep learning network 
model. Deep learning is composed of multiple layered neural 
networks. Recurrent neural network (RNN) is planned for 
taking information from sequences or time series data. They 
can take variable size inputs; variable size outputs and they 
really work nicely with DNA sequences or time series data. 
RNN is one such network model that has a combination of 
networks in loop. The networks in loop permit the information 
to stay. Each network in the loop takes input and information 
from previous network and performs the specified operation in 
turn produces output along with passing the information to next 
network [6]. Long Short Term Memory (LSTM) Networks of 
RNN are capable in learning such states. These networks are 
indeed planned to escape the long term dependency problem of 
recurrent neural networks [7]. LSTM is in fact adding of little 
more connections to RNN to rise the accuracy of the model. 
 
2.1 Training Dataset Preparation  
Introns always have two distinct nucleotides at either end. At 
the 5' end of the intron, the DNA nucleotides are GT [GU in the 
pre-messenger RNA (pre-mRNA)]; at the 3' end they are AG. 
These nucleotides are canonical splice site signals that are used 
in the prediction methods to predict exons and introns. The 
human genome sequences were downloaded from NCBI 
(https://www.ncbi.nlm.nih.gov/genome/?term=homo+sapiens) 
[8].  
 
Then at first, the sense and antisense strand of the DNA 
sequences were translated into all the three reading frames 
using a program and the translated sequences are then searched 
in Pfam database [9] for protein domains. Considerable hits to 
the protein domains possessing e-value less than 0.01 were 
mapped against the open reading frames (ORFs), that comprise 
the primary set of domains supporting DNA sequences. 
Secondly, a SVM classifier based on composition is trained. 
All DNA sequences carrying a domain motif possessing e-
value less than 10-50 used for training inputs for the coding 
sequence class and ORFs situated in between of these DNA 
sequences were used for training the non-coding ORF class. 
For input to the SVM classifier, all the ORFs were signified as 
vectors of sequence composition features.  
 
A computer script to extract exon and introns from the coding 
sequences (CDSs) written using SVM. In prediction model, 
The average length of exon was kept 170 bp and that of intron 
was kept 5419 bp [10]. The extracted exons and introns were 
stored in two separate text files. These extracted exons and 
introns are categorized as the classes of the training dataset. 
 
2.2 Preparing Deep Learning Model 
The first step of preparation of the model is loading dataset. 
The exon and intron sequences were loaded from their text files 
to separate exon sequence list and intron sequence list 
respectively. Then kmer (length = 170) of each exon sequence 

was computed and the resulting kmer stored to exon_texts 
string variable. Similarly, kmer (length = 5419) of each intron 
sequence was computed and the resulting kmer stored to 
intron_texts variable. All the exons in exon_texts were labelled 
to 1 and all the introns in intron_texts labelled to 0. Then both 
the string variables, exon_texts and intron_texts were merged 
using tokenizer to merge_texts. The dataset was splitted into 
training and testing sample that comprise of 80% and 20% of 
the data respectively. Second step is compilation of the model. 
Here bidirectional LSTM-RNN sequential model has been used 
[11]. In the network layer, embedding with vocab size 
97269690 was added. Then bidirectional LSTM with 70 inputs 
were added. A dense layer with 70 outputs were added and at 
last, an output layer that is a dense layer with 1 output and 
activation sigmoid were added. Figure 1 shows the summary of 
defined bidirectional LSTM-RNN deep learning model. After 
the model preparation, it was compiled with loss = 
binary_crossentopy, adam optimizer and accuracy metrics to 
evaluate the coefficient of the model. 
  

 
Figure 1: Defined Bidirectional LSTM-RNN Deep Learning Model 

 
2.3 Training Deep Learning Model 
The prepared and compiled deep learning model was trained by 
80% of the dataset with input X, output Y and numbers of 5 
epochs. 
 

 
Figure 2: Model Accuracy versus Epoch 
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Figure 2 shows that the accuracy of the model is increasing 
with the number of epochs for both training and validation data 
i.e., the test data.  
Figure 3 shows that the loss of the model decreases with the 
number of epochs for both training and validation data i.e., the 
test data.  
That means, the number of epochs plays a significant role in 
the training and testing of the model. So, to increase the 
accuracy of the model it is very necessary to train the model by 
that much number of epochs to attain the maximum accuracy. 
 

 
Figure 3: Model Loss versus Epoch 

 
2.4 Testing Deep Learning Model 
The deep learning model was tested by the 20% dataset with 
Test X (input test data), Test Y (output test data) and number of 
epochs 5 
 

 
Figure 4: Confusion matrix for Tested Model 

 

In Figure 4, the confusion matrix shows that the 89% of the 
tested model give true positives (TP) and 11% false positives 
(FP; 93% gives true negatives (TN) and 7% false negatives. 
The exon has been predicted and the probabilities of the model 
training result when compared to model test result for the same 
sequence the accuracy of the model comes out 96%. That is a 
great prediction result. 
3. RESULT AND DISCUSSION 

 
A total of 114403 CDSs were identified and predicted by the 
SVM classifier is 98.6% close to the annotated data of human 
genome CDSs that is 115987 
(https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Homo_
sapiens/109.20201120/). These predicted CDSs were used to 
train and test data as mentioned in the methodology section.  
 
Table 1: Prediction result of Exon and Intron by proposed approach 
and annotated data (A comparative study of predicted vs. annotated) 

 Model 
Prediction 

Annotated data 
(NCBI) 

Exons 310479 323416 

Introns 279188 290821 

 
We selected human genome sequence to train, test and validate 
our model, as human genome contains a pretty good number of 
exons as well as introns. A four layered deep learning model 
was generated, embedding layer, hidden bidirectional LSTM 
layer, dense layer 1 and dense layer 2. The model was trained 
by 91552 sequences i.e., 80% of the total 114403 CDSs and 
was tested by 22881 sequences i.e., 20% of the 114403 CDSs. 
After training and testing the bidirectional LSTM-RNN based 
deep learning model, the model was validated using the 
benchmark data that is the annotated data of coding transcripts 
for exon and introns at NCBI database [12].  
 
Table 1 shows the results predicted by the proposed model and 
the actual statistics as per annotated data available in NCBI. 
The predicted exons and introns by the proposed deep learning 
model are 310479 and 290821 respectively. The predicted 
result is about 96% of the annotated data, and is very much 
close to real data of exon and intron as annotated in NCBI. The 
number of introns predicted by model are 279188 while intron 
count as per NCBI data are 290821. In both cases, proposed 
approach has reached to satisfactory level of prediction.  The 
model used the canonical splice site signals to perform their 
task. The RNN architecture used was LSTM based. The 
accuracy of the model can be increased by increasing the 
number of epochs while training and testing.  
 
Table 2 shows the test accuracy of the developed prediction 
model over other two methods for comparison that includes test 
accuracy of Deep Belief Network (DBM) [13] and 
Unidirectional LSTM [14]. Evidently, our proposed approach 
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proved to be better than both the DBM and unidirectional 
LSTM methods. 
 

Table 2: Test accuracy of DBM, Unidirectional LSTM, and 
proposed bidirectional LSTM-RNN approach 

Model Type Accuracy 
Deep Belief Network (DBM) [13] 89% 
Unidirectional LSTM [14] 82% 
Bidirectional LSTM-RNN 
(proposed approach) 

96% 

 
4. CONCLUSION 

 
In this paper, we have described an approach to identify and 
predict the exons and introns based on splice site junction 
signals of the predicted CDSs. The proposed model 
outperformed the existing alternatives in terms of accuracy. By 
keeping in mind, the accuracy level of our developed approach, 
we expect that it will be of great help in overcoming the 
limitations and challenges in the computational prediction of 
exons for eukaryotic DNA sequences. Further, this developed 
model can be used to train several other eukaryotic genomes 
for exon prediction. So that it can be proposed as a universal 
approach, or model for exon prediction of all eukaryotic 
genomes. 
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